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Abstract. In this paper, we propose a nonlocal adaptive biharmonic
regularization term for image denoising and restoration, combining the
advantages of fourth order models (without the staircase effect while
preserving slopes) and nonlocal methods (preserving texture). For its
numerical solution, we employ the L2 gradient descent and finite difference
methods to design explicit, semi-implicit, and implicit schemes. Numerical
results for denoising and restoration are shown on synthetic images,
real images, and texture images. Comparisons with local fourth order
regularizer and the nonlocal total variation are made, which help illustrate
the advantages of the proposed model.
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1 Introduction

Image denoising and restoration (denoising-deblurring) has always been an
essential and challenging task in the fields of image processing and computer vision.
In this paper, we propose a nonlocal higher order model to denoise and deblur
images corrupted by Gaussian noise. Until now, there is a variety of methods
developed to deal with denoising and restoration problems in the variational
setting. Rudin, Osher, and Fatemi proposed the total variation regularization [1]
which is remarkably effective at simultaneously preserving edges whilst smoothing
away noise in flat regions, and it is widely applied to various research fields of
computer vision. Perona and Malik proposed a partial differential equation based
model for image denoising [2] which consists of a forward-backward diffusion
process controlled by a diffusion coefficient to smooth noise and preserve edges. To
overcome the staircase effect of second order partial differential equation methods,
fourth order equations for image denoising have been employed. We mention the
earlier work of Chambolle and Lions [3], of Chan, Marquina, and Mulet [4], of You
and Kaveh [5], of Lysaker et al. [6], and of Hajiaboli [7]. These models can better
preserve smooth regions and ramps, thus diminishing the staircase effect. These
image denoising and restoration methods are based on local image operators.
However, texture is nonlocal in nature and requires nonlocal information for
efficient noise removal and image restoration. Following the nonlocal means
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filter of Buades, Coll, and Morel [8], Gilboa and Osher proposed the nonlocal
total variation regularization for image processing [9]. Their work utilized the
nonlocal gradient and Laplacian to formulate variational-based methods for
image denoising, inpainting, anomaly detection, and image-texture separation.
In the work of Lou et al [10], the authors have extended the nonlocal total
variation model to image restoration (simultaneous denoising and deblurring).
Other second-order nonlocal methods for image restoration have been proposed
in [11].

Here we propose a nonlocal fourth order model for image denoising and
restoration. The model can be seen as a nonlocal version of the biharmonic
operator. Also, two versions are considered, an isotropic and an anisotropic one. In
the anisotropic case, an adaptive coefficient is used, depending on the input image,
that helps preserve edges while smoothing out homogeneous regions. In terms
of the numerical implementation, three finite difference schemes, explicit, semi-
implicit, and implicit are investigated. Experiments of denoising and restoration
of synthetic, natural, and texture images show the effectiveness of our model.

1.1 Local Fourth Order Models

We recall several local fourth order models previously introduced in [5,6,12]. Let
Ω ⊂ R2 be the image domain, f : Ω → R the given noisy image, and u : Ω → R
the restored image.

The You-Kaveh regularizer [5] is

EY K(u) =

∫
Ω

g(|∆u|)dx,

where the authors require g(·) ≥ 0, g′(·) > 0, and its corresponding time-
dependent Euler-Lagrange equation is

∂u

∂t
= −∆(g′(|∆u|) ∆u

|∆u|
) = −∆(c(|∆u|)∆u).

Usually, set c(·) = 1
1+(·/k)2 = g′(·) and k is a modulatory parameter, which is

the edge-preserving function from [2] (the independent variable being now |∆u|
instead of |∇u|).

The Lysaker-Lundervold-Tai (LLT) regularizer [6] minimizes the total varia-
tion norm of |∇u|, and it is

ELLT (u) =

∫
Ω

(|ux1x1
|+ |ux2x2

|)dx.

Based on the LLT model, Wen et al. [12] proposed an adaptive LLT regularizer
(ALLT) to better preserve structures in images. The ALLT fourth-order model is
the time-dependent gradient descent of the energy

EALLT (u) =

∫
Ω

α(f)(|ux1x1
|+ |ux2x2

|)dx,
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where α(f) = 1
1+(∇fσ/k)2 is a feature detection function based on the gradient

of the noisy image, and fσ = Gσ ∗ f , with Gσ = 1
2πσ2 e

− ‖x‖2

2σ2 . From [7] and [12],
gradient-based edge detector is more effective than second order derivative based.

These fourth order models encourage piecewise planar solutions [5,12]. Thus,
these models can preserve edges without the staircase effect.

1.2 Nonlocal Total Variation (NLTV)

Nonlocal methods are well adapted to texture preserving and denoising. Referred
to [9], we first review nonlocal differential operators. The nonlocal gradient vector
∇wu(x) : Ω → Ω ×Ω, is defined by

(∇NLu)(x, y) := (u(y)− u(x))
√
w(x, y),

where w : Ω × Ω → R is a nonnegative and symmetric weight function, such

as w(x, y) = exp
{
−Gσ∗(‖u(x+·)−u(y+·)‖

2)(0)
2h2

}
. And the magnitude of nonlocal

gradient at x ∈ Ω is

|∇NLu|(x) =

√∫
Ω

(u(y)− u(x))2w(x, y)dy.

The nonlocal divergence divNL~v : Ω × Ω → Ω of the vector ~v : Ω × Ω → R is
defined as the adjoint of the nonlocal gradient

(divNL~v)(x) :=

∫
Ω

(v(x, y)− v(y, x))
√
w(x, y)dy.

The nonlocal Laplacian ∆NLu : Ω → R of u can be defined by

∆NLu(x) :=
1

2
divNL(∇NLu(x)) =

∫
Ω

(u(y)− u(x))w(x, y)dy.

Based on the above nonlocal operators, the NLTV regularization [9] is,

min
u
ENLTV (u) =

∫
Ω

|∇NLu|,

and the associated time-dependent Euler-Lagrange equation is

∂u

∂t
=

∫
Ω

(u(y)− u(x))w(x, y)

(
1

|∇NLu(x)|
− 1

|∇NLu(y)|

)
dy,

which can also be expressed as

∂u

∂t
= divNL

(
∇NLu
|∇NLu|

)
.
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2 The Proposed Model

Inspired by the local fourth order models and the nonlocal gradient and Laplacian,
we propose the following nonlocal second order functional for image restoration,

inf
u
E(u) =

∫
Ω

αNL(f)|∆NLu|2dx+
λ

2

∫
Ω

(f −Ku)2dx, (1)

where |∆NLu(x)| = |
∫
Ω

(u(y)−u(x))w(x, y)dy|, αNL(f) is an adaptive coefficient
function to distinguish edges and smooth areas and thus will adaptively guide
the image restoration process. The first term in (1) is the regularization term,
while the second term is the usual data fidelity term; K : L2(Ω)→ L2(Ω) models
the blur kernel which is a linear and continuous operator, Ω ⊂ R2 is the image
domain, f ∈ L2(Ω) is the given noisy-blurry image, and λ > 0 is a coefficient
that balances the regularization and data fidelity terms.

The corresponding Euler-Lagrange equation associated with (1), in a time-
dependent fashion, is

∂u

∂t
= −∆NL(αNL(f)∆NLu) + λK∗(f −Ku). (2)

In the following, two choices of αNL(f) are given.
The first one is αNL(f) = 1. The model (1) is isotropic, and the regularization

term becomes a nonlocal biharmonic model. Fourth order linear diffusion damps
oscillations at high frequencies much faster than second-order diffusion [13]. At
the same time, different from second order based methods, fourth order methods
can efficiently overcome the staircase effect, while preserving slopes and creases
in the image.

The second one is

αNL(f) =
1

1 + |∇NLfσ|2/k2
, (3)

where k is a modulatory parameter, and as before, fσ = Gσ ∗ f is a smoothed
version of f . Using (3), model (1) becomes anisotropic, and αNL(f) provides a
guidance for the degree of diffusion. We use fσ to first roughly removing the
noise, and then utilize the nonlocal gradient ∇NLfσ as an edge detector. Thus,
αNL(f) has the ability of distinguishing edges and smooth areas of the original
image. From the coefficient (3), αNL(f) ∈ [0, 1]. On or near edges, |∇NLfσ| is
large and thus αNL(f) is small approaching 0. On the contrary, on flat areas or
away from edges, |∇NLfσ| is small and αNL(f) is large approaching 1. Using this
coefficient (3) in the proposed high order functional (1), we have that αNL(f)
induces less diffusion when |∇NLfσ| is large for preserving structures, and bigger
diffusion when |∇NLfσ| is small for smoothing out the noise.

Most of local fourth-order image restoration models use the second order
derivatives (Laplace operator) to define the edge-preserving function to distinguish
edges from homogeneous regions. Following [7] and [12], compared with the
Laplace operator, the gradient operator has a better edge detection capability.
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It is the same in nonlocal situations, and that is why we employ the nonlocal
gradient for designing the adaptive coefficient function α (and not the nonlocal
Laplacian). In the following, we give a group of simulation experiments to verify
the above phenomenon.

(a) Noisy (b) αNL, k = 50 (c) α̃NL, k = 100

(d) Smoothed (e) αNL, k = 22 (f) α̃NL, k = 30

Fig. 1. Comparison of the edge detection ability of nonlocal gradient and nonlocal
Laplace operator. (a) an noisy image, (b) αNL for image (a) with k = 50 , (c) α̃NL for
image (a) with k = 100, (d) a smoothed image, (e) αNL for image (d) with k = 22, (f)
α̃NL for image (d) with k = 30.

Define the nonlocal Laplace operator based adaptive function by

α̃NL(f) =
1

1 + |∆NLfσ|2/k2
. (4)

For a fair comparison, the parameter k for both (3) and (4) is turned to best
show the edges. First, we start with a noisy image f , and use (3) and (4) to
distinguish edges and homogeneous areas. In Fig. 1(a), we show the noisy image.
Correspondingly, Fig. 1(b) and Fig. 1(c) display the map of gradient-based and
Laplace-based function, respectively. However, from Fig. 1(c) we can not find
the roughly sharp edges of Fig. 1(a). Thus, as in the case of the local Laplace
operator, the nonlocal Laplace operator cannot detect edges for images with a
lot of noise. Second, there is another group of experiment in the second row of
Fig. 1. Different from the first row, we replace fσ with a smooth and cleaner
image in (3) and (4). The edge maps of (3) and (4) are shown in Fig. 1(e) and
Fig. 1(f), respectively. At the thick sharp edges, αNL shows dark lines. On the
contrary, as expected, α̃NL shows two light lines at the boundary of edges. It
verifies the bilateral effect of the nonlocal Laplace operator, which is the same as
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when using the local version. Also, the nonlocal Laplace based edge detector has
a larger reaction of crease points (such as the table leg of Fig. 1(f)). Thus, the
nonlocal gradient based function is more suitable for distinguishing edges and
homogeneous areas.

3 Numerical Implementation

To numerically solve the proposed model (1), we design three different finite
difference schemes. Before introducing these three schemes, we first give some
notations.

Let uni denote the value of a pixel i in the image (1 ≤ i ≤ N) with time level
n, the time step is τ , t = nτ , n = 0, 1, ..., and let wi,j be the sparsely discrete
version of w = w(x, y) : Ω × Ω → R. We use the neighbors set j ∈ Ni defined
by j ∈ Ni := {j : wi,j > 0}. Then, as in [9], the discretizations of the nonlocal
gradient ∇NLd(ui) and nonlocal Laplacian ∆NLd(ui) are

∇NLd(ui) := (uj − ui)
√
wi,j , j ∈ Ni,

∆NLd(ui) :=
∑
j∈Ni

(uj − ui)wi,j ,

and the magnitude of the discrete nonlocal gradient is

|∇NLd(ui)| :=
√∑
j∈Ni

(uj − ui)2wi,j . (5)

We construct the weight function wi,j following the algorithm in [9,11].

Explicit Scheme We first give the finite difference explicit scheme, as follows,

un+1
i − uni

τ
= −∆NLd(αNL(fi)∆NLd(u

n
i )) +K∗(fi −Kuni ). (6)

Implicit Scheme The implicit scheme is

un+1
i − uni

τ
= −∆NLd(αNL(fi)∆NLd(u

n+1
i )) +K∗(fi −Kuni ). (7)

Semi-implicit Scheme For the semi-implicit scheme, we first expand the
proposed fourth order regularizer as

−∆NL(αNL(f)∆NLu) = −
∫
Ω

(αNL(f)(y)∆NLu(y)− αNL(f)(x)∆NLu(x))w(x, y)dy,
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where ∆NLu(y) =
∫
Ω

(u(z) − u(y))w(y, z)dz and ∆NLu(x) =
∫
Ω

(u(z′) −
u(x))w(x, z′)dz′. Thus, the regularization term equals to

−
∫
Ω

αNL(f)(y) ·
∫
Ω

(u(z)− u(y))w(y, z)dz · w(x, y)dy

+

∫
Ω

αNL(f)(x) ·
∫
Ω

u(z′)w(x, z′)dz′ · w(x, y)dy

− αNL(f)(x) · u(x)

∫
Ω

∫
Ω

w(x, z′)dz′ · w(x, y)dy.

Notice, the u in the last term of the above formula is independent of the integration,
and we discretize it in the n+ 1 level. Therefore, the semi-implicit scheme is,

un+1
i − uni

τ
+ αNL(fi) · un+1

i

∑
j∈Nj

(wi,j
∑
k∈Nk

wi,k)

= −
∑
j∈Nj

αNL(fj)∆NLd(u
n
j )+αNL(fi)

∑
j∈Nj

∑
k′∈N ′

k

(unk′wi,j ·wi,k′)+K∗(fi−Kuni ).

(8)

For the explicit scheme (6) and semi-implicit scheme (8), un+1
i can be ex-

pressed explicitly. However, for the implicit scheme (7), the inverse of a very
large matrix has to be calculated to solve for un+1

i .

4 Experiments

In order to quantify the denoising and restoration effect, for the original clean
image uo and its restored image u, the denoising performance is measured in
terms of peak signal to noise ratio (PSNR),

PSNR = 10log10
M1N1|maxuo −minuo|

‖u− uo‖2L2

dB,

and mean absolute deviation error (MAE),

MAE =
‖u− uo‖L1

M1N1
,

where M1 ×N1 is the size of image. Besides, we also use the structural similarity
(SSIM) [14].

4.1 Image Denoising

We apply our proposed model to image denoising, and thus this is when the blur
kernel K is the identity. To study the performance of our method, we compare
the proposed NLABH model (1) with ALLT [12] and NLTV [9]. For illustration,
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we test four images synthetic, Lena, Barbara, and texture (the original images are
shown in Fig. 3 and Fig. 4).All the Denoising results obtained using the NLABH
model are obtained using the semi-implicit scheme. The PSNR, MAE, and SSIM
values of the Denoising results are listed in Table 1, where the best results are
shown in boldface. Next, we report some of the numerical experiments for the
original test images and the corresponding results are depicted in Fig. 3 and Fig.
4.

Table 1. Comparison of PSNR, MAE, and SSIM of the different models with Gaussian
noise, and noise level σn = 10, 20, 30.

PSNR MAE SSIM
σn 10 20 30 10 20 30 10 20 30

synthetic

ALLT 43.820 38.548 35.045 1.058 1.767 2.869 0.507 0.448 0.418
NLTV 42.074 36.921 35.042 0.964 1.906 2.419 0.765 0.481 0.450

NLABH 42.775 38.224 35.323 0.824 1.531 2.273 0.752 0.470 0.439

Lena

ALLT 33.611 29.892 27.953 3.748 5.506 6.820 0.744 0.630 0.552
NLTV 34.562 30.820 28.802 3.458 5.151 6.455 0.743 0.630 0.559

NLABH 34.992 31.464 29.348 3.250 4.735 6.045 0.768 0.663 0.583

Barbara

NLTV 34.371 30.377 28.575 3.633 5.648 6.863 0.724 0.601 0.521
NLABH 35.046 31.729 29.619 3.359 4.803 6.164 0.757 0.661 0.572

texture

NLTV 29.419 24.907 22.671 6.830 11.439 14.868 0.950 0.859 0.774
NLABH 29.315 24.806 22.689 6.880 11.472 14.567 0.951 0.866 0.792

Fig. 2 shows the energy (1) with time for two experiments, and λ = 0.1,
τ = 0.001. The energy values for both experiments are continuously decreasing
and eventually stabilize, which illustrates the stability of our numerical scheme
in practice.

For the synthetic image in first row of Fig. 3 containing smooth surfaces and
sharp edges, the local fourth order model ALLT [12] can restore the smooth areas
while preserve edges very well, which corresponds to the property of fourth order
equations. Comparing the NLTV and NLABH, the first row of Fig. 3 and Table
1 show that NLABH can restore homogeneous regions smoothly, and the shape
of edges is preserved sharply due to the adaptive function.

For the real image Lena (the second row of Fig. 3), the best denoised image is
the one denoised by NLABH, both visually and by measurements. The NLABH
model can better preserve both sharp and blunt lines in the image. Fig. 4 shows
denoising results of texture images (Barbara and texture). Because the local
method does not work well in textured regions, we only show the results of NLTV
and NLABH. The denoised images by NLABH are smoother; simultaneously,
texture and edges are preserved. Moreover, we can still see a little bit of the
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Fig. 2. Energy versus time for denoising experiments. (left) Lena with σn = 20, (right)
Barbara with σn = 10.

Fig. 3. Denoising results of synthetic and Lena images. The first column: (top) original
image synthetic, (bottom) original image Lena. The second column: (top) noisy image
for synthetic image, σn = 20, (bottom) Lena image, σn = 10. The third-fifth columns:
denoised images using ALLT, NLTV, and NLABH methods.

staircase effect in the denoised images using NLTV. From the second row of Fig.
4 (Barbara), compared with NLTV, NLABH can restore these blunt texture at
the upper part of the tablecloth. All of these verify the effectiveness of NLABH.

4.2 Image Restoration

In this subsection, we compare the NLTV and NLABH models for image restora-
tion. The algorithm details of NLTV for image restoration is given in [10]. As
for the denoising experiments from subsection 4.1, we employ the semi-implicit
scheme and give PSNR, MAE, and SSIM values for comparison.

Simulation experiment results are shown in Fig. 6. The corresponding com-
parison of PSNR, MAE, and SSIM is listed in Table 2. We show the energy (1) of
time for two experiments. λ in Fig. 5 is 16 and 250 respectively, and τ = 0.1. The
energy values decrease with time, which shows that the algorithm for numerically
solving our model ((1)) is stable in practice. From the first row of Fig. 6, we
can see that the proposed NLABH model has a good performance at restoring
the curved surface. Moreover, the restored images obtained using the NLABH
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Fig. 4. Denoising results of Barbara and texture images. The first column: (top) original
image Barbara, (middle) zoom in part of Barbara corresponding to the red box, (bottom)
original image texture. The second column: (top) noisy image for Barbara image, σn = 20,
(middle) zoom in part of noisy Barbara corresponding to the red box, (bottom) texture
image, σn = 30. The third-fourth columns: denoised images using NLTV and NLABH
methods.

model are cleaner than the ones obtained by the NLTV. From the second row
of Fig. 6, the lines restored by NLABH are more fluent without serrated edges.
At the same time, the third and fourth rows of Fig. 6 verify the effectiveness of
preserving fluent lines.

5 Conclusion

We have proposed in this paper an anisotropic nonlocal fourth order biharmonic
model for image denoising and restoration. We have discretized the model using
finite difference schemes that are stable in practice. We have presented numerous
experimental results on synthetic and real images that show the advantages of
the proposed model, by comparison with local fourth order models and nonlocal
second order models. We have also shown through experiments that the nonlocal
gradient is better suited for edge detection than the nonlocal Laplacian. Future
work will provide further analysis of the model and investigate other applications.
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