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Abstract—Communication between hearing individuals and
those with hearing impairments generally involves sign language,
written communication, and speech. It has been reported that
more than half of Japanese people with hearing impairments
communicate using speech. Therefore, speech recognition sys-
tems available for individuals with hearing impairments are
demanded. However, speech recognition systems trained on
speech from hearing individuals do not achieve high recognition
accuracy for speech from individuals with hearing impairments.
In this study, we propose a method to replace the encoder
layer of the speech recognition model based on SSL to achieve
high-accuracy speech recognition for speech from individuals
with hearing impairments. By this method, we improved the
recognition performance for significantly speech from individuals
with hearing impairments.

Index Terms—automatic speech recognition, deaf speech, self-
supervised learning, domain adaptation

I. INTRODUCTION

In recent years, the accuracy of speech recognition has
improved and is being utilized in various scenarios. For
example, smart speakers, voice assistants, and voice input.
The speech recognition used in these applications is generally
trained on the speech of hearing individuals and achieves high
accuracy for their speech. However, it has been reported that
models trained on the speech of hearing individuals have low
recognition accuracy for the speech of hearing-impaired indi-
viduals [1]. Approximately 25% of hearing-impaired individu-
als are said to use sign language as a means of communication
in their daily lives [2], but for smooth communication through
sign language, both parties need to understand it. Additionally,
it has been reported that more than half of hearing-impaired
individuals use speech to communicate, but their speech tends
to be difficult to understand thus the use of high-accuracy
speech recognition would be helpful. However, at present, ex-
isting speech recognizers cannot achieve sufficient recognition
performance.

One of the reasons why sufficient recognition accuracy
cannot be achieved for speech of hearing-impaired individuals

is the lack of speech data from them and the fact that
their speech has acoustically different characteristics from
that of hearing individuals. The difference is seen in various
aspects, such as articulation, prosody, and phonation, which
are factors that reduce recognition accuracy in speech recog-
nition. Research on speech recognition is being conducted
on speech some of individuals with articulation disorders,
which has similar characteristics to the speech of hearing-
impaired individuals. To overcome the problem of the lack
of data on speech of individuals with articulation disorders,
methods are being researched to adapt speech recognition
models of healthy individuals to the speech of individuals with
articulation disorders [3], [4]. Furthermore, methods using
self-supervised models pre-trained on a large amount of unla-
beled data are being researched [5]. Self-supervised learning
(SSL) has achieved high accuracy in various tasks such as
speech recognition [6], [7], speech emotion recognition [8],
and speaker identification [9]. Moreover, it has been reported
that the speech representations generated by SSL-based speech
recognition models are robust to domain mismatches [5], [10],
[11]. Pasad et al. [12] have shown that the layer-wise rep-
resentations of wav2vec 2.0 [6] follow an acoustic-linguistic
hierarchy. Furthermore, they have shown that the weights of
the upper layers of the pre-trained wav2vec 2.0 are not suitable
for ASR fine-tuning and that the performance of ASR fine-
tuning can be improved by initializing the weights of the upper
layers. It has also been reported that the speech representations
of wav2vec 2.0, particularly the speech representations of
XLSR-53 [13], are effective for speech recognition in the
speech of individuals with articulation disorders [5]. However,
these methods are studies on acoustic domain adaptation,
and linguistic information also needs to be considered to
achieve high recognition accuracy. John et al. [14] proposed
to construct on ASR model which can recognize out-of-
vocabulary words in the speech of individuals with articulation
disorders by converting normal speech containing unknown
words into the speech of individuals with articulation disorders
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Fig. 1. The flow of constructing the proposed ASR model with gradual fine-tuning and layer replacement.

and using the converted speech as training data. However, this
method relies on the accuracy of voice conversion for acoustic
domain adaptation.

Therefore, this study aims to combine acoustic speech rep-
resentations obtained through self-supervised learning using
relatively small amount of speech of hearing-impaired individ-
uals with linguistic information obtained from a general large-
scale corpus of hearing individuals. To do this, we propose a
method to replace some of the encoder layers of the speech
recognition model. Our contributions are as follows:

• We demonstrate that additional pre-training can adapt the
ASR model to hearing-impaired speech to acoustically.

• We show that by replacing some layers of the encoder of
the speech recognition model, it is possible to construct
a speech recognition model that retains both the acoustic
information of hearing-impaired speech and the linguistic
information of general speech.

• The model trained using the proposed method demon-
strates superior recognition accuracy compared to the
same model simply fine-tuned and other larger models
with more parameters.

II. PROPOSED METHOD

Figure 1 shows the proposed method. The proposed method
consists of the following steps:

A. Additional pretraining

We additional pre-train XLS-R to adapt the acoustic in-
formation of speech from hearing-impaired individuals. For
additional pre-training, we use Japanese large-scale speech
data and speech data of hearing-impaired individuals, which
will be used in the subsequent fine-tuning.

B. 1st fine-tuning

To learn linguistic information, we perform the first fine-
tuning of the speech recognition model using large-scale hear-
ing individuals speech data from the target linguistic domain.
Before the first fine-tuning, we add a single fully-connected
layer as the decoder and freeze the CNN encoder.
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Fig. 2. Data splitting of DEAF corpus based on recognition results for each
hearing-impaired speaker in a model trained on hearing individuals’ speech

C. Replace layers

We consider that the effect of acoustic domain adaptation
from additional pre-training is forgotten due to the first fine-
tuning. Therefore, we construct a speech recognition model
that retains both acoustic and linguistic information by re-
placing part of the encoder layers of the fine-tuned speech
recognition model with the pre-trained XLS-R encoder layers.

D. 2nd fine-tuning

Finally, we perform a second fine-tuning of the speech
recognition model using speech data from the target acoustic
and linguistic domain, which consists of speech from hearing-
impaired individuals. Through this process, the speech recog-
nition model becomes adapted to the acoustic information of
speech from hearing-impaired individuals and the linguistic
information of general speech.

III. EXPERIMENTAL SETUP

A. Hearing-impaired speech corpus

The corpus of speech from hearing-impaired individuals
consists of the corpus recorded by Kobayashi et al. [1] and
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Fig. 3. Evaluation of the Additional pre-training. Default means that there is no additional pre-training.

an additional corpus was recorded subsequently. This corpus
includes parts of the ATR phoneme-balanced 503 sentences
used for the JNAS read speech corpus [15] read by hearing-
impaired individuals. Specifically, not all speakers read all the
set sentences; however, at least all speakers read both the B set
and the C set. Figure 2 shows the Character Error Rate (CER)
for each hearing-impaired speaker, sorted in ascending order,
using a model trained only on speech from hearing individuals.
Based on these results, the corpus of speech from hearing-
impaired individuals was divided for training purposes. During
this division, care was taken to ensure that there was no overlap
in speakers and utterance content, and the acoustic differences
between speech from hearing and hearing-impaired individuals
were considered. In Fig. 2, the colors represent the respective
divided sets: validation, evaluation, and training sets. The
validation set consists of the B set, the evaluation set consists
of the C set, and the training set consists of the remaining
sets. The training set comprises approximately 16 hours of
speech from 16 individuals (6 females and 10 males), while
the validation and evaluation sets each comprise approximately
30 minutes of speech from 3 females and 3 males. In this study,
we refer to this corpus as the DEAF corpus.

B. Control speech corpus

We used the JNAS corpus as the speech corpus for hearing
individuals. This is because the DEAF corpus consists of read-
ings of the ATR phoneme-balanced 503 sentences included in
JNAS. Therefore, same as the DEAF corpus, the validation
set for the hearing individuals’ corpus consisted of the B set,
the evaluation set consisted of the C set, and the training set
consisted of the remaining speech. As a result, the training
set comprised approximately 80 hours, the validation set
approximately 2 hours, and the evaluation set approximately
3 hours. Additionally, the large-scale Japanese corpus, Laboro
TV Speech (LTV) [16], which includes approximately 2000
hours of speech, and 767 hours of news and report readings,
was added to the training set.

TABLE I
DEPENDENCE OF CER ON REPLACEMENT OF

XLS-R LAYERS

Layer replacement JNAS CER DEAF CER

w/o replacement 8.3 23.0
1–6 8.4 22.5
1–12 9.3 22.1
1–18 11.9 24.9
1–24 (all) 22.8 32.6
7–12 8.8 22.7

C. Model

This study used XLS-R (0.3B) [17] was used as the encoder.
This model is based on self-supervised learning and consists
of a Transformer Encoder with 24 layers. XLS-R has been
applied to various downstream tasks after fine-tuning, includ-
ing speech recognition, by performing self-supervised learning
on large-scale multilingual unlabeled speech data, achieving
high accuracy. Through self-supervised learning with large-
scale data, high recognition accuracy can be obtained even
when the labeled data is limited for fine-tuning to speech
recognition. It has been reported that high recognition accuracy
can also be achieved for dysarthric speech, a type of disordered
speech, using self-supervised learning representations. During
fine-tuning, a single fully-connected layer was added as the
decoder, and learning was performed using Connectionist
Temporal Classification (CTC) loss [18].

Additionally, Whisper Medium [19], which has approxi-
mately twice the parameters of XLS-R (0.3B), and Reazon-
Speech v2.0 [20] were used for comparison. Whisper Medium
is a model that, like XLS-R (0.3B), has a 24-layer Transformer
Encoder as its encoder. ReazonSpeech v2.0 is a model trained
on a large-scale Japanese speech dataset and achieves high
recognition accuracy. Each model was acoustically domain-
adapted by fine-tuning only the encoder on the DEAF corpus.



TABLE II
CER OF DEAF, “+” INDICATE THE CONCATENATION OF DATASETS.

method model # params (MB) 1st fine-tune 2nd fine-tune DEAF CER

Baseline

ReazonSpeech v2.0 619 DEAF N/A 26.0
Whisper Medium 769 DEAF N/A 25.1
XLS-R 319 DEAF N/A 39.5
XLS-R 319 JNAS + LTV DEAF 23.0

Proposed XLS-R w/ Replacement 319 JNAS + LTV DEAF 22.1

IV. EXPERIMENTAL RESULTS

A. Additional pre-training

To investigate the effectiveness of acoustic domain adap-
tation through additional pre-training, we compared the CER
with and without additional pre-training. The first fine-tuning
was performed on JNAS, and the output was in Japanese
Katakana characters. The CER for each speaker in the test set
of the DEAF corpus, sorted in ascending order, is shown in
Fig. 3. First, see the results using LTV to adapt to Japanese.
For speakers with low CER without additional pre-training,
significant improvement in CER was observed with additional
pre-training using LTV. On the other hand, for speakers
with high CER without additional pre-training, the effect was
limited. This suggests that the speech of speakers with a low
CER without additional pre-training had a smaller acoustic
gap with hearing individuals’ speech, thus the additional pre-
training was more pronounced. When additional pre-training
was performed on the DEAF corpus, improvement in CER
was observed for speakers with a high CER without additional
pre-training. Finally, additional pre-training was performed
sequentially with LTV and then the DEAF corpus and recogni-
tion accuracy improved for all speakers. These results indicate
that sequential additional pre-training is effective for various
levels of hearing-impaired speech.

B. Layer replacement

It is assumed that increasing the number of replaced Trans-
former encoder layers can enhance the effect of acoustic do-
main adaptation. However, increasing the number of replaced
layers may reduce the effect of linguistic domain adaptation
acquired during the first fine-tuning. To investigate this trade-
off, we examined the relationship between the number of
replaced layers and recognition accuracy. Table I shows the
changes in recognition accuracy when varying the number of
replaced layers. In the DEAF corpus, the highest recognition
accuracy was achieved when the lower half of the encoder
layers were replaced with pre-trained encoder layers. On the
other hand, in JNAS, the highest recognition accuracy was
achieved when the second fine-tuning was performed without
any replacement. Additionally, in JNAS, as the number of
replaced layers increased from the lower to the upper layers,
recognition accuracy decreased. This is considered to be due
to the reduction in the effect of linguistic domain adaptation
caused by the replacement. Conversely, in the DEAF corpus,

recognition accuracy improved as the number of replaced
layers increased up to 12 layers (half of the encoder), but
further increases led to a decrease in recognition accuracy.
This suggests that while increasing the number of replaced
layers enhances the effect of acoustic domain adaptation, it
reduces the effect of linguistic domain adaptation.

C. Comparison with other models

The comparison of CER between the model trained using
the proposed method and other models with more parameters
is shown in Table II. The model trained by the proposed
method achieved the lowest CER on the DEAF corpus com-
pared to the same architecture model by conventional method
fine-tuned and other models. It was also demonstrated that
replacing layers before the second fine-tuning can achieve high
recognition accuracy on the DEAF corpus. From the above, it
was shown that the proposed method can construct a speech
recognition model that maintains effectiveness of both acoustic
and linguistic domain adaptation.

V. CONCLUSIONS

In this study, we proposed a method of replacing a part
of the encoder layers of a speech recognition model to
achieve high-accuracy speech recognition for hearing-impaired
speech. Using this method, we confirmed an improvement in
recognition performance for hearing-impaired speech. Addi-
tionally, we investigated the changes in recognition accuracy
with different numbers of replaced layers and found that the
highest recognition accuracy was achieved when the lower
half of the encoder layers were replaced. In the future, to
further improve recognition accuracy, we will explore learning
methods that retain both the acoustic and linguistic information
of the two corpora. Another future work is searching for the
dependence of our method on the domain of data, i.e., whether
it is effective for publicly available corpora to confirm its
versatility.
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