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Abstract—Identifying defective solder joints is crucial in
printed circuit board assembly manufacturing, but doing so
accurately can be challenging. Image segmentation techniques
like the threshold method may not accurately identify defects in
X-ray images of solder joints. This study aimed to identify a
simple segmentation technique used for X-ray images exported
from the automatic X-ray inspection machine (AXI) without
compromising the accuracy of the results. The proposed
approach combines the threshold method and k-means clustering
to segment individual pins of the solder joint. We then use the
four kinds of padding shade of segmented images from our
proposal to train on the YOLOv7, a novel object detection model.
When testing with a test set on X-ray images obtained from
identified defective boards solder joint, the model best performs
on a replicated border with the gray padding training set.

Keywords—Solder joint segmentation, K-Means clustering,
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I. INTRODUCTION
Identifying defective solder joints from known good ones is
challenging for this study [1]. One of the crucial steps in
achieving this is accurately identifying the Region of Interest
(RoI) - the X-ray image of the solder joint. Various image
segmentation techniques, including the Threshold Method,
K-Means Clustering, and other advanced techniques [2], have
been introduced to accomplish this task. Our study aimed to
identify a simple segmentation technique that could be used
for X-ray images exported from the Automatic X-ray
Inspection machine (AXI) without compromising the accuracy
of the results.

II. PROBLEM FORMULATION

A. Type of Solder Joint Defects
X-ray imaging typically detects defects in the Printed Circuit
Board Assembly (PCBA) process, such as insufficient solder
in through-holes, solder bridging on Small Outline Integrated
Circuit (SOIC) and Ball Grid Array (BGA) components, and
voids in solder balls of BGA [3]–[7].

Various solder joint defects can compromise the reliability
and functionality of the final product in the PCBA process [5],
[7]. These defects include insufficient solder due to these
factors like inadequate solder paste deposition, incorrect
reflow soldering temperatures or durations, or poor wetting of
the solder to the pad or component lead. Solder bridging may
occur due to the factors such as incorrect component

alignment, excessive solder paste application, or misalignment
or registration during the solder paste printing process, which
hinder proper solder wetting and lead to bridge formation
between adjacent pins or pads.

The defect, such as solder voids in BGA balls, on the other
hand, can be attributed to various factors such as the presence
of contaminants, solder voids or bubbles in the solder paste, or
improper reflow soldering temperatures or duration. Other
factors that can contribute to solder voids in BGA balls
include the type of BGA package, solder mask roughness,
stencil shape, and the design of the circuit board [8].

B. Techniques Used for Solder Joint Segmentation
After conducting experiments using the Thresholding method
alone to find the solder joint contours, we found that it
produced good results for the well-formed solder joints but not
for some defective solder joints, such as solder bridging,
including image dimming or image out-of-focus (Fig. 2a and
Fig. 2b). To address this issue, we introduced a combination of
the Thresholding method and K-Means clustering to solve.

III. METHODOLOGY

A. Solder Joint Collection

The solder joints obtained from the AXI machine are in
segmented and unsegmented forms. The machine recombined
them into a shape that resembled the component outline to
facilitate human recognition. We need to split them into
individual solder joints for easy model training.

The X-ray images we were collecting from the identified
defective boards, defective components, and defects on each
pin were recorded as Python objects, providing a structured
description of the nature and location of each defect.

Figure 1. shows the proposed solder joint segmentation
workflow. It outlines the process of segmenting solder joints
from the X-ray images from the AXI machine.

B. Solder Joint X-ray Image Segmentation Pre-Processing

In some cases, image blurring works as noise reduction by
smoothing out sharp edges and fine details. It can reduce noise
and unwanted artifacts. Choosing the appropriate level of
blurring can help achieve a desirable threshold image while
retaining the features of an image.
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C. Finding the Contours Using OpenCV

In digital image processing, people often use the OpenCV
findContours function as a popular technique for detecting
contours. Many image processing applications use it to extract
boundaries or "objects contours" in an image. A vector of
points represents the contours, with each point corresponding
to the pixel coordinates. The "findContours function" can also
be used to extract hierarchical "contours" where each
"contour" is a set of nested contours. Computer vision
applications widely use this function for object recognition,
segmentation, and shape analysis. The finding Contours
technique detects object boundaries in various digital images,
including X-ray images of printed circuit boards [4].

FIGURE 1
The proposed solder joint segmentation algorithm workflow

D. Combining of Threshold Technique and K-Means
Clustering to Achieve the Proper Segmentation

In one instance, we encountered a pair of shorted SOIC pins in
which the threshold image failed to identify individual pins
due to bridging. Using the k-means clustering function, we
achieved more distinct segmentation. The algorithm then
created correct bounding boxes and split the image into
individual pins, as shown in Figure 2. We then applied the
classification to each solder joint, identifying them as either
known "good" or "defective" locations. The solder joints were
described as Python objects, such as {'BRD': [1, 2], 'GD': [7,
8]}, indicating that pins 1 and 2 were bridging solder joints,

while pins 7 and 8 were good solder joints. Since the number
of defective pins was less than the number of good pins, we
selected a suitable number of good pins for the dataset
balancing purpose, which we will utilize as the defect
detection model dataset.

FIGURE 2
Result from each stage of segmentation

The first image (Fig. 2a) shows the original grayscale image of
the solder joint with the shorted SOIC pins. The second image
(Fig. 2b) displays the result after applying the thresholding
method, which helps identify the pixels that belong to the
solder joint but not all are located correctly. The third image
(Fig. 2c) shows the result of applying the k-means clustering
on the thresholded image. This process helps to separate the
pixels that belong to the individual pins, allowing for the
creation of bounding boxes for each pin. The fourth image
(Fig. 2d) displays the original image with each pin bounding
box created during the segmentation process. Note that these
images illustrate the different stages of the segmentation
process for a specific example. However, the actual results
may vary depending on the quality of input X-ray images.

E. Automatic Threshold Tuning.

This study utilized the automatic threshold technique, which
involved reverse looping from the high-level threshold. Then
the detected bounding box will be compared with the known
input pin count, and the loop will terminate after they
determine that the pin count and the bounding box count are
equal.

F. Investigating the Role of Background Color in Defect
Detection Model Training

We encountered the issue of tall rectangular pins in some
components, such as the SOIC package, which are not ideal
for training a defect detection model. To mitigate this, we
applied padding to the images to make them square. However,
the selection of padding color could potentially impact the
model's accuracy. Thus, we presented four options for the
background color: the highest gray level, the replicated border
with gray padding, white, or black.

G. Enhancing Pin Alignment in K-Means Clustering with the
Right Angle Rotation Parameter

Based on our experimental findings, we concluded that pin
alignment is a crucial factor in achieving successful results
when utilizing K-Means clustering. Specifically, we observed
that one alignment of the pins resulted in better performance
than the other (Fig. 3). Therefore, to address the issue of poor
segmentation results, we introduced a "Right Angle Rotation"
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parameter that allows for a 90-degree rotation of the package.
This rotation option enables users to adjust the orientation of
the image and potentially improve segmentation performance.

a) None Rotation b) 90 Degree Rotation

FIGURE 3
Comparison of normal and 90 degree rotation result

H. Data Augmentation Techniques

Due to the rarity of defective images, we recognized the need
to prevent an imbalanced dataset. To achieve this, we
employed data augmentation techniques. Specifically, we
utilized sampling rotation, flipping, brightness adjustment, and
padding with various background options on the original
images. We applied these techniques to help to increase the
diversity of the dataset and improve the model's ability to
detect defects accurately.

To tackle the challenge of imbalanced data, we employed data
augmentation techniques by increasing the number of samples.
We augmented the initial dataset of 241 solder joints,
consisting of 134 normal solder joints, 44 joints with
insufficient solder, 31 joints with solder bridging, and 32 joints
with voids in BGA balls, by a factor of 20.

I. Improving SOIC Bridging Detection through Adaptation of
Segmentation Methodology

Our initial segmentation approach was to separate the solder
joints individually, which failed to detect SOIC bridging in the
original X-ray image. To overcome this limitation, we adapted
our algorithm to verify the long rectangular solder joint and
expand the region of interest (RoI) to include neighboring
solder joints. This modification allowed the model to be
trained on a "wider view" of the solder joints, resulting in
improved detection performance for SOIC bridging.

J. Splitting the Dataset into Training, Validation and Testing
Set

In this experiment, we split the dataset into a training set, a
validation set, and a test set. The split ratios were 70%, 20%,
10% for training, validation, and testing, respectively. We used
the ‘training’ set to train the model, the validation set to tune
the model's hyperparameters and avoid overfitting, and the test
set to evaluate the final performance of the model. By splitting
the dataset in this way, we can ensure that the model's

performance evaluation is on unseen data and that it was not
simply memorizing the training set.

K. Labeling for YOLO, the Object Detection Model

YOLO (You Only Look Once) is an object detection algorithm
that divides an input image into a grid of cells and predicts
bounding boxes and class probabilities for containing objects
within each cell. We must label the dataset with bounding
boxes and corresponding object classes before training a
YOLO model.

Labeling for YOLO involves creating annotation files that
contain information about each object in the image. Each
annotation file corresponds to the specific image and has one
row for each object in the target image. Each row includes the
object class and its bounding box coordinates, represented as
normalized values between 0 and 1 relative to the size of the
target image.

For the YOLO object detection, we defined four classes in this
study: GD (0-normal joint), INS (1-insufficient solder joint),
BRD (2-pin shorting), and BVD (3-void in BGA ball). The
segmentation process located the solder joint at the center and
applied the surrounding padding. Hence, we annotated each
image in the format of "C 0.500000 0.500000 0.500000
0.500000". The "C" value represents the class label, in which
"0" is the "GD" class, "1" is the "INS" class, "2" is the "BRD"
class, and "3" is the "BVD" class. The values "0.500000
0.500000" represent the center of the bounding box, and the
next "0.500000 0.500000" is the size of the bounding box,
which was half of the image size.

L. Train the YOLO v7 Object Detection Model

To evaluate the effectiveness of our solder joint segmentation
results, we employed them as a dataset for training the YOLO
v7 model. The YOLO v7 model was pre-trained with the
COCO image dataset and used for this purpose.

IV. RESULTS AND DISCUSSION

A. The YOLOv7 Training Result

From the results in Table I, we notice that the black
background provides the highest precision and recall values.
However, when considering the "mean Average Precision"
("mAP"), which is the averaging of the "average precision"
(AP) scores for each class over a range of Intersections over
Union (IoU) thresholds, the back background gives a
mAP_0.5 value of 0.996690, which is the highest among all
the other applied background colors. However, the
mAP_0.5:0.95 value is 0.977091, the lowest among all the
others. This result indicates that the model may not be able to
detect objects with various sizes and positions, and additional
datasets containing a variety of solder joint sizes may be
required to improve the model's performance.

TABLE I. THE TRAINING RESULT OF DIFFERENT BACKGROUND COLOR

Background
Matrix

mAP_0.5 mAP_0.5:0
.95 precision recall

Black 0.9968 0.9771 0.9964 0.9939



Background
Matrix

mAP_0.5 mAP_0.5:0
.95 precision recall

White 0.9922 0.9862 0.9592 0.9849

Gray 0.9954 0.9936 0.9906 0.9919

Replicated 0.9954 0.9844 0.9934 0.9842

According to the "F1", which considers both precision and
recall, it shows that the black, gray, and replicated border with
a gray background yielded the highest scores. These scores
were 1.0 at a threshold of 0.479, 0.99 at a confidence threshold
of 0.338, and 0.99 at a confidence threshold of 0.387. In
contrast, the white background resulted in the lowest score of
0.97 at a confidence threshold of 0.614. Furthermore, when
examining the confidence bandwidth, we noticed that the
black background provided the flattest and highest F1 value
along the confidence threshold range.

The black background also resulted in the highest accuracy for
correctly predicting good solder joints, insufficient solder
joints, bridging solder joints, and BGA ball voids at 0.99%,
1.0%, 0.99%, and 1.0%, respectively. However, it did make
some incorrect predictions for the background as good and
bridging joints at 0.5%. This issue could be due to the solder
joint cropping being too narrow, which sometimes only
captured the dark area of the joint without its surroundings.

B. Prediction of The Actual Image from the AXI

As previously mentioned regarding the four various padding
shades, we used them to train the model and then tested it on
the separately prepared dataset. We crop the exported image
from the AXI machine to make it a suitable size for testing
without further manipulation. The testing result is shown in
TABLE II.

TABLE IIA. APPLYING BLACK BORDER WITH BLACK BLACKGROUND

Black BRD INS BVD ALL

Recall 0.5714 0.9630 0.4667 0.7000

Precision 0.9412 0.9630 1.0000 0.9608

F1 0.7111 0.9630 0.6364 0.8099

TABLE IIB. APPLYING WHITE BORDER WITH WHITE BLACKGROUND

White BRD INS BVD ALL

Recall 0.5714 0.7037 1.0000 0.7143

Precision 0.8421 0.9048 0.6818 0.8065

F1 0.6809 0.7917 0.8108 0.7576

TABLE IIC. APPLYING GRAY BORDER WITH GRAY BLACKGROUND

Gray BRD INS BVD ALL

Recall 0.6786 0.9630 1.0000 0.8571

Precision 0.7037 0.9630 1.0000 0.8696

F1 0.6909 0.9630 1.0000 0.8633

TABLE IID. APPLYING REPLICATED BORDER WITH GRAY BLACKGROUND

Rep BRD INS BVD ALL

Recall 0.6429 1.0000 1.0000 0.8571

Precision 0.9000 0.8438 0.8824 0.8696

F1 0.7500 0.9153 0.9375 0.8633

The gray background (TABLE IIc) and the replicated
border with gray padding (TABLE IId) give the same "overall
F1" score. However, almost all models predict well for
"Insufficient solder" detection but not for bridging. Therefore,
we select the replicated border with gray padding, which
provides the best score for bridging, as the winning model.

C. Conclusion and considerations for Multi-Slice Image
Analysis in Solder Joint Inspection

In this study, we analyzed the images obtained from the AXI
machine, which comes with varying slices for a single solder
joint. There are four slices for each through-hole solder joint,
three for BGA ball inspection, and only one for the solder
bridging. In real-world defect-detecting scenarios, it is
difficult to determine the defect from individual X-ray slices.
The solder joint inspection requires the combination of all its
image slices. Therefore, it is necessary to conduct further
research on this subject to improve the overall model accuracy.

Although the achieved segmentation may not be optimal, it
adequately prepares the x-ray image solder joints for object
detection training. Future research will include conducting
multiple runs with various random splits to mitigate bias and
enhance the results.
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