
EasyChair Preprint
№ 7205

Parking System License Plate Detection Based on
Convolution Neural Networks GPU Optimization

Ziad Elkhatib, Adel Ben Mnaouer, Omar Mashaal,
Nor Azman Ismail, Mohd Azman Bin Abas and Fuad Abdulgaleel

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 15, 2021

Parking System License Plate Detection based on
Convolution Neural Networks GPU Optimization

Ziad El Khatib, Adel Ben Mnaouer, Omar Mashaal, Nor Azman Ismail, Mohd Azman Bin Abas, Fuad Abdulgaleel

Canadian University Dubai and University Teknologi Malaysia
ziad.elkhatib@cud.ac.ae; adel@cud.ac.ae; omar.mashaal@cud.ac.ae, azman.abas@utm.my, azman@utm.my, mdfarid@utm.my

Abstract—This paper presents a parking system license plate
detection based on convolution neural networks GPU
optimization. When number of strides increased 2 by 2 it reduced
memory allocation and reduced training time by half, however
accuracy is also reduced from 80% to 75.79%. Accuracy is traded-
off to avoid running into GPU memory allocation issues.

Keywords— Convolutional neural networks; License plate
detection; GPU optimization.

I. INTRODUCTION

Parking system license plate detection based on convolution
neural networks (CNN) uses convolutional layers that are
either completely interconnected or max pooled [4], [6], [7],
[10], [12].

The convolutional layer performs a convolutional operation on
the input before passing the result to the next layer. The
network can be much deeper due to this convolutional
operation. With this, convolutional neural networks can be
effective in image and video recognition, however it requires
graphics processing unit GPU optimization to avoid running
into memory issues.

Parking systems license plate detection based on convolution
neural networks requires graphics processing unit GPU
optimization when training convolutional neural network
algorithm. Otherwise it would generate several errors
including out of memory error. A plate detection based on
convolution neural networks GPU optimization is presented.
When number of strides increased 2 by 2 it reduced memory
allocation and reduced training time by half, however
accuracy is also reduced from 80% to 75.79%. Accuracy is
traded-off to avoid running into memory allocation issues.
Investigation in the use of neural network algorithms for plate
detection is performed in [1], [2], [3], [4], [5] and [6].
However, they neural network processing is not performed on
graphics processing unit GPU framework. Other published
work [7], [8], [9], [10], [11], [12] and [13] do not propose
graphics processing unit GPU optimization for convolutional
neural network processing.

Fig. 1. Convolutional neural networks algorithm.

Fig. 2. License plate detection convolution neural networks.

Parking system license plate detection based on convolution
GPU optimization is shown in Figure 1 and Figure 2. It uses
Nvidia Jetson Nano device connected to machine vision
sensors including AI camera 800M CSI interface IMX219-160
module and an IP camera. AI camera connected to the camera
port on the Jetson Nano device and IP camera attached via
USB. The 128-core Maxwell architecture-based GPU and
Quad-core ARM CPU on the Jetson device does the real-time
video analytics.

The Nvidia Jetson Nano is one of the System on Modules
(SoM) developed by Nvidia Corporation, with graphics
processing unit GPU accelerated processing in mind. The
SoM consists of 128-core NVIDIA Maxwell™ architecture-
based GPU, controlled by a CPU with Quad-core ARM A57
architecture, along with 4GB of DDR4 RAM. The Jetson nano
can be used as a general purpose Linux-powered computer,
which has advanced uses in neural networks, thanks to its
GPU accelerated processor [4], [6], [7], [10], [12].

Since the Jetson Nano is designed with special hardware. The
hardware-accelerated parallel computing using the GPU, a
special framework needs to be installed. Nvidia calls this
special framework that enables parallel computing on the GPU
CUDA (Compute Unified Device Architecture). The
framework supports highly known machine learning
frameworks like Tensorflow, Keras, and PyTorch, the CPU
can invoke the CUDA functions on the GPU through CUDA

framework and thus enables the parallel computing possibility.
The flow diagram in Figure 3 below indicates the typical
program flow when executing a GPU-accelerated [4], [6], [7],
[10], [12].

Fig. 3. Parallel computing on the GPU CUDA Compute
Unified Device Architecture.

II. CONVOLUTIONAL NERUAL NETWORKS DETECTION

A convolution neural network license plate detection is a
feedforward neural network as shown in Figure 4. The
architecture of convolution neural network is takes a 2-
dimensional structure as an input image [4], [6], [7], [10], [12].

Fig. 4. Flow Chart of the CNN Based algorithm.

The convolutional neural network parameter layers are
composed of small filters [4], [6], [7], [10], [12].

We slide or convolve each filter across the input during
forward pass and compute product of the filter and the input
[4], [6], [7], [10], [12].

If we have a 2D array of pixels’ image x and we have a feature
detector or filter w after applying a mathematical operation, we
get an output which is called a feature map s(t) given by the
following convolution function [4], [6], [7], [10], [12].

𝑠[𝑡] = (𝑥 ∗ 𝑤)[𝑡] = 𝛴𝑥[𝑎]𝑤[𝑎 + 𝑡]

The feature detector filter in the convolution operation
identifies the edges in the image.

We can do the same convolution operation as a sum over array
elements where I is a 2-dimensional array and K is the filter
kernel convolution function [4], [6], [7], [10], [12].

𝑠[𝑖, 𝑗] = 𝛴𝛴𝐼[𝑚, 𝑛]𝐾[𝑖 − 𝑚, 𝑘 − 𝑛]

We can re-write equation to a cross correlation function [4], [6],
[7], [10], [12].

𝑠[𝑖, 𝑗] = 𝛴𝛴𝐼[𝑖 − 𝑚, 𝑘 − 𝑛]𝐾[𝑚, 𝑛]

We let filter slide over the input and it gives 2-dimensional
activation map at each position [4], [6], [7], [10], [12].

The feature map dimensions are given by the following
equation where the input image size is W and the feature
detector field size is F and S is the stride [4], [6], [7], [10], [12].

𝑆𝑖𝑧𝑒 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝 = 1 + (W − F + 2P)/S

We can apply linear transformation if we have a feature
detector filter and a bias unit with the following equation [4],
[6] and [7].

𝑜𝑢𝑡𝑝𝑢𝑡 = input ∗ weight + bias

After each convolution operation we apply ReLU activation
function. ReLU function which replaces negative values with
zero.

Next we apply max pooling function to have invariance to
translation which helps detect features that are common in an
input image [4], [6], [7], [10], [12].

Pool layer will down sample the previous layers feature map.
It reduces the size and computation in the network [4], [6], [7],
[10], [12].

Then we flatten the max pooled output that are input to the
fully connected neural network. Fully connected layer
compute class scores [4], [6], [7], [10], [12].

Fully connected layers have an activation function or a
softmax activation in order to predict classes [4], [6], [7], [10],
[12]. To compute the output is rearranged as a 1-D array as
shown in Figure 5 and the following convolutional neural
network algorithm.

_cnn = Sequential()
_cnn.add(InputLayer((28, 28)))
_cnn.add(Reshape((28, 28, 1)))

_cnn.add(Conv2D(filters=32, kernel_size=(2,2), strides=(1,1)))
_cnn.add(AveragePooling2D(pool_size=(2,2), strides=(1,1)))
_cnn.add(Conv2D(filters=64, kernel_size=(2,2), strides=(1,1)))
_cnn.add(AveragePooling2D(pool_size=(2,2), strides=(1,1)))
_cnn.add(Conv2D(filters=128, kernel_size=(2,2), strides=(1,1))
_cnn.add(AveragePooling2D(pool_size=(2,2), strides=(1,1)))
_cnn.add(Flatten())
_cnn.add(Dense(32, 'relu'))
_cnn.add(Dense(10, 'linear'))
_cnn.add(Softmax())

In a neural network weights are how neural networks learn.
Weights are adjusted to compute signal strength. The weights
are multiplied with the inputs(x) and add a bias term. This is
given by the compact equation for forward propagation [4],
[6], [7], [10], [12].

𝑧 = x ∗ w + b

Using ReLU as the activation function we now predict the
output and compare predicted output with the actual output
value as shown in Figure 5. Since this is a classification
problem we use cross entropy function [4], [6], [7], [10], [12].

We use cross entropy function since we are performing
classification. Cross Entropy is a non-negative cost function
with a range between 0 and 1 [4], [6], [7], [10], [12].

𝑐 = −
1

𝑛
𝛴[𝑦𝑙𝑜𝑔𝑦′ + (1 − 𝑦)log (1 − 𝑦′)]

Fig. 5. License plate detection based on convolution neural
networks.

III. GPU OPTIMIZATION

Epoch is defined when the complete dataset is used once for
learning. We repeat the forward propagation for multiple
epochs until we converge [4], [6], [7], [10], [12].

Learning rate adjust the weights. Lower value of the learning
rate, the slower it will convergence. Learning rates are
randomly initialized [4], [6], [7], [10], [12].

Epoch 1/10
1875/1875 [==============================] - ETA:
0s - loss: 1.2370 - accuracy: 0.5743INFO:tensorflow:Assets
written to: cnn_model/assets

1875/1875 [==============================] - 388s
207ms/step - -loss: 1.2370 - -accuracy: 0.5743 - -val_loss:
1792.4512 - -val_accuracy: 0.1000
Epoch 2/10
1875/1875 [==============================] - ETA:
0s - loss: 0.9263 - accuracy: 0.6467INFO:tensorflow:Assets
written to: cnn_model/assets
1875/1875 [==============================] - 388s
207ms/step - -loss: 0.9263 - -accuracy: 0.6467 - -val_loss:
318.3828 - -val_accuracy: 0.1000
Epoch 3/10
1875/1875 [==============================] - ETA:
0s - loss: 0.8388 - accuracy: 0.6824INFO:tensorflow:Assets
written to: cnn_model/assets
1875/1875 [==============================] - 384s
205ms/step - -loss: 0.8388 - -accuracy: 0.6824 - -val_loss:
716.1693 - -val_accuracy: 0.1000
Epoch 6/10
1875/1875 [==============================] - ETA:
0s - loss: 0.6437 - accuracy: 0.7614INFO:tensorflow:Assets
written to: cnn_model/assets
1875/1875 [==============================] - 386s
206ms/step - -loss: 0.6437 - -accuracy: 0.7614 - -val_loss:
24.1597 - -val_accuracy: 0.2179
Epoch 7/10
1875/1875 [==============================] - ETA:
0s - loss: 0.5930 - accuracy: 0.7844INFO:tensorflow:Assets
written to: cnn_model/assets
1875/1875 [==============================] - 388s
207ms/step - -loss: 0.5930 - -accuracy: 0.7844 - -val_loss:
230.5167 - -val_accuracy: 0.1000
Epoch 8/10
1875/1875 [==============================] - ETA:
0s - -loss: 0.5661 - -accuracy: 0.7948INFO:tensorflow:Assets
written to: cnn_model/assets
1875/1875 [==============================] - 389s
207ms/step - -loss: 0.5661 - -accuracy: 0.7948 - -val_loss:
86.5537 - -val_accuracy: 0.1000
Epoch 9/10
1875/1875 [==============================] - ETA:
0s - -loss: 0.5431 - -accuracy: 0.8018INFO:tensorflow:Assets
written to: cnn_model/assets
1875/1875 [==============================] - 397s
212ms/step - loss: 0.5431 - -accuracy: 0.8018 - -val_loss:
308.9158 - -val_accuracy: 0.1000
Epoch 10/10
1875/1875 [==============================] - ETA:
0s - loss: 0.5194 - -accuracy: 0.8078INFO:tensorflow:Assets
written to: cnn_model/assets
1875/1875 [==============================] - 408s
218ms/step - -loss: 0.5194 - -accuracy: 0.8078 - -val_loss:
19.9043 - -val_accuracy: 0.2378

When number of strides increased 2 by 2 it reduced memory
allocation and reduced training time by half, however
accuracy is also reduced from 80% to 75.79% as shown in
convolution neural network summary below. Accuracy is

traded-off to avoid running into GPU memory allocation
issues.

Epoch 8/10
1874/1875 [============================>.] - ETA:
0s - loss: 0.6869 - -accuracy: 0.7544INFO:tensorflow:Assets
written to: cnn_model/assets
1875/1875 [==============================] - 31s
16ms/step - -loss: 0.6870 - -accuracy: 0.7544 - -val_loss:
0.6206 - -val_accuracy: 0.7806
Epoch 9/10
1872/1875 [============================>.] - ETA:
0s - loss: 0.6788 - -accuracy: 0.7559INFO:tensorflow:Assets
written to: cnn_model/assets
1875/1875 [==============================] - 31s
17ms/step - -loss: 0.6786 - -accuracy: 0.7559 - -val_loss:
0.6021 - val_accuracy: 0.7845
Epoch 10/10
1872/1875 [============================>.] - ETA:
0s - loss: 0.6758 - accuracy: 0.7579INFO:tensorflow:Assets
written to: cnn_model/assets
1875/1875 [==============================] - 31s
16ms/step - -loss: 0.6758 - -accuracy: 0.7579 - -val_loss:
0.6260 - val_accuracy: 0.7728

IV. PERFORMANCE

TABLE I. ACCURACY PERFORMANCE.

MODEL ACCURACY STRIDE TRAINING

TIME
EPOCH

WITHOUT

GPU

OPTIMIZA

TION

80% 1 BY 1 30 MINUTES 10

WITH

GPU

OPTIMIZA

TION

75.79% 2 BY 2 REDUCED BY

HALF
10

Table 1 shows the accuracy performance with and without
GPU optimization.

CONCLUSION

A parking system license plate detection based on convolution
neural networks GPU optimization is presented. When number
of strides increased 2 by 2 it reduced memory allocation and
reduced training time by half, however accuracy is also
reduced from 80% to 75.79% as shown in convolution neural
network summary Table 1. Accuracy is traded-off to avoid
running into GPU memory allocation issues.

ACKNOWLEDGMENT

The authors are grateful to all who contributed to the research
CUD-UTM research collaboration funding.

REFERENCES
[1] S. Du, M. Ibrahim, M. Shehata, and W. Badawy,

“Automatic license plate recognition (ALPR): A state-of-
the-art review,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 23, no. 2, pp. 311 -
325, Feb 2013.

[2] Y. Ma, C. Gou, K. Wang, Y. Yao, and Z. Li, “Vehicle
license plate recognition based on extremal regions and
restricted boltzmann machines,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 4, pp.
1096–1107, April 2016.

[3] A. Zacepins, A. V. Kozitsky, P. Ramesh, and M. Shreve,
“Segmentation and annotation-free license plate
recognition with deep localization and failure
identification,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 9, pp. 2351–2363,
Sept 2017.

[4] M. S. Z. Masood, G. Shu, A. Dehghan, and E. G. Ortiz,
“License plate detection and recognition using deeply
learned convolutional neural networks,” CoRR, vol.
abs/1703.07330, 2017.

[5] R. Panahi and I. Gholampour, “Accurate detection and
recognition of vehicle plate numbers for high-speed
applications,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 4, pp. 767–779, April
2017.

[6] S. Montazzolli and C. R. Jung, “Real-time brazilian license
plate detection and recognition using deep convolutional
neural networks,” 30th SIBGRAPI Conference on
Graphics, Patterns and Images, pp. 55–62, Oct 2017.

[7] M. A. Rafique, W. Pedrycz, and M. Jeon, “Vehicle license
plate detection using region-based convolutional neural
networks,” Soft Computing, June 2017.

[8] D. Menotti, G. Chiachia, A. X. Falc˜ao, and V. J. O. Neto,
“Vehicle license plate recognition with random
convolutional networks,” in 2014 27th SIBGRAPI
Conference on Graphics, Patterns and Images, pp. 298–
303, Aug 2014.

[9] P. Svoboda, M. Hradiˇs, L. Marˇs´ık, and P. Zemc´ık,
“CNN for license plate motion deblurring,” in 2016 IEEE
International Conference on Image Processing (ICIP), pp.
3832–3836, Sept 2016.

[10] H. Li and C. Shen, “Reading car license plates using deep
convolutional neural networks and LSTMs,” CoRR, vol.
abs/1601.05610 June 2016.

[11] F. Awan, N. Crespi, “A Comparative Analysis of
Machine/Deep Learning Models for Parking Space
Availability Prediction”, Jan. 2020.

[12] G. Ning, Z. Zhang, C. Huang, X. Ren, H. Wang, C. Cai,
and Z. He, “Spatially supervised recurrent convolutional
neural networks for visual object tracking,” in 2017 IEEE
International Symposium on Circuits and Systems
(ISCAS), pp. 1–4, May 2017.

[13] M. Donoser, C. Arth, and H. Bischof, “Detecting, tracking
and recognizing license plates,” in Computer Vision –
ACCV 2007, Y. Yagi, S. B. Kang, I. S. Kweon, and H. Zha,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, , pp.
447–456, Aug 2007.

