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Abstract—This paper presents a parking system license plate 
detection based on convolution neural networks GPU 
optimization. When number of strides increased 2 by 2 it reduced 
memory allocation and reduced training time by half, however 
accuracy is also reduced from 80% to 75.79%. Accuracy is traded-
off to avoid running into GPU memory allocation issues. 
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I. INTRODUCTION 

 
Parking system license plate detection based on convolution 
neural networks (CNN) uses convolutional layers that are 
either completely interconnected or max pooled [4], [6], [7], 
[10], [12]. 
 
The convolutional layer performs a convolutional operation on 
the input before passing the result to the next layer. The 
network can be much deeper due to this convolutional 
operation. With this, convolutional neural networks can be 
effective in image and video recognition, however it requires 
graphics processing unit GPU optimization to avoid running 
into memory issues. 
 
Parking systems license plate detection based on convolution 
neural networks requires graphics processing unit GPU 
optimization when training convolutional neural network 
algorithm. Otherwise it would generate several errors 
including out of memory error. A plate detection based on 
convolution neural networks GPU optimization is presented. 
When number of strides increased 2 by 2 it reduced memory 
allocation and reduced training time by half, however 
accuracy is also reduced from 80% to 75.79%. Accuracy is 
traded-off to avoid running into memory allocation issues. 
Investigation in the use of neural network algorithms for plate 
detection is performed in [1], [2], [3], [4], [5] and [6]. 
However, they neural network processing is not performed on 
graphics processing unit GPU framework. Other published 
work [7], [8], [9], [10], [11], [12] and [13] do not propose 
graphics processing unit GPU optimization for convolutional 
neural network processing. 
 
 

 
Fig. 1. Convolutional neural networks algorithm. 
 

 
Fig. 2. License plate detection convolution neural networks. 
 
Parking system license plate detection based on convolution 
GPU optimization is shown in Figure 1 and Figure 2. It uses 
Nvidia Jetson Nano device connected to machine vision 
sensors including AI camera 800M CSI interface IMX219-160 
module and an IP camera. AI camera connected to the camera 
port on the Jetson Nano device and IP camera attached via 
USB. The 128-core Maxwell architecture-based GPU and 
Quad-core ARM CPU on the Jetson device does the real-time 
video analytics. 
 
The Nvidia Jetson Nano is one of the System on Modules 
(SoM) developed by Nvidia Corporation, with graphics 
processing unit GPU accelerated processing in mind. The 
SoM consists of 128-core NVIDIA Maxwell™ architecture-
based GPU, controlled by a CPU with Quad-core ARM A57 
architecture, along with 4GB of DDR4 RAM. The Jetson nano 
can be used as a general purpose Linux-powered computer, 
which has advanced uses in neural networks, thanks to its 
GPU accelerated processor [4], [6], [7], [10], [12]. 
 
Since the Jetson Nano is designed with special hardware. The 
hardware-accelerated parallel computing using the GPU, a 
special framework needs to be installed. Nvidia calls this 
special framework that enables parallel computing on the GPU 
CUDA (Compute Unified Device Architecture). The 
framework supports highly known machine learning 
frameworks like Tensorflow, Keras, and PyTorch, the CPU 
can invoke the CUDA functions on the GPU through CUDA 



framework and thus enables the parallel computing possibility. 
The flow diagram in Figure 3 below indicates the typical 
program flow when executing a GPU-accelerated [4], [6], [7], 
[10], [12]. 
 

 
Fig. 3. Parallel computing on the GPU CUDA Compute 
Unified Device Architecture. 
 

II. CONVOLUTIONAL NERUAL NETWORKS DETECTION 

 
A convolution neural network license plate detection is a 
feedforward neural network as shown in Figure 4. The 
architecture of convolution neural network is takes a 2-
dimensional structure as an input image [4], [6], [7], [10], [12]. 
 

 
Fig. 4. Flow Chart of the CNN Based algorithm. 
 
The convolutional neural network parameter layers are 
composed of small filters [4], [6], [7], [10], [12]. 
 
We slide or convolve each filter across the input during 
forward pass and compute product of the filter and the input 
[4], [6], [7], [10], [12]. 
 
If we have a 2D array of pixels’ image x and we have a feature 
detector or filter w after applying a mathematical operation, we 
get an output which is called a feature map s(t) given by the 
following convolution function [4], [6], [7], [10], [12]. 

 
𝑠[𝑡] = (𝑥 ∗ 𝑤)[𝑡] = 𝛴𝑥[𝑎]𝑤[𝑎 + 𝑡] 

 
The feature detector filter in the convolution operation 
identifies the edges in the image. 
 
We can do the same convolution operation as a sum over array 
elements where I is a 2-dimensional array and K is the filter 
kernel convolution function [4], [6], [7], [10], [12]. 
 

𝑠[𝑖, 𝑗] = 𝛴𝛴𝐼[𝑚, 𝑛]𝐾[𝑖 − 𝑚, 𝑘 − 𝑛] 
 
We can re-write equation to a cross correlation function [4], [6], 
[7], [10], [12]. 
 

𝑠[𝑖, 𝑗] = 𝛴𝛴𝐼[𝑖 − 𝑚, 𝑘 − 𝑛]𝐾[𝑚, 𝑛] 
 
We let filter slide over the input and it gives 2-dimensional 
activation map at each position [4], [6], [7], [10], [12]. 
 
The feature map dimensions are given by the following 
equation where the input image size is W and the feature 
detector field size is F and S is the stride [4], [6], [7], [10], [12]. 
 

𝑆𝑖𝑧𝑒 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝 = 1 + (W − F + 2P)/S 
 
We can apply linear transformation if we have a feature 
detector filter and a bias unit with the following equation [4], 
[6] and [7]. 
 

𝑜𝑢𝑡𝑝𝑢𝑡 = input ∗ weight + bias 
 
After each convolution operation we apply ReLU activation 
function. ReLU function which replaces negative values with 
zero. 
 
Next we apply max pooling function to have invariance to 
translation which helps detect features that are common in an 
input image [4], [6], [7], [10], [12]. 
 
Pool layer will down sample the previous layers feature map. 
It reduces the size and computation in the network [4], [6], [7], 
[10], [12]. 
 
Then we flatten the max pooled output that are input to the 
fully connected neural network. Fully connected layer 
compute class scores [4], [6], [7], [10], [12]. 
 
Fully connected layers have an activation function or a 
softmax activation in order to predict classes [4], [6], [7], [10], 
[12]. To compute the output is rearranged as a 1-D array as 
shown in Figure 5 and the following convolutional neural 
network algorithm. 
 
_cnn = Sequential() 
_cnn.add(InputLayer((28, 28))) 
_cnn.add(Reshape((28, 28, 1))) 



_cnn.add(Conv2D(filters=32, kernel_size=(2,2), strides=(1,1))) 
_cnn.add(AveragePooling2D(pool_size=(2,2), strides=(1,1))) 
_cnn.add(Conv2D(filters=64, kernel_size=(2,2), strides=(1,1))) 
_cnn.add(AveragePooling2D(pool_size=(2,2), strides=(1,1))) 
_cnn.add(Conv2D(filters=128, kernel_size=(2,2), strides=(1,1)) 
_cnn.add(AveragePooling2D(pool_size=(2,2), strides=(1,1))) 
_cnn.add(Flatten()) 
_cnn.add(Dense(32, 'relu')) 
_cnn.add(Dense(10, 'linear')) 
_cnn.add(Softmax()) 
 
In a neural network weights are how neural networks learn. 
Weights are adjusted to compute signal strength. The weights 
are multiplied with the inputs(x) and add a bias term. This is 
given by the compact equation for forward propagation [4], 
[6], [7], [10], [12].  
 

𝑧 = x ∗ w + b 
 
Using ReLU as the activation function we now predict the 
output and compare predicted output with the actual output 
value as shown in Figure 5. Since this is a classification 
problem we use cross entropy function [4], [6], [7], [10], [12]. 
 
We use cross entropy function since we are performing 
classification. Cross Entropy is a non-negative cost function 
with a range between 0 and 1 [4], [6], [7], [10], [12]. 
 

𝑐 =  −
1

𝑛
𝛴[𝑦𝑙𝑜𝑔𝑦′ + (1 − 𝑦)log (1 − 𝑦′)] 

 

 
Fig. 5. License plate detection based on convolution neural 
networks. 

III. GPU OPTIMIZATION 

 
Epoch is defined when the complete dataset is used once for 
learning. We repeat the forward propagation for multiple 
epochs until we converge [4], [6], [7], [10], [12]. 
 
Learning rate adjust the weights. Lower value of the learning 
rate, the slower it will convergence. Learning rates are 
randomly initialized [4], [6], [7], [10], [12]. 
 
Epoch 1/10 
1875/1875 [==============================] - ETA: 
0s - loss: 1.2370 - accuracy: 0.5743INFO:tensorflow:Assets 
written to: cnn_model/assets 

1875/1875 [==============================] - 388s 
207ms/step - -loss: 1.2370 - -accuracy: 0.5743 - -val_loss: 
1792.4512 - -val_accuracy: 0.1000 
Epoch 2/10 
1875/1875 [==============================] - ETA: 
0s - loss: 0.9263 - accuracy: 0.6467INFO:tensorflow:Assets 
written to: cnn_model/assets 
1875/1875 [==============================] - 388s 
207ms/step - -loss: 0.9263 - -accuracy: 0.6467 - -val_loss: 
318.3828 - -val_accuracy: 0.1000 
Epoch 3/10 
1875/1875 [==============================] - ETA: 
0s - loss: 0.8388 - accuracy: 0.6824INFO:tensorflow:Assets 
written to: cnn_model/assets 
1875/1875 [==============================] - 384s 
205ms/step - -loss: 0.8388 - -accuracy: 0.6824 - -val_loss: 
716.1693 - -val_accuracy: 0.1000 
Epoch 6/10 
1875/1875 [==============================] - ETA: 
0s - loss: 0.6437 - accuracy: 0.7614INFO:tensorflow:Assets 
written to: cnn_model/assets 
1875/1875 [==============================] - 386s 
206ms/step - -loss: 0.6437 - -accuracy: 0.7614 - -val_loss: 
24.1597 - -val_accuracy: 0.2179 
Epoch 7/10 
1875/1875 [==============================] - ETA: 
0s - loss: 0.5930 - accuracy: 0.7844INFO:tensorflow:Assets 
written to: cnn_model/assets 
1875/1875 [==============================] - 388s 
207ms/step - -loss: 0.5930 - -accuracy: 0.7844 - -val_loss: 
230.5167 - -val_accuracy: 0.1000 
Epoch 8/10 
1875/1875 [==============================] - ETA: 
0s - -loss: 0.5661 - -accuracy: 0.7948INFO:tensorflow:Assets 
written to: cnn_model/assets 
1875/1875 [==============================] - 389s 
207ms/step - -loss: 0.5661 - -accuracy: 0.7948 - -val_loss: 
86.5537 - -val_accuracy: 0.1000 
Epoch 9/10 
1875/1875 [==============================] - ETA: 
0s - -loss: 0.5431 - -accuracy: 0.8018INFO:tensorflow:Assets 
written to: cnn_model/assets 
1875/1875 [==============================] - 397s 
212ms/step - loss: 0.5431 - -accuracy: 0.8018 - -val_loss: 
308.9158 - -val_accuracy: 0.1000 
Epoch 10/10 
1875/1875 [==============================] - ETA: 
0s - loss: 0.5194 - -accuracy: 0.8078INFO:tensorflow:Assets 
written to: cnn_model/assets 
1875/1875 [==============================] - 408s 
218ms/step - -loss: 0.5194 - -accuracy: 0.8078 - -val_loss: 
19.9043 - -val_accuracy: 0.2378 
 
When number of strides increased 2 by 2 it reduced memory 
allocation and reduced training time by half, however 
accuracy is also reduced from 80% to 75.79% as shown in 
convolution neural network summary below. Accuracy is 



traded-off to avoid running into GPU memory allocation 
issues. 
 
Epoch 8/10 
1874/1875 [============================>.] - ETA: 
0s - loss: 0.6869 - -accuracy: 0.7544INFO:tensorflow:Assets 
written to: cnn_model/assets 
1875/1875 [==============================] - 31s 
16ms/step - -loss: 0.6870 - -accuracy: 0.7544 - -val_loss: 
0.6206 - -val_accuracy: 0.7806 
Epoch 9/10 
1872/1875 [============================>.] - ETA: 
0s - loss: 0.6788 - -accuracy: 0.7559INFO:tensorflow:Assets 
written to: cnn_model/assets 
1875/1875 [==============================] - 31s 
17ms/step - -loss: 0.6786 - -accuracy: 0.7559 - -val_loss: 
0.6021 - val_accuracy: 0.7845 
Epoch 10/10 
1872/1875 [============================>.] - ETA: 
0s - loss: 0.6758 - accuracy: 0.7579INFO:tensorflow:Assets 
written to: cnn_model/assets 
1875/1875 [==============================] - 31s 
16ms/step - -loss: 0.6758 - -accuracy: 0.7579 - -val_loss: 
0.6260 - val_accuracy: 0.7728 

IV. PERFORMANCE 

TABLE I.  ACCURACY PERFORMANCE. 

MODEL ACCURACY STRIDE TRAINING 

TIME 
EPOCH 

WITHOUT 

GPU 

OPTIMIZA

TION 

80% 1 BY 1 30 MINUTES 10 

WITH 

GPU 

OPTIMIZA

TION 

75.79% 2 BY 2 REDUCED BY 

HALF 
10 

 
Table 1 shows the accuracy performance with and without 
GPU optimization.  
 

CONCLUSION 

A parking system license plate detection based on convolution 
neural networks GPU optimization is presented. When number 
of strides increased 2 by 2 it reduced memory allocation and 
reduced training time by half, however accuracy is also 
reduced from 80% to 75.79% as shown in convolution neural 
network summary Table 1. Accuracy is traded-off to avoid 
running into GPU memory allocation issues. 
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