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Abstract. Anomaly detection of industrial products is an important is-
sue of the modern industrial production in the case of shortage of abnor-
mal samples. In this work we design a novel framework for unsupervised
anomaly detection and localization. Our method aims to learn global
and compact distribution from image-level and feature-level processing of
normal images. For image-level information, we present a self-supervised
shape-biased module(SBM) aimed at fine-tuning the pre-trained model
to recognize object shape information. As for feature-level information,
our research proposes a pretrained feature attentive module (PFAM) to
extract multi-level information from features. Moreover, given the limited
and relatively small amount of texture-based class feature information
in existing datasets, we prepare a multi-textured leather anomaly Detec-
tion(MTL AD) dataset with both the texture and shape information to
shed a new light in this research field. Finally, by integrating our method
with multiple state-of-the-art neural models for anomaly detection, we
are able to achieve significant improvements in both the MVTec AD
dataset and the MTL AD dataset.

Keywords: Anomaly detection · Self-supervised learning · Attention
mechanism · Jigsaw puzzle.

1 Introduction

With the advent of industry 4.0 [14], production intelligence has become more
and more important. Due to the difficulty of obtaining defects, the traditional
defect detection system based on a large amount of data also needs to be dynam-
ically changed. It is urgent to apply unsupervised or few-shot reliable methods
to solve the problem of industrial product defect detection.
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Fig. 1. The visualization results of the PaDiM [8] method on the two
datasets(Image,Heatmap,GT,Predict anomaly mask). The top and bottom of the im-
age are texture-based and object-based classes of MVTec AD respectively, and the
middle of the image is our MTL AD dataset, which incorporates texture and shape
features. The predict results show that the model cannot handle our MTL AD dataset
effectively.

With the in-depth study of pretrained models [10,11], the convolutional neu-
ral network tend to have a preference for local texture information, and make
judgments only by these. As shown in Fig. 1, high-precision tasks often require
the features extracted by the model to be more comprehensive and in line with
the characteristics of specific task. In the unsupervised anomaly detection task,
it is necessary to obtain high-level abstract features as much as possible. This
information extraction capability is a great challenge to the existing ImageNet-
based convolutional neural network framework.

To balance the shape and texture information, as shown in Fig. 2, we propose
a novel framework to learn global and compact distribution from image-level and
feature-level processing of normal images. For shape-based class images, we in-
troduce a shape-biased module (SBM) composed of a defect synthesis block and
a defect jigsaw block to fine-tune the pre-trained network for global informa-
tion recognition. We use the pre-trained feature attentive module (PFAM) to
apply different processing to multi-level features extracted by the model. The
MFCSAM attention mechanism is introduced to aggregate multi-channel and
long-distance information, allowing the model to focus on global shape informa-
tion. In addition, since the texture-based class feature information in the existing
anomaly detection datasets is relatively small and simple, we especially collect
a large leather texture dataset MTL AD dataset with both texture information
and shape information. We combine our method with various state-of-the-art
anomaly detection methods and conduct extensive experiments on MTL AD
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Fig. 2. The overview of our anomaly detection framework. The shape-biased mod-
ule(SBM) fine-tunes the pretrained model at the image level, enhancing the model’s
ability to perceive the global shape information. The pretrained feature attentive mod-
ule (PFAM) processes the features at the feature level, acquiring richer contextual
semantic information.Incorporating these two modules can mitigate the issue of convo-
lutional locality in existing anomaly detection models and improve the effect of anomaly
detection.

and MVTec AD datasets [5]. Our experimental results show that the method
can bring significant improvements in both anomaly detection and localization.

In summary, the main innovations of our work are listed as follows:
1) We propose a unique jigsaw block to adapt the pretrained model to shape

information, helping the pretrained features overcome the local shape bias of the
pretrained network in anomaly detection.

2) We integrate our method into several state-of-the-art models [8,15,21] for
anomaly detection, showing significant performance improvements across multi-
ple models and baselines.

3) We prepare a Multi-Textured Leather Anomaly Detection(MTL AD) dataset
with both the texture and shape information to effectively expand the authen-
ticity and diversity of anomaly detection datasets.

2 Related work

Anomaly detection models learn feature representation from normal data and ap-
ply it to both normal and abnormal data during testing due to the large amount
of unstructured and unlabeled data of real-world abnormal samples. Depending
on the representation learning models used, anomaly detection models can be
divided into discriminative models based on pretrained models and generative
models based on AE/GAN.

2.1 Discrimination Models Based on Pretrained Feature

The anomaly detection model learns discriminant features in nominal data through
their own unique methods, and then compares the distribution of the test data
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and the extracted feature in the inference stage to obtain an anomaly score.
Depending on the method of establishing the distribution, it can be subdivided
into probability-based [1, 8, 9, 23] and distance-based [4, 19] methods.

Probability-based algorithm calculates the probability density distribution
for each point of the feature map to form a distribution map, and obtain anomaly
score by computing the distribution difference between the test feature point and
the K closest points in the distribution map. Shi et al. [23] use normalization
flow instead of Gaussian distribution to compute a richer probability distribution
for each location. Distance-based method finds the most representative feature
information for each feature point, and then uses the feature map to calculate the
distance of the K nearest feature points. Reiss et al. [19] used the KNN clustering
method to collect the core features to establish a memory bank. Bergman et al. [4]
used the nearest neighbor algorithm to calculate the distance of test features
after reducing the feature dimension, and Roth et al. [21] introduced the coreset
selection method on the basis of [19] to optimize the steps of establishing a
memory bank.

2.2 Generative Models Based on Autoencoder and GAN

Generative models such as autoencoder [13] and GAN [12], directly encode the
original information of the image to obtain latent space features, and learn the
feature distribution of nominal data, then finally compare the test information
and the generated features at the image level or pixel level in the inference stage
to obtain abnormal results. Zhou et al. [26] used a deep autoencoder to introduce
deep learning and some nonlinear activation functions to learn image feature
information more robustly. After the GAN was proposed, the field of anomaly
detection gradually began to use that network with a stronger generative effect
instead of the autoencoder [22]. However, the disadvantage of simply using GAN
is that it is irreversible, i.e. it cannot use the generated image to infer the latent
space input that generated this image. Liang et al. [17] reconstructed images
from multiple scales using multiple frequency components, making the image
reconstruction more effective.

3 Methodology

First of all, we emphasize that our framework is an embeddable model enhance-
ment method. For different data categories, we have designed different methods.
As shown in Fig. 2, for texture-based classes, we have designed PFAM to help the
model obtain richer feature information;For shape-based classes, on the basis of
PFAM, we also designed shape-biased module(SBM) to fine-tune its pretrained
model to help it learn shape information better. Next, we will introduce the com-
ponent of the proposed method in detail. It needs to be explained in advance
that our method only preprocesses pretrained models and features, and does not
involve specific anomaly detection methods.
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3.1 Shape-biased Module

Inspired by [3], we design a shape-biased module(SBM) for the shape bias of
pretrained model, which focuses on the global shape information by making the
pretrained model solve the jigsaw puzzle while reducing the local texture prefer-
ence. In terms of input data, compared with the general classification problem
using jigsaw [6, 7], the amount of nominal data available for training of a single
category in industrial data is less, and the feature information is often relatively
fixed, which makes the model easy to overfit. Hence, we refer to the method
in [25] and use deformation and texture noise to act on nominal data to obtain
synthetic anomaly data with complex feature information in the defect synthesis
block.Then we combine this data with nominal data as input data for defect
jigsaw block.

Let us assume to observe the t class from MVTec AD datasets, with the
class containing N t

nom images. After the augmenting of these images, we can
get N t

syn synthetic anomaly images, and we merge them into N t images. Then,
we use a regular n × n grid of patches to crop the source images and shuffled
them into one of the n2 grid positions. In the n2! possible permutations, we
randomly select a set of P elements and assign an index to each patch. Then we
define a jigsaw classification task on N t labeled instances {(zti , pti)}

Nt

i=1, where zti
indicates the recomposed samples and pti ∈ {1, . . . , P} is the related permuta-
tion index. The objective of defect jigsaw block is to minimize the jigsaw loss
Lc (h (z | θf , θp) , p) that measures the errors between the true permutation index
and the index predicted by pretrained model function h, parametrized by θf and
θp. These parameters define the feature embedding space and the final classifier,
respectively for the convolutional network and fully connected layer dedicated
to permutation recognition. We trained the defect jigsaw block to obtain the
shape-adapted model, where Ljig is a standard cross-entropy loss:

argmin
θf ,θp

Nt∑
i=1

Ljig

(
h
(
zti | θf , θp

)
, pti

)
(1)

3.2 Pretrained Feature Attentive Module

This study introduces pretrained feature attentive module(PFAM) to learn the
feature. The module integrates low-level and high-level pretrained features through
Multi-scale Frequency Channel Self-Attention Module(MFCSAM) to enhance
features, mitigate shape bias in the pretrained features, and facilitate the model
in obtaining richer information from the global context.

For a given input image I, we denote the output features of the last three
stages of pretrained backbone network as:

XI = {X1, X2, X3} (2)

As shown in Fig. 2, we employ specialized operations for different features.
For the feature X1, since it contains a large number of low-level information
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Fig. 3. The schematic diagram of the MFCSAM module is shown above. The module
takes as input the pretrained features and first splits them into different scales using
dedicated convolutional kernels. Next, frequency-domain attention and self-attention
are applied to each scale to enable global feature learning, followed by the fusion of the
multi-scale features to produce the final output.

that can guide small-size defects detection and shape features, we use a 1 × 1
convolution kernel to obtain its deeper information, and use MFCSAM to obtain
its global information from multiple channels and different dimensions, Then,
the two sets are combined as far as possible to obtain low-level information
without the interference of useless information. For features X2 and X3, under
the consideration of balancing parameters and effects, only use MFCSAM for
the last layer of feature X3 to obtain its highest level and richest information.

Multi-scale Frequency Channel Self-Attention. For feature information,
our motivation is to build a more global and effective attention mechanism.
Therefore, a novel Multi-scale Frequency Channel Self-Attention module is pro-
posed. As illustrated in Fig. 3, the MFCSAM is mainly implemented in three
steps.

In the multi-scale implementation, we use convolution kernels of different
sizes, so the features of a single scale can be expressed as follows:

Fi = Conv (ki × ki) (Xi) , i = 0, 1, 2 . . . S − 1 (3)

where the i -th kernel size ki = 2 × (i + 1) + 1, and Fi ∈ RC′×H×W denotes
the feature map with different scales. By introducing frequency components to
extract channel information from feature maps of each scale, the attention weight
vectors of frequency channels at different scales can be obtained. Mathematically,
the vector of channel attention vector can be represented as:

Ai = FCAWeight (Fi) (4)
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Fig. 4. Individual information of annotated bounding box for each of the 8 classes,
including the proportion of defect area of this category and the number of defects in
each image.

Where Ai ∈ RC′×H×W is the split frequency channel attention vector, the
FCAWeight module is used to generate frequency channel attention weights.
After gaining frequency channel attention, we feed Ai into three convolution
layers to generate three new feature maps P, K and V, respectively, where
{P,K, V } ∈ RC′×H×W . Then we transpose and reshape them to RC′×N , where
N = H ×W is the number of pixels. After that we perform a matrix multiplica-
tion between the transpose of K and P, and apply a softmax layer to calculate
the position attention map S ∈ RN×N :

sji =
exp (Pi ·Kj)∑N
i=1 exp (Pi ·Kj)

(5)

where Sji represents the ith position’s impact on jth positions. Meanwhile, we
perform a matrix multiplication between V and the transpose of S. After a leaky
ReLU layer, we multiply it by a scale parameter and perform a element-wise sum
operation with the feature A to obtain the output Ej ∈ RC′×H×W as follows:

Ej = α

N∑
i=1

(sjiVi) +Aj , j = 0, 1, 2 · · ·S − 1 (6)

where α is initialized as 0 and gradually learns to assign more weight. From this,
we obtain features with channel and position attention, which come from fully
convolutional layers without information loss, thus improving the consistency
of anomaly detection classification and segmentation. Finally, we re-concatenate
the split part as the output of MFCSAM, the final output can be represented
by:

E = E0 ⊕ E1 ⊕ . . .⊕ Es−1 (7)
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Table 1. Detection(I-AUROC) and localization(P-AUROC) (in %) of state-of-the-art
methods on MVTec AD and MTL AD, before and after adding our method. The best
result for each before-versus-after pair is highlighted in bold.

Dataset Class DRAEM
+SSPCAB [20] ViTLnet [24] GLAD [2] Pyramidflow [16]

PaDiM [8] PatchCore [21] CFA [15]

+Our method +Our method +Our method

Texture-based

Carpet (98.2, 95.0) (-, 98.9) (99.0, 97.8) (-, 97.4) (99.5, 99.1) (99.7, 99) (98.4, 98.8) (99.2, 98.7) (99.5, 98.7) (99.5, 99.1)

Grid (100, 99.5) (-, 97.8) (98.7, 99.7) (-, 95.7) (94.2, 97) (95.6, 97.4) (95.9, 96.8) (98, 97.6) (99.2, 97.8) (99.6, 98.6)

Leather (100, 99.5) (-, 99.7) (100, 99.8) (-, 98.7) (100, 99.3) (100, 99.1) (100, 99.1) (100, 99) (100, 99.1) (100, 99.5)

Tile (100, 99.3) (-, 97.5) (99.6, 96.1) (-, 97.1) (97.4, 95.5) (98.2, 94.9) (100, 96.1) (100, 95.4) (99.4, 95.8) (100, 97.1)

Wood (99.5, 96.8) (-, 97.4) (99.1, 95.8) (-, 97.0) (99.3, 95.7) (99.2, 95) (98.9, 93.4) (99.2, 95.1) (99.7, 94.8) (100,96.4)

Average (99.54, 98.02) (-, 98.3) (99.1, 97.8) (-, 97.18) (98.08, 97.28) (98.54, 97.08) (98.64, 96.84) (99.28, 97.16) (99.56, 97.24) (99.82, 98.14)

object-based

Bottle (98.4, 98.8) (-, -) (100, 96.9) (-, 97.8) (99.9,98.5) (100,98.7) (100.98.4) (100,98.8) (100,98.6) (100,98.6)

Cable (96.9, 96.0) (-, -) (99.8, 98.6) (-, 91.8) (87.8, 97.0) (91.8,98.0) (99.0, 98.8) 99.2,98.7 (99.8,98.7) (99.9,98.6)

Capsule (99.3, 93.1) (-, -) (97.8, 98.7) (-, 98.6) (92.7,98.8) (92.2,99.0) (98.2,98.8) (97.4,99.2) (97.3,98.9) (98.2,98.9)

Hazelnut (100, 99.8) (-, -) (99.8, 98.2) (-, 98.1) (96.4, 98.5) (96.2,98.6) (100,98.7) (100,98.9) (100,98.6) (100,98.6)

Metal_nut (100, 98.9) (-, -) (99.4, 96.2) (-, 97.2) (98.9. 98.2) (99.2,98.6) (99.4,98.9) (98.6,99.3) (100,98.8) (99.6,98.7)

Pill (99.8, 97.5) (-, -) (96.3, 96.2) (-, 96.1) (93.9, 96.6) 94.7,96.8 (92.4,98) 92.5,97.0 (97.9,98.6) (98.7, 98.2)

Screw (97.9, 99.8) (-, -) (97.9, 99.9) (-, 94.6) (84.5, 98.8) 87.2,98.9 (96.0,98.9) (96.2, 99.5) (97.3,99.0) (97.3,98.9)

Toothbrush (100, 98.1) (-, -) (100, 98.9) (-, 98.5) (94.2, 99.1) (99.7,99.2) (93.3,98.8) (100,99.0) (100,98.8) (99.7,98.9)

Transistor (92.9, 87.0) (-, -) (99.6, 96.5) (-, 96.9) (97.6, 97.6) (94.3,98.7) (100,98.1) (97.3,97.8) (100,98.3) (100,98.4)

Zipper (100, 99.0) (-, -) (99.9, 99.1) (-, 96.6) (88.2, 98.6) (91.0,98.8) (98.2,98.3) (96.4,99.0) (99.6,98.6) (99.7,98.8)

Average (98.52, 96.8) (-, -) (99.0, 97.9) (-, 96.62) (93.41, 98.17) (94.55,98.29) (97.65, 98.57) (97.76, 98.72) (99.19,98.69) (99.31,98.66)

Overall (98.86, 97.20) (-, -) (99.1, 97.9) (-, 96.80) (95.,97.9) (95.93,98.04) (98, 98) (98.27, 98.20) (99.3,98.2) (99.48, 98.48)

MTL AD Dataset

Ostrich (-, -) (-, -) (-, -) (-, -) (72.7, 74.8) (73.7, 75.6) (84.8, 82.3) (86.9, 80.8) (91.3, 86.7) (93.2, 86.4)

Lychee (-, -) (-, -) (-, -) (-, -) (87.9, 91.6) (87.5, 92.7) (75.2, 89.4) (73.9, 89.9) (87.7, 93.9) (93.6, 94.8)

Pearlfish (-, -) (-, -) (-, -) (-, -) (71.4, 82.9) (73.4, 84.9) (75.3, 87.5) (81.2, 90.9) (79.5, 91.3) (82.8, 91.8)

Average (-, -) (-, -) (-, -) (-, -) (77.33, 83.10) (78.20, 84.40) (78.43 86.40) (80.67, 87.20) (86.17, 90.63) (89.86, 91)

4 Results and discussion

4.1 DataSets

In this paper, we use MVTec AD dataset and our own MTL AD dataset to
conduct experiments of our proposed method. MVTec AD dataset is a commonly
used anomaly detection dataset, which contains images from 10 object categories
and 5 texture categories. The number and size distribution of MTL AD dataset
is shown in Fig. 4. From the size comparison, we can see that the size of defects
in our dataset is more diverse and in line with the actual situation, while the
defects in MVTec AD data set are generally larger and easier to identify.

4.2 Experimental setup

Since the input image size of this experiment is generally larger than 900x900,
in order to reduce the amount of calculation, we resize the image and center
cropped it to 224x224. The GPU is Nvidia RTX 3080Ti, and the CPU is 12th
Gen Intel(R) Core(TM) i7-12700 to measure the throughput of the proposed
method. Anomaly detection is generally divided into defect detection and local-
ization. Referring to previous methods [8,21], we adopt Area Under the Receiver
Operator Curve (AUROC), and then evaluated the performance of the proposed
method in terms of anomaly detection and localization.

4.3 Quantitative Results

Benchmark. We choose PaDiM [8], PatchCore [21] and CFA [15] models as
benchmark models for anomaly detection. In addition, we introduce state-of-the-
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Fig. 5. Results on the MTL AD Dataset using the CFA model and adding our method.
From left to right, each column is the predicted heatmap and localization results of
the original image, GT, and the original CFA model (represented by the red line) and
the predicted heatmap and localization results of the CFA model after adding our
method(represented by the red line).

art algorithms for result comparison, including sspcab [20], PyramidFlow [16],
GLAD [2], and ViTALnet [24].

Results. We present our results in table 1. From the results of texture-based
classes of both MVTec AD and MTL AD datasets, it can be seen that except
for the 0.2% loss in the localization effect of the PaDiM [8] model, the rest of
the models all have a certain degree of improvement after adding our method,
among PatchCore [21] model achieved a 0.64% improvement in the detection
effect of MVTec AD data set. For the CFA [15] model, since the model utilizes
the features of all layers and is adaptive to specific tasks, it is more suitable
for our tasks for texture and shape, and the performance is also the best: the
detection effect for MTL AD is improved by 3.69% and the detection effect for
MVTec AD is improved by 0.18% overall. Moreover, compared to the state-of-
the-art methods, the CFA algorithm with our proposed enhancements achieves
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the optimal results in almost every category. Except for a 0.16 lower score in
texture-based categories compared to ViTLnet, which is a specialized algorithm
for texture-based categories.

Table 2. Average inference time (in milliseconds) for two frameworks [8], [15], before
and after integrating our method,respectively.The running times are measured on an
Nvidia GeForce GTX 3080Ti GPU with 12 GB of VRAM.

Method
Time(ms)

Baseline +Our method

PaDiM [8] 503 507

CFA [15] 129 131

Ablation Study. To illustrate the effectiveness of the proposed method, we
use the CFA [15] model for ablation experiments. We added the components
of our method, i.e., SBM and PFAM, to the model to see the final effect. For
SBM and PFAM, in table 1, we show the detection and localization effect of the
CFA [15] model in texture-based and object-based classes according to the idea
of whether to use our method. The results proves that our method is effective
on most classes. It can also be seen from the visualization results in Fig. 5 that
our module can better locate and detect industrial product defects.In summary,
the experimental results prove that our method has a good ability to deal with
the problem of shape-bias, and can more comprehensively utilize the pretrained
model for anomaly detection on the surface of industrial products.

Inference time. Regardless of the underlying framework [15], [8], referring to
Madan et al. [18] for the testing method of embeddable modules, we add the two
modules of this paper, SBM and PFAM. To evaluate the additional amount of
time for adding modules in this paper, we show the running time before and after
integrating our method into two state-of-the-art frameworks [15], [8] in Table 4.3.
For both baseline models, the time after adding our method is at most 0.5ms
higher. Furthermore, the computation time of CFA differs by no more than 0.2
milliseconds relative to the original baseline.

5 Conclusion

Most anomaly detection methods use pretrained convolutional models to extract
nominal data features. Due to the shape-bias, these features can have side effects
when faced with shape or texture products. In this paper, We propose a novel
framework to remove local bias without reducing the features of convolutional
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layers. To show the superiority of our method, we combine it with current state-
of-the-art models [8, 15, 21]. We demonstrate that each module in the method
is necessary through extensive experiments on MVTec AD [5] and MTL AD
dataset. Although a certain amount of computation is increased, our method can
overcome shape-bias from pretrained model to a certain extent, and can achieve
improvements at the image/pixel level of anomaly detection. In future work, we
will continue to study the anomaly detection of industrial product defects, and
explore how to improve the detection effect with as less computational cost as
possible.
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