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Abstract. The problem of incomplete knowledge caused by the lack of relations 
in large-scale knowledge graphs increases the difficulty of downstream applica-
tion tasks. Predicting the missing relations between entities according to the ex-
isting facts is the main means of knowledge graph completion. The triple of 
knowledge graph can be seen as a third-order binary tensor element that linearly 
transforms entities and relations into low-dimensional vectors through tensor de-
composition to determine the probability that the triple of missing relations is 
true. However, the non-deterministic polynomiality in determining the tensor 
rank can lead to overfitting and unfavorable to the generation of low-rank models. 
Aiming at this problem, we propose to use CP decomposition to decompose the 
third-order tensor into the sum of multiple rank-one tensors, which is the sum of 
the outer products of the head entity embedding, relation embedding, and tail 
entity embedding for each triple, and convert it into a super-diagonal tensor prod-
uct the factor matrix of each mode, and use scoring function calculate the proba-
bility that the triple of missing relation is true. Link prediction experimental re-
sults from four different domains of benchmarks knowledge graph datasets show 
that the proposed methods are better than other comparison methods, it also can 
express the complex relations of knowledge graph, and the decomposition has 
uniqueness, reduces the total amount of calculations and parameters, avoids over-
fitting. 

Keywords: Knowledge graph completion, Tensor decomposition, CP decom-
position. 

1 Introduction  

Knowledge Graphs (KGs) are large-scale semantic networks that store human 
knowledge in the form of graphs, where nodes represent entities and edges represent 
specific factual relations that connect two entities, usually represented as triples, 
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namely (head entity, relation, tail entity). KGs, which allow computers to model com-
plex data in the form of structured storage of knowledge and have been widely used in 
automated question-answering, information retrieval, and recommendation systems 
[1,2,3]. At present, a large number of large-scale KGs have been constructed by manual 
and semi-automatic methods, such as Freebase [4], YAGO [5], NELL [6], etc., but there 
are problems such as the lack of entity attributes and relations between entities. For 
example, about 70% of people lack birthplace information, WordNet [7] and NELL 
also have different degrees of lack of relations such as race and part of speech [8]. The 
lack of data in KGs leads to data sparseness and knowledge incomplete, which increases 
the computational difficulty of downstream tasks [1,2,3]. Knowledge representation 
learning [9,10,12] maps entities and relations in KGs into a low-dimensional continu-
ous space through representation learning, and uses a scoring model with low latitude 
embedding as input to score the triple, so as to determine the probability that the triple 
is true, and achieve the purpose of completing KGs quickly, which can effectively solve 
the data sparseness problem and improve the calculation efficiency of downstream 
tasks.  

Knowledge representation learning can be divided into non-linear [10,12] and lin-
ear models [9]. Nonlinear models mainly include translation models and neural network 
models. The translation model [10] assumes that the relation is the translation from 
head entity to tail entity, and projects the head and tail entities into a vector space of the 
same dimension by the relations vector/matrix, and calculate the distance between the 
projection vectors to determine the confidence level that exists relations between enti-
ties. The translation model uses the distance between two entities to measure the ration-
ality of a fact, and cannot accurately describe the semantic connection between two 
entities. Therefore, the synergy between entities is poor, cannot effectively solve the 
complex relation problem of triple, such as Trans E [11]. The neural network model 
[12] adopts the nonlinear model of a single-layer neural network to further describe the 
semantic correlation of entities under relations, but it is opaque, understandable and 
interpretable, and has high computational complexity. Linear models regard knowledge 
graph (KG) as a third-order binary tensor, where each element corresponds to a triple, 
1 indicating a true fact and 0 indicating the unknown (either a false or a missing fact). 
The goal of KG completion is to linearly transform entities and relations into low-di-
mensional vectors through tensor decomposition [13], and then embed entities and re-
lations to calculate the probability that triplets are true by product. 

Tensor decomposition is the recovery of low rank components by approximating 
low-rank structure of data tensors, making full use of the information from all dimen-
sions of data to effectively recover or predict the lost data. However, the non-determin-
istic polynomials that determining the rank of the tensor [14], such as TuckER [15], can 
lead to overfitting that unfavorable to the generation of low-rank models, which affects 
the accuracy of KG completion. To solve the above problems, we propose a method of 
using CP decomposition[16] for KG completion, which uses CP decomposition to de-
compose the third-order tensor into a sum of component rank-one tensors, which is the 
sum of the outer products of the head entity embedding, relation embedding, and tail 
entity embedding for each triple, and we convert it into a super-diagonal tensor product 
the factor matrix of each mode, and use the scoring function to calculate the score of 
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each triple to infer the probability that each triple is true. CP decomposition ensures the 
uniqueness of tensor rank, reduces the amount of calculation and the total number of 
parameters. We conduct a completion experiment on four different domains of standard 
datasets, the results show that this method has better prediction accuracy. 

The rest of the paper is organized as follows: Section “Related Work” introduces 
the basic concepts of knowledge representation learning and existing embedding meth-
ods and their advantages and disadvantages. Section “Knowledge graph completion 
based on CP decomposition” describes the proposed CP model in detail. Section “Ex-
periments and Results” compares CP with the most typical and state-of-the-art embed-
ding models followed by a conclusion in the “Conclusions”. 

2 Related	Work	
Knowledge representation learning maps entities and relations in KGs into dense low-
latitude real-valued vectors respectively while keeping the semantic relations un-
changed, and then calculates complex semantic associations between entities and rela-
tions in low-dimensional space to improve the computational efficiency of downstream 
tasks. The mapping method mainly includes non-linear and linear models. Nonlinear 
models consist of translation models and neural network models. 

Translation-based models regarding the relation as a mapping from head entity to 
tail entity, and measure the plausibility of a fact as the distance between two entities. 
The representative model is Trans E [11], Trans E models a real triple(ℎ, 𝑟, 𝑡) as 𝒉 +
𝒓 ≈ 𝒕, where 𝒉, 𝒓, 𝒕 ∈ ℝ𝒌 represents the head entity, relations, and tail entity respec-
tively. 𝒌 denotes vector dimensions, it can perform well on link prediction, but cannot 
handling 1-N, N-1, N-N relations. Trans R [17] embeds entities and relations into sep-
arate vector spaces, which is better in handling N-N relations, but has high time and 
space complexity. In addition, there are also translation models such as Trans M [18], 
Manifold E [19], and Tran Spare [20] that have made relevant improvements for com-
plex relational problems, all of which have achieved better results. However, the trans-
lation model uses two different matrices to project the head and tail entities, so that the 
semantic connections between the entities cannot be accurately characterized, such as 
Trans H [21], so the synergy between entities is not good and it is still difficult to deal 
with the complex relations of KGs. 

Neural network model uses neural networks to replace the bilinear transformation 
of linear models to calculate the scoring function of triple, NTN [22] portrays the se-
mantic connections between entities and relations through nonlinear operations of sin-
gle-layer neural networks, whose scoring functions is defined as a neural network-like 
output, it can portray complex semantic relations between entities more accurately, but 
too many parameters also bring an increase in complexity. Dong [23] et al proposed an 
ER-MLP model that can be considered a simplified version of NTN to reduce the num-
ber of parameters. Models such as R-GCN [24], Conv E [25] and Conv KB [26] use 
convolutional neural networks to learn vector representations of entities and relations 
in KGs, R-GCN uses relational graph convolutional neural networks to model relational 
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paths in KGs. Conv E combines entities and relations embedding into a two-dimen-
sional matrix, and then performs a 2D convolution operation on this matrix, Conv KB 
uses only one-dimensional convolution. Although the prediction accuracy of the neural 
network model is considerable, the model is not transparent and understandable and 
high computational complexity. 

Linear model treats each triple of KG as an element in a tensor (matrix) and uses 
tensor decomposition to decompose high-dimensional arrays into multiple low-dimen-
sional ones for representation learning. Typical models include RESCAL [27], DisMult 
[28], ComplEx [29], SimplE [30], and TuckER [15], all of which apply different de-
composition methods for this third-order binary tensor to solve the KG completion 
problem. RESCAL uses vectors to represent the potential semantics of entities, matrices 
to represent the relations between entities, and uses relation matrices to model potential 
factors with interactions, which makes the algorithm complex, parameter-rich and more 
prone to the risk of overfitting since each relation corresponds to a relation matrix. Dis-
Mult compensates for this risk by restricting the relation matrix to a diagonal matrix, 
which reduces complexity of the model but failing to establish triples of asymmetric 
relations. ComplEx represents entities and relations as complex vectors to capture tri-
ples of antisymmetric relations. SimplE learns each relation as two independent em-
bedding, one for normal relations and the other for reverse ones. TuckER decomposes 
the tensor into a core tensor multiplied by the product of three factor matrices in three 
modes, each row of which represents subject entity, relation, and object entity respec-
tively, and the core tensor characterizes the level of interaction between them and is a 
fully expressive model. However, TuckER decomposition is an approximation of n-
rank and low rank, for fixed n-rank, the uniqueness of TuckER decomposition cannot 
be guaranteed, the core tensor is not constrained, and the correlation between entities 
and relations are not better handled, so it is prone to the risk of overfitting.  

When we regard KGs as third-order binary tensors, the third-order KG tensor is 
decomposed into the sum of the outer product of embedding of each triple head entity, 
relation, and tail entity by CP decomposition, at which point we are able to build each 
triple that can express any relations of KGs (including complex relations such as many-
to-many, multi-level, asymmetric, etc.). Meanwhile CP decomposition is an approxi-
mation of rank and low rank, decomposition has uniqueness, which can decompose 
high-dimensional tensors into the sum of component rank-one tensors, with each nu-
cleus consisting of the outer product of vectors, reducing the rank of the weight, the 
amount of computation and the total amount of parameters, avoiding overfitting. 

3 Knowledge graph completion based on CP decomposition 

3.1 Problem Definition 

For a given knowledge graph 𝐾𝐺 = (ℇ，ℛ), ℇ denotes the set of all entities, 	ℛ the set 
of all relations, and Δ denotes the set of ground truth triples in KG. The triple(ℎ, 𝑟, 𝑡) 
represents a fact, ℎ, 𝑡 ∈ ℇ denotes head entity and tail entity, 𝑟 ∈ ℛ the relations be-
tween head and tail entities. KG can be represented as a third-order binary tensor 𝝌 ∈
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ℝ𝑰×𝑱×𝑲, 𝒉𝒊 ∈ ℝ𝑰,𝒓𝒊 ∈ ℝ𝑱,𝒕𝒊 ∈ ℝ𝑲 represents head entity, relation, and tail entity of a 
triple, KG of the third-order binary tensor can be decomposed into: 

 
Fig. 1. CP!decomposition of KG 

Expanding the above CP decomposition： 

 𝝌 = 𝒉𝟏 ∘ 𝒓𝟏 ∘ 𝒕𝟏 + 𝒉𝟐 ∘ 𝒓𝟐 ∘ 𝒕𝟐 +⋯+ 𝒉𝑵 ∘ 𝒓𝑵 ∘ 𝒕𝑵 ≈ ∑ 𝒉𝒊 ∘ 𝒓𝒊 ∘ 𝒕𝒊𝑵
𝒊*𝟏  (1) 

Where ∘ denotes the outer product of vector, N is a positive integer, and CP decompo-
sition can also be expressed in terms of mod-i multiplication: 

                                                𝝌 = 𝓙 ×𝟏 𝑯×𝟐 𝑹 ×𝟑 𝑻            (2) 

Where 𝓙 ∈ ℝ𝑵×𝑵×𝑵 is the unit tensor, indicating the degree of reciprocity between dif-
ferent components, with all its super-diagonal elements being 1 and others being 0, 
𝑯 = {𝒉𝟏, 𝒉𝟐, . . . , 𝒉𝑵} ∈ ℝ𝑰×𝑵 , 𝑹 = {𝒓𝟏, 𝒓𝟐, . . . , 𝒓𝑵} ∈ ℝ𝑱×𝑵 , 𝑻 = {𝒕𝟏, 𝒕𝟐, . . . , 𝒕,} ∈
ℝ𝑲×𝑵 are embedding matrix of head entity, relation and tail entity, and ×𝒏	denotes the 
tensor product along pattern n. When left equals right, the rank of 𝝌 is N. When 𝑯,𝑹,𝑻 
is orthogonal, it can be considered as the main constituent factor in each mode. 

3.2 Model Definition 

KG completion based on CP decomposition decomposes KG of a third-order binary 
tensor into a super-diagonal tensor product the factor matrix of each mode. Entity em-
bedding matrix 𝑬  that is equivalent for head and tail entities, i.e., 𝑬 = 𝑯 = 𝑻 ∈
ℝ𝒏𝒆×𝒅𝒆  , and relation embedding matrix R ∈ ℝ𝒏𝒓×𝒅𝒓 , where 𝒏𝒆  and 𝒏𝒓	present the 
number of entities and 𝑑1 and	𝑑2 the dimensionality of entity and relation embedding 
vectors respectively. 
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Fig. 2. Visualization of CP architecture 

The scoring function for CP as: 

                                           𝑓(ℎ, 𝑟, 𝑡) = 	𝓙 ×𝟏 𝒖𝒉 ×𝟐 𝒗𝒓𝑻 ×𝟑 𝒘𝒕                (3)  

Where 𝒅𝒆 = 𝒅𝒓, 𝓙 ∈ ℝ𝒅𝒆×𝒅𝒓×𝒅𝒆 is the super-diagonal tensor of CP decomposition and 
×𝒏 is the tensor product along the n-th mode. 𝒖𝒉, 𝒘𝒕 ∈ ℝ𝒅𝒆 are the rows of 𝑬 repre-
senting the head and tail entity embedding vectors, 𝒗𝒓 the rows of 𝑅 representing the 
relation embedding vector. We first multiply 𝓙-recombinant a matrix with 𝒖𝒉, and the 
result forms a third-order tensor with the transpose matrix of relation vector for product, 
and finally multiply with 𝑤6 to get a score of the triple. We use the Sigmoid activation 
function for each triple score 𝒇(𝒉, 𝒓, 𝒕)  to get the prediction probability 𝒑 =
𝝈(𝒇(𝒉, 𝒓, 𝒕)) that each triple is true, and the space complexity of cp is 𝑶(𝒏𝒆𝒅𝒆 +
𝒏𝒓𝒅𝒓). 

3.3 Model Learning 

For learning CP, we assign the diagonal of decomposed third-order tensor to 1 and 
others to 0 (either a false or a missing fact). For each head entity 𝒖𝒉(𝒊), relation 𝒗𝒓(𝒋), 
tail entity 𝒘𝒕

(𝒌) correspond to the i-th, j-th, and k-th elements of the three factor matri-
ces respectively, and train this three matrices so that the positions (𝑖, 𝑗, 𝑘) correspond-
ing vectors 𝒖𝒉, 𝒗2, 𝒘𝒕 of true triple fall as far as possible on the super-diagonal of de-
composed third-order tensor, as shown in Figure. 3: 
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Fig. 3. Flow Chart of CP Learning 

We take only the non-existent triples (𝒖𝒉, 𝒗2 ,∙) and (∙, 𝒗2 , 𝒘𝒕) of the observed pairs 𝒖𝒉, 
𝒗2and 𝒗2, 𝒘𝒕 respectively as negative samples and all observed triples as positive sam-
ples. To improve the training speed and accuracy of the algorithm, we refer to the train-
ing method of Dettmers et al [25] and use numerical method to train CP. Using the 1-
N scoring, that is, we simultaneously score a pair 𝒖𝒉, 𝒗2 with all entities  𝒘𝒕 ∈ ℇ, in 
contrast to 1-1 scoring, where individual triples (𝒖𝒉, 𝒗2 , 𝒘𝒕) are trained one at a time. 
This way improves the training speed of algorithm significantly. We train our model to 
minimize the Bernoulli negative log-likelihood loss function: 

ℒ =	∑ 𝑙(ℎ, 𝑟, 𝑡)𝑙𝑜𝑔𝑝(ℎ, 𝑟, 𝑡) + (1 − 𝑙(ℎ, 𝑟, 𝑡)log	(1 − 𝑝(ℎ, 𝑟, 𝑡))(:,<,=)∈ℬ(:,<,=)           (4) 

Where ℬ(h, r, t) = Δ ∪ Δ@, Δ denotes the set of fact triples, Δ@ = {(𝒖𝒉, 𝒗2 , 𝒘𝒕
@)|𝒘𝒕

@ ∈
𝑬} ∪ {(𝒖𝒉@, 𝒗2 , 𝒘𝒕)|𝒖𝒉@ ∈ 𝑬} gets the set of negatively sample triples from positive 
triples, i.e., we replace head and tail entity of a fact triple randomly, then they may 
contain other fact triple, which not participate in computation. ℬ(h, r, t) is the set con-
sisting of fact triples and negatively sampled triples. The value of 𝑙(ℎ, 𝑟, 𝑡) depends 
on whether the triple is true or not. 

ℒ = 	𝑙(ℎ, 𝑟, 𝑡) = d−1		，		𝑖𝑓	(𝒖𝒉, 𝒗2 , 𝒘𝒕) ∈ Δ@
1		，			𝑖𝑓	(𝒖𝒉, 𝒗2 , 𝒘𝒕) ∈ ∆

 (5) 
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3.4 Model Analysis 

From Equation (1) we can see that CP decomposition can completely and directly ex-
press every triple and relations between entities (many-to-many, multi-level, asymmet-
ric, and other complex relations), so CP can model complex relations of KG. 

Unconstrained decomposition in tensor decomposition leads to uniqueness of the 
results, which leads to unstable model training and reduces the robustness of the model 
and affects the prediction effect. the method of first determining the number of rank-
one tensors before iterating ensures its uniqueness in CP decomposition. The proof is 
as follows: 

                                      𝜒 = ∑ 𝑎2 ∘ 𝑏2 ∘ 𝑐2 = {𝐴, 𝐵, 𝐶}A
2*B                                    (6) 

Where 𝑎2 ∈ ℝ𝑰, 𝑏2 ∈ ℝ𝑱, 𝑐2 ∈ ℝ𝑲, and uniqueness means that the above decomposition 
may be a combination of single-rank matrices (𝐴, 𝐵, 𝐶), and here the columns of the 
decomposed single-rank matrix are rearranged using the permutation matrix: 

                                          𝜒 = {𝐴, 𝐵, 𝐶} = {𝐴Π, 𝐵Π, 𝐶Π}                         (7) 

Where Π is the permutation matrix of 𝑁 ×𝑁, and scaling vectors in CP decomposition 
does not affect the outcome, for example: 

                                          𝜒 = ∑ (𝛼2𝑎2) ∘ (𝛽2𝑏2) ∘ (𝛾2𝑐2)A
2*B                 (8) 

Where 𝛼2	, 	𝛽2	, 𝛾2 = 1, 𝑟 = 1, . . . , 𝑅, so cp decomposition is unique, and the stability of 
training is ensured by orthogonal constraints on the three factor matrices. 

CP decomposition is the sum of all rank-one tensors decomposed by high-dimen-
sional tensors, reduces the rank of weights, which in turn reduce the total amount of 
calculations and parameters. We convert CP decomposition to obtain a super-diagonal 
tensor and three factor matrices, where most of elements in super-diagonal tensor are 
0, eliminating the interaction between components in every dimension and reducing the 
overfitting problem of model training to a certain extent. 

4 Experiments and Results 

4.1 Datasets 

To validate our model, we use four benchmark datasets from different domains for link 
prediction. Since the correlation prediction tasks in WN18 [25] and FB15K [11] are not 
affected by the inverse relation problems [31], we use FB15k-237 and WN18RR that 
have filtered out the inverted relations to better train our model. all datasets counted as 
in Table 1. 

WN18RR [25] is an English vocabulary database that filtered out all inverse relations 
from WN18. 

FB15k-237 [32] is a structured KG contributed by community members that filtered 
out all inverse relations from FB15K. 
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Table 1. Number of entities, relations, and the Dataset partition 

dataset Rel Ent Train Test Valid 
FB15K237 237 14,541 272,115 20,466 17,535 
WN18RR 11 40,934 86,835 3,134 3,034 
Nell-995 200 75,492 149678 543 3992 
Kinship 25 104 8544 1074 1068 

Nell-995 [33] Contains information on coaches, universities, government agencies, etc. 

Kinship [34] is a dataset about kinship。 

4.2 Implementation and Evaluation 

KG completion is to predict missing triples in KG, i.e., find the missing entities or re-
lations in triples. we get the set of all true triples in KG, with the goal of training the 
scoring function 𝑓(ℎ, 𝑟, 𝑡) corresponding to each triple to guide whether the triples are 
true or not, and finally be able to accurately score all the missing triples. A positive 
score for a triple indicates that it is a fact triple and negative overwise. Scoring function 
is a specific form of tensor factorization. 

We evaluate each triple from the test set. For a given triple. We create candidate 
triples by replacing the head or tail entities with all entities in the dataset, we then 
rank the scores obtained. We use the filtered setting, i.e., we remove all other true tri-
ples apart from the currently observed test triple. 

For evaluation, we use two evaluation metrics used across the link prediction lit-
erature: mean reciprocal rank (MRR) and ℎ𝑖𝑡𝑠@𝑁，𝑁 ∈ {1，3，10}, MRR is the av-
erage of the inverse of a mean rank assigned to the true triple over all 𝒏𝒆 generated 
triples. ℎ𝑖𝑡𝑠@𝑁 indicates the proportion of correct answers in the top N of all candidate 
sets. The aim is for our model to achieve high MRR and ℎ𝑖𝑡𝑠@𝑁. 

4.3 Experiment Setting 

We select hyperparameters by random search algorithm, and choose learning rate 𝛾 ∈
{0.0005,0.001,0.003,0.005,0.01}, learning rate decay 𝛾′ ∈ {1,0.99,0.95,0.995}. We 
select the best parameters on each dataset by tuning parameters, as follows: 

Table 2. Parameters Setting 

 Train Times Learning rate Number of batches dimensions 
FB15K237 500 0.005 128 200 
WN18RR 500 0.01 128 100 
Nell-995 500 0.005 128 100 
Kinship 500 0.0005 128 100 
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4.4 Link Prediction Result 

We compared several typical linear and nonlinear KG completion models in experi-
ments, link prediction results on all four datasets are shown in Table 3 and 4. In section 
3. 4, we analyze that CP can better solve the complex relations problem of KG, to test 
this, we experiment with extracting n-n relations as test-sets on KinShip. Table 5 shows 
the link predictions results for each model on test set with only complex relations on 
KinShip. 

Table 3. Link prediction results on FB15K237 and WN18RR 

 
FB15K237 WN18RR 

MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 

TransE .279 .441 .376 .198 .243 .532 .441 .427 
RotatE [35] .338 .533 .375 .241 .476 .571 .492 .428 
PairRE [36] .351 .544 .387 .256 .452 .546 .467 .410 
R-GCN .248 .417 .264 .151 - - - - 
Conv E .325 .501 .356 .237 .430 .520 .440 .400 

InteractE [37] .354 .535 - .263 .463 .528 - .430 

DisMult .281 .419 .263 .155 .430 .490 .440 .390 
ComplEx .278 .428 .275 .158 .440 .510 .460 .410 
TuckER .358 .544 .394 .266 .470 .526 .482 .443 

CP .371 .552 .399 .272 .482 .547 .484 .455 

Table 4. Link prediction results on NELL-995和 and Kinship 

 
NELL-995 Kinship 

MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 

TransE .401 .501 .472 .344 .271 .623 .345 .090 
RotatE  .460 .553 .493 .403 .811 .971 .891 .717 
R-GCN - - - - -       - .880 .300 
Conv E .491 .613 .531 .403 .833 .981 .917 .738 

InteractE - - - - .777 .959 .870 .664 
DisMult .485 .610 .524 .401 .516 .867 .581 .367 
ComplEx .482 .606 .528 .399 .677 .963 .795 .526 
TuckER  .411 .514 .459 .362 .843 .985 .915 .760 

CP .481 .614 .541 .424 .880 .986 .941  .812 

From Table 3 and 4, we can see that CP outperforms all previous state-of-the-art models 
(except Conv E has a higher MRR on NELL-995 and RotatE has a higher Hit@3 on 
WN18RR), which indicates that CP has a very good performance, not only over other 
linear models, such as DisMult, ComplEx, and TuckER, but also over complex deep 
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neural networks and reinforcement learning architectures, such as R-GCN, Conv E, and 
InteractE, reflecting the strong performance of CP. 

From the structural analysis of these four datasets, we find that when the number 
of entities increases sequentially (Kinship, FB15K237, WN18RR, NELL-995), the lin-
ear model has progressively superior expressiveness compared with translation models 
and neural network models. This is because the larger the number of entities, linear 
models with the parameterization of the relation have more expressive, the better it can 
handle the richness of the entity. Comparing Kinship, FB15K237 and WN18RR, the 
model is trained better when the factorization of the higher dimensional tensor is used, 
such as TuckER, CP. TuckER performed better on FB15K237, WN18RR and Kinship 
just behind CP, but TuckER did not perform well on NELL-995 and CP still performs 
the best, which shows that CP is not only more expressive than TuckER but also more 
stable. 

Table 5 shows that for the test set containing only complex relations, CP remains 
the best and TuckER the second, which indicates that CP is able to handle triples with 
complex relations in KG excellently, while RESCAL cannot. 

Table 5. Link prediction results with n-n relations on KinShip 

 Kinship(only n-n relations) 
MRR Hit@10 Hit@3 Hit@1 

TransR .266 .769 .436 0 
RotatE .816 .972 .888 .722 
Rescal .011 .001 0 0 

DisMult .539 .873 .598 .391 
ComplEx .677 .963 .795 .526 
TuckER .843 .985 .912 .760 

CP .874 .986 .945  .803 
 
To verify that CP can reduce the total number of parameters, that is, a lower embedding 
dimensionality (i.e., lower rank of the decomposition) compared to other models can 
also have better results. We trained ComplEx, TuckER, and CP for embedding sizes 
𝒅𝒆 = 𝒅𝒓 ∈ {𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟐𝟎𝟎}  on KinShip, Table 4 shows the obtained MRR on the 
test set for each of the models. 
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Fig. 4. MRR for ComplEx, TuckER and CP for embedding sizes 𝒅𝒆 = 𝒅𝒓 ∈

{𝟐𝟎, 𝟓𝟎, 𝟏𝟎𝟎, 𝟐𝟎𝟎} on KinShip 

We can see from Figure. 4 that CP outperforms Tucker and ComplEx in any embedding 
dimension, and the difference between the MRRs of ComplEx, TuckER and CP is ap-
proximately constant and performs best at embedding sizes 100 and 200. However, for 
lower embedding sizes, the difference between MRRs is larger. At the embedding size 
is 20, the performance of CP is the least different from that at the optimal embedding 
dimension compared to ComplEx and TuckER, which supports the hypothesis that CP 
can reduce the total number of parameters. 

5 Conclusion 

In this work, we have introduced CP, a simple but excellent linear model for link pre-
diction in KGs based on CP decomposition, which decomposes KG represented by 
third-order tensor into a sum of multiple rank-one tensors, with the rank-one tensor 
consisting of the outer product of embedding of head entity, relation and tail entity of 
each triple for KG completion. CP is a higher-order expression of factorization models 
such as RESCAL, DisMult, and SimplE. We analyze that CP can model complex rela-
tions of KG, which solve the problem that most of the current KG completion models 
are difficult to deal with. And we prove that CP decomposition is unique, stable, re-
duces the total number of computations and parameters, and reduce overfitting. The 
experiments worked best on four different domains standard datasets and fill KG effec-
tively. It is possible that it is of great practical significance to make link predictions of 
the knowledge graph of phenotypes (diseases, symptoms), drugs, genes and their rela-
tions to explore potential drug treatment mechanisms in the field of medicine. 

Future work might include taking into account the semantic hierarchy and rela-
tional attributes between entities in triples, and combining the characteristics of the 
knowledge graph constructed by phenotype (disease, symptom), drug, and gene, to 



13 

achieve a more intelligent and high-precision knowledge graph completion, explore 
targeted drugs and disease-treating genes. 
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