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 Abstract. An important factor affecting building inhabitants' comfort, well-being, and productivity is the quality 

of the indoor environment. There is a lot of promise in using artificial intelligence to manage environmental quality. AI 

offers a more effective and proactive method of improving indoor air quality and occupant well-being by predicting, 

monitoring, and regulating thermal comfort levels and lowering indoor pollution. The present study reviews recent 

scientific work on monitoring and improving indoor environmental quality (IEQ), focusing on the use of statistical 

learning models and smart sensor technology. Machine learning has been shown to effectively detect office occupancy 

using environmental measurements, improving energy efficiency and occupant comfort. Other research has successfully 

reconstructed indoor temperature profiles, essential for optimizing heating, ventilation and air-conditioning systems. 

Comprehensive reviews of air quality modeling in urban environments focus on the integration of advanced modeling 

techniques into urban planning. Studies on smart sensors for real-time monitoring of indoor air quality (IAQ) in various 

types of buildings demonstrate their potential for improving IAQ and thermal comfort. These studies underline the 

importance of data-driven approaches and intelligent systems in meeting the challenges of indoor environmental quality 

management. Future research should focus on integrating these technologies into intelligent building systems to 

improve energy efficiency, air quality and occupant comfort. Numerous cutting-edge deep learning techniques, 

including convolutional neural networks (CNNs), long short-term memory networks (LSTMs), decision trees (DTs), 

support vector machines (SVMs), artificial neural networks (ANNs), and deep neural networks (DNNs), are 

incorporated into the hybrid framework. Combining these methods improves the framework's capacity to precisely 

process and examine intricate patterns of data. 

 Introduction  
John McCarthy initially used the term artificial intelligence (AI) 
in 1956 to refer to the ability of computers to perform tasks that 
ordinarily require human intelligence. Artificial intelligence 
uses computer programs that mimic human behavior to simulate 
human cognitive processes. Massive data sets and powerful 
processing power are necessary, though, for AI to reach its full 
potential. Large datasets have been essential to AI's recent 
success, even though technological breakthroughs have played 
a significant role. Large-scale data organization and evaluation 
now require AI-driven software solutions, which enable 
complex decision-making processes that often exceed human 
capacity. The amount of data generated these days exceeds what 
humans can quickly and effectively process. Because of this, 
artificial intelligence (AI) is now important in many different 
fields, almost all of which stand to benefit from this 
revolutionary technology [1]. 

Yang (2024) [2] focused on the application of AI-powered 
wearable devices in sports health monitoring. These advanced 
devices, equipped with sophisticated sensors, collect real-time 
data on key physiological metrics like heart rate, body 
temperature, and movement patterns. By leveraging AI 
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algorithms, the collected data is processed to provide immediate 
feedback and insights, aiding in injury prevention, performance 
optimization, and overall health management for athletes. This 
research highlights the growing importance of integrating 
technology with sports science to enhance athletic performance 
and safeguard athlete health. 

Gao, (2024) [3] Investigated how to improve the accuracy and 
effectiveness of tracking and evaluating human movements in 
sports and health by using AI-based picture recognition 
algorithms. These algorithms provide immediate feedback by 
precisely identifying and assessing physical actions based on the 
processing of visual input. This approach looks closely at 
movement patterns and physical conditions in an effort to 
improve general health management, reduce the risk of injury, 
and improve athletic performance. 

Indoor environmental quality (IEQ) is vital to building 
occupants' comfort, productivity, and well-being. The 
importance of optimizing indoor conditions has grown as 
individuals spend more and more time indoors. The emergence 
of cutting-edge technology, such as machine learning models 
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and smart sensors, presents new possibilities for tracking and 
enhancing IEQ in a variety of building types. 

Innovative techniques for improving indoor air quality (IAQ), 
managing thermal comfort, and maximizing energy use in 
buildings have been the subject of recent studies.. Through the 
application of data-driven techniques and intelligent systems, 
scientists hope to develop more accurate and efficient indoor 
environmental control solutions. This review presents a number 
of important studies that demonstrate the latest developments 
and possible uses of these technologies in this field. 

Bakht et al (2022) [4] presented a hybrid CNN-LSTM-DNN 
framework, comparing its performance with that of leading deep 
learning methods, including RNNs (LSTM (Long Short-Term 
Memory) and Bi-LSTM), CNNs, and DNNs. Metrics like mean 
absolute error (MAE) and root mean square error (RMSE) were 
used to gauge performance., and R². The study focuses on 
improving predictive monitoring of PM2.5, aiming to support 
the creation of early warning systems and enhance ventilation 
control to maintain sustainable indoor air quality on subway 
platforms. 

Candanedo and Feldheim (2016) [5] used light, temperature, 
humidity, and CO2 data to study the use of statistical learning 
models for occupancy detection in office settings. Their findings 
show how energy efficiency and building automation systems 
can be enhanced by machine learning. The study looked at the 
application of models developed in the open-source R program, 
including Random Forest (RF), Gradient Boosting Machines 
(GBM), Linear Discriminant Analysis (LDA), and 
Classification and Regression Trees (CART). To our 
knowledge, there has never yet been any documentation in the 
scientific literature regarding the utilization and efficacy of RF, 
GBM, and LDA models for occupancy detection.  

Next, using data-driven models, Candanedo et al. (2018) [6] 
focused on reconstructing indoor temperature measurements. 
Reconstructing temperatures accurately is essential for 
improving heating, ventilation, and air conditioning (HVAC) 
systems and evaluating building performance. 

A thorough analysis of São Paulo, Brazil's air quality modeling, 
was carried out by Gavidia-Calderón et al. (2024) [7]. Their 
research emphasizes how modern modeling methods must be 
integrated with urban planning in order to successfully manage 
air pollution challenges. 

Qabbal and colleagues have conducted extensive research on 
smart sensor technology for indoor air quality (IAQ) monitoring. 
Their studies cover various aspects of IAQ management and 
provide valuable insights into the potential of smart sensors for 
improving indoor environments: 

1. Smart Sensor Applications in Tertiary Buildings: Qabbal et 
al., (2012) [8] examined the use of smart sensors connected to a 
Raspberry Pi for real-time IAQ measurements in a tertiary 
building. Their study demonstrated the feasibility of using low-
cost, smart sensor technology to continuously monitor IAQ 
parameters, enabling more effective control of the indoor 
environment. 

2. Retrofitted University Buildings: The most recent work by 
Qabbal et al., (2022) [9] involved assessing IAQ and thermal 

comfort in a retrofitted university building. Utilizing low-cost 
smart sensors, they conducted a comprehensive evaluation of the 
building's indoor environment. This study emphasized the 
practicality and benefits of deploying smart sensors in existing 
buildings to enhance IAQ and occupant comfort. 

These studies illustrate significant advancements in smart sensor 
technology for IAQ monitoring. The research underscores the 
importance of real-time data collection and analysis in 
effectively managing indoor environments. 

1. Occupancy modeling previous work  

To differentiate between weekday and weekend trends and give 
time series data for energy models, a stochastic occupancy 
model was developed using survey data [10]. Through the use 
of Bayesian statistics, a later model that integrated CO2 sensors, 
passive infrared sensors, and video cameras was able to reduce 
inaccuracy from 70% to 11% [11]. 

Two models for occupancy prediction were presented [12]. One 
used camera data and applied a multivariate Gaussian 
distribution, while the other model simulated movement using 
an agent-based model (ABM). Additionally, a graphical model 
for multi-zone buildings was developed, and the impacts of data 
noise on room occupancy were assessed using an agent-based 
model [13, 14].  

A dynamic occupancy model based on temperature, ventilation, 
and CO2 levels outperformed previous techniques such as 
support vector machines and neural networks, achieving 88% 
accuracy [15]. Online access is provided for the experimental 
data. 

Energy Plus was able to incorporate occupancy models with 
wireless sensor networks and cameras, which showed promise 
for large yearly energy savings. 

Table 1. Models, parameters and reported accuracies for occupancy 
detection. 

Source 

Classification 

Models                   

Employed 

Sensors/Parameters 

Accuracy 

For                    

Occupancy 

[16] 

Hidden markov 

models, Neural 

networks, 

Support 

Vector 

Machines 

(SVM) 

CO2 inside room 

CO2 outside room 
NA 

[17] 
Latent dirichlet 

allocation 
PIR NA 

[18] 
Decision Trees 

(DT) 

CO2, computer 

current, light, PIR, 

sound 

Ranging 

from 81% 

to 98.441% 

(only PIR) 

Only light: 

81.01%   

Only sound: 

90.78% 

Only CO2: 

94.68% 



[19] 

Radial basis 

function neural 

network 

Lighting, sound, 

Reed sensor, CO2, 

temperature, RH, 

PIR 

Note: 

Accuracy 

for number 

of 

occupants 

63.23–

66.43% 

[20] 

Artificial Neural 

Networks 

(MATLAB and 

WEKA [21]) 

CO2, sound, relative 

humidity, air 

temperature, 

computer 

temperature, PIR 

Note: 

Accuracy 

for number 

of 

occupants 

70.4–

72.37% 

[22] 

Artificial Neural 

Networks 

(WEKA) 

Temperature, 

humidity, light, 

Volatile 

Organic Compounds 

(VOCs), CO2 

Note: 

Accuracy 

for number 

of 

occupants 

67–69% 

[23] 

K-nearest 

neighbors, 

Linear 

regression, and 

artificial neural 

networks 

PIR, Thermal array 

sensor 
NA 

[24] 

Support Vector 

machine 

(SVM), K-

nearest neighbor 

(KNN), 

Thresholding 

Electric power 

consumption (W) 
59–90% 

[25] 

Support Vector 

machine 

(SVM), k-

nearest neighbor 

(KNN), 

Artificial Neural 

Network 

(ANN), naïve 

Bayesian (NB), 

tree augmented 

naïve Bayes 

network (TAN), 

decision tree 

(DT). Used 

WEKA. 

CO2, Reed sensor 

(for door), relative 

humidity, 

temperature, light, 

sound, PIR 

88.9–

98.2%For 

DT 

algorithms 

in two 

rooms: 

CO2: 66.36–

89.86% 

Light: 

58.88–

69.52%    T: 

55.26–

65.32%      

CO2 and T: 

69.15–

89.12% 

 

2  Optimizing HVAC systems: reconstruction 
of indoor temperature 

The Random Forest model's ability to predict interior 
temperature depends critically on wind speed, pressure, and total 
electrical energy. Depending on other models (like neural 
networks and support vector machines), the relative importance 
of these factors may vary. Complete datasets provide less 
skewed statistics when compared to datasets with missing 
values, which primarily affect the summer months and slightly 
raise median room temperatures. The study finds that internal 
gains significantly affect the temperature of the well-insulated 
passive house; the laundry room, with its large electrical 

equipment, has the highest median temperature. Higher solar 
gain management is required since living room temperatures 
have been observed to climb as high as 30.8°C and expected to 
reach as high as 32.8°C. In the workplace, the lowest 
temperature ever recorded was 14.9°C. 

2.1 Ozone 

We used the formula 1 ppb = 1.96 μg m−3 to convert units to 
ppb in order to assess the effectiveness of the model. Emery et 
al. (2017) [26] reported that every study surpassed the R > 0.75 
threshold for the Pearson correlation coefficient, meaning that 
all research satisfied the standard. Out of all the simulations, 
seven accomplished the criterion for normalized mean bias 
(NMB) at less than 15%, but only two reached the benchmark 
for normalized mean error (NME) at less than 25%. With R 
values between 0.62 and 0.93, MB values between −18 ppb and 
12 ppb, and RMSE between 7.7 and 27.1 ppb, the median mean 
bias (MB) was almost zero (see Fig. 1a to e). Seasonal variations 
did not affect performance. For the O3 modeling, cut-offs of 40 
ppb and 60 ppb were utilized by Peralta et al. (2023) [27] and 
Martins and Andrade (2008b) [28] for the spring and summer, 
respectively. 

2.2 PM2.5 

Nine research out of eleven on PM2.5 provided performance 
measures. Out of these, only two met the R criteria (R > 0.7). 
Two of the NMB values (±30%) met the criteria set by Emery 
et al. (2017) [26]. The values varied from 4.30% to 50.60%. A 
single study met the criteria (<50%), with NME values ranging 
from 40.44% to 68.94%. The MB values varied from -32.2 to 
76.4 μg m−3, the R values from 0.19 to 0.73, and the RMSE 
values from 3.8 to 35 μg m−3 (see Fig. 1f to h). Seasons did not 
affect performance. Incomplete emission data, ambiguities sur-
rounding the generation of secondary organic aerosol (SOA), 
old CETESB data, and the absence of SOA precursors all 
contribute to the underestimation of PM2.5 (Vara-Vela et al., 
2018) [29]. 

 

 



Fig. 1. Distribution of air quality model performance statistics. 

Pearson correlation (R), Mean bias (MB), Root mean square error 

(RMSE), Normalized mean bias (NMB), and Normalized Mean Error 

(NME). 

3  Hybrid CNN-LSTM framework for 
predicting indoor air quality in subways 

Two types of data were used in this study's Yeongtong station 
measurements: indoor partic-ulate detection utilizing a GRIMM 
aerosol spectrometer and ambient data from the Air-Korea 
website. Using 31 channels to measure aerosol particles from 
0.25 µm to 32 µm, the Model 11-A spectrometer was used to 
track the real-time PM concentration. 

4 Innovations in smart sensor technology 
for IAQ management 

4.1 Applications of Smart Sensors development in 
Various Building Types 

The purpose of this study is to assess the demonstration 
building's indoor air quality (IAQ) and comfort. It looks at how 
well the ventilation system handles high CO2 levels in 
classrooms. To assess a variety of pollutants and comfort 
parameters, including formaldehyde, benzene, CO2, VOCs, CO, 
PM2.5, humidity, temperature, noise, and brightness, a smart 
sensor was designed. Building managers can be informed in real 
time about any problems with the heating, cooling, or ventilation 
systems via this sensor. Mapping IAQ and comfort levels, 
locating pollution hotspots, maximizing ventilation for 
improved air quality, and increasing energy efficiency to boost 
occupant productivity are some of the goals of the study. 

5 Application of human health embedded 
intelligent monitoring system based on 
artificial intelligence and sports analysis 

The WHMSHAR platform evaluates AI-based wearable 

sensors in sports health monitoring. It features a portable 

terminal for collecting real-time data, a smartphone for data 

analysis and personalized feedback, and a background server 

for data storage and aggregation. This setup demonstrates the 

platform's potential to enhance health monitoring and 

personalized recommendations in sports [2]. 

5.1 Simulation of Algorithms 

To identify running and walking activities, a simple 

classification algorithm was employed. Two algorithms, 

JuhaParkka and D.M. Karantonis, were tested on a mobile 

device for comparative analysis. 

 

6  Simulation and analysis of motion 
trajectory recognition in multimedia visual 
images 

In order to assess athletes' postures, motions, and general 

physical state, deep learning algorithms and pattern recognition 

technologies are used. Health advice and guidance tailored to 

each individual are made possible by this analysis. The findings 

show that these techniques are accurate in identifying and 

evaluating the physical conditions of athletes, providing 

customized guidance that increases training efficiency, protects 

against injuries, and raises the caliber and quantity of athletic 

performance [3]. 

6.1  Design of Simulation Models 

Joint simulation analysis is essential in multi-body dynamics 

and control systems, with ADAMS and MATLAB being key 

tools. ADAMS provides detailed mechanical dynamics 

analysis, including performance prediction and load 

calculations. This paper suggests using ADAMS in conjunction 

with MATLAB to validate predictive models and enhance 

future experimental platform design. 

 

7 Conclusion 

The AirQo sensor kit represents a major step forward in 
affordable air quality monitoring. These sensors provide real-
time data, allowing for immediate responses to pollution and 
targeted health interventions. Their accessibility supports 
community involvement and advocacy for cleaner air. The 
successful deployment of the AirQo sensor kit in various 
environments demonstrates its potential to enhance global air 
quality management, highlighting the need for ongoing 
innovation in monitoring technologies to improve public health 
and environmental sustainability. 

The paper presents a model combining convolution and LSTM 
to predict and PM2.5 levels. This approach outperforms other 
deep learning methods, enhancing predictive accuracy and 
improving subway ventilation control to ensure better air 
quality. 

The integration of artificial intelligence (AI) in industrial 
robotics and wearable health monitoring systems is driving 
significant advancements. In industry, AI optimizes robotic 
motion control and object detection through sophisticated 
algorithms, enhancing manufacturing efficiency. Meanwhile, 
AI-powered wearable devices in sports and health monitoring 
use sensor technology to provide real-time insights into 
movement and physiological data, improving athletic 
performance and health management. These developments 
highlight AI's growing role in both industrial automation and 
personalized health, promising continued innovation and 
expanded capabilities in the future. 
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