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Toward an Efficient Emotion Recognition from Facial Expressions 

Using machine learning 

Abstract:  
The information conveyed by facial expressions can be utilized to identify emotions. When 

these face expressions are performed, they change over time. Even for people, recognizing 

certain emotions is a difficult task. Machine learning algorithms are used in this work to 

recognize emotions in image sequences. It analyzes emotions automatically using cutting-

edge deep learning on collected data. This paper compares current state-of-the-art learning 

algorithms for handling spatiotemporal data and adapting traditional static approaches to deal 

with image sequences. Expanded versions of CNN, 3D CNN, and Recurrent methods for 

universal emotion recognition are assessed and contrasted in two public datasets, where the 

performances are proved, and advantages and disadvantages are addressed. Afterwards, we 

propose a new end-to-end architecture called Spatio-Temporal Convolutional Features with 

nested LSTMs (Long short-term memory) that learns multi-level appearance features and 

temporal dynamics of facial expressions in a common way. More specifically, we use 3D 

CNN to extract spatio-temporal convolutional features from image sequences representing 

facial expressions, and the dynamics of facial expressions are actually combined by two sub-

LSTMs, Temp-LSTM and Conv-LSTM modeled by a nested LSTM. That is, we use Temp-

LSTM to model the temporal dynamics of spatio-temporal features in each convolutional 

layer, and we use Conv-LSTM to integrate the output of all Temp-LSTMs to obtain multi-

level data encoded in hidden layers. Experiments were conducted on two benchmark 

databases, Oulu-CASIA, and, SASE-FE and the results showed that the proposed method 

achieved better performance than the expanded versions of CNN, 3D CNN, and Recurrent 

methods. 

 

1. Introduction and state of the art:  
Human faces are full of information, some of this convey the emotion that the individual is 

expressing. A set of facial expressions are used to recognize emotions in people's faces. The 

entire range of these expressions must be studied to appropriately recognize emotions. As a 

result, it's crucial to think of visual sequences that show the whole gamut of emotion. The Figure 

1 shows a sequence of images presenting facial expression examples. 



 
Figure 1: Facial expression samples from JAFFE [13] database. (from [20] ) 

Emotion recognition is such a difficult task that even some humans struggle to identify certain 

emotions. A trained person can conceal an emotion that is being expressed through facial 

expressions in the event of blocked and/or micro emotions. Unfortunately, most people are 

unable to distinguish between genuine and false facial emotions. 

In the field of computer vision, deep learning algorithms have achieved excellent success in 

recognizing human expressions, postures, etc. A sequence of photos that represents the entire 

face expression of the emotion from start to end has recently been developed. 

Facial expressions play a crucial role in human communication, particularly when it comes to 

conveying emotions. With the rapid advancement of artificial intelligence's computer vision 

techniques, a great deal of effort has gone into recognizing facial expressions. 

Viola and Jones [24], convolutional neural networks (CNN) [6], and support vector machines 

(SVM) over histogram of gradient (HOG) features [16] are some of the methods used for face 

detection. Then, for face segmentation, some works proposed complex algorithms such as face 

correction and background elimination, to extract the face and therefore limit the search space 

[23]. 

Many expression recognition researchers discover fiducial points such as face expressions after 

the face has been recognized. To make it easier to discern expressions, some academics have 

recommended rotating or frontalizing the face. Depending on whether the challenge is in 

greyscale, RGB, infrared, or any other modality, different works presented alternative 

techniques. This procedure is known as face alignment, and it has proven crucial for boosting 

the accuracy of facial expression identification. 

Since some of these initiatives employ multimodal techniques, a fusion of these inputs is 

required. Depending on the stage at which the data is fused, there are a variety of techniques to 

link them. One option is to employ a two-stream architecture capable of fusing spatial and 

temporal data [8]. Middle fuse is another fusion approach that mixes several modalities in the 

intermediate levels [14]. 



Let’s first browse some RGB Emotion Recognition works. The Cohn-Kanade (CK) database, 

first reported by Kanade et al. [23], is designed to recognize individual facial emotion-specified 

expression. Lucey et al. [12] later developed it into the CK+. These two datasets use seven core 

emotion categories: Anger, Contempt, Disgust, Fear, Happy, Sadness, and Surprise, as well as 

30 face action units (AUs) that reflect facial muscle contractions.  

To track the face and extract features, Kanade et al. [9] propose an Active Appearance Model 

(AAM). AAMs match a previously unseen source image containing the object of interest to a 

pre-defined linear shape model. Similarity-normalized shape (SPTS) and canonical appearance 

are two of the traits discovered (CAPP). They then utilize a support vector machines (SVMs)-

based linear classifier to distinguish facial expressions and emotions [23]. 

The use of multi-modality is another approach to emotion recognition in literature. In this 

approach, the dataset employs multiple data inputs to recognize face expressions for emotion 

detection rather than only one modality, which is used RGB. 

Wang et al [25] introduced the Natural Visible and Infrared Facial Expression database (NVIE). 

The dataset includes visual and thermal videos that were recorded simultaneously, as well as 

posed and spontaneous reactions. Liu et al. [11] provide a model, employing both thermal and 

visual footage, based on the USTC-NVIE dataset and the MMSE (BP4D+) database. Their 

method employs a fisher vector that is combined with local and global trajectory features. Based 

on the retrieved features, Gaussian mixture models are built. 

Deep Architectures have been increasingly popular in recent years, owing to their shown 

success in outperforming earlier state-of-the-art techniques. By accounting for non-linear 

feature interactions, these deep architectures have overcome the limitations. The emoFBVP 

database of multimodal recordings was introduced by Ranganathan et al. [18]. Face, body 

gestures, voice, and physiological signals make up the multi-modality. Next, they propose a 

Convolutional Deep Belief Model (CDBN) for emotion recognition using this dataset [18].  

Restricted Boltzmann Machines (RBMs) are an extension of Convolutional Restricted 

Boltzmann Machines (CRBMs). The RBMs are stacked to produce a convolutional deep belief 

network (CDBN). Layered generative models, or CDBNs, are generative models that are 

trained layer by layer. Ruiz-Garcia et al. [19] present a pre-trained deep CNN as a Stacked 

Convolutional AutoEncoder (SCAE). The SCAE is unsupervisedly taught in a greedy layer-

wise manner. The model is trained using the Karolinska Directed Emotional Faces (KDEF) 

dataset [1] for face expression recognition.  

The goal of this paper is to compare computer vision techniques for recognizing emotions in 

face expressions from image sequences. Models for static photos and image sequences are 

included in the datasets for comparison. It also applies to deep learning models with various 

inputs. The goal of this comparison is to determine the benefits and drawbacks of the various 

deep learning models that have been examined. 

 

Paper organization:  
The rest of this paper is organized as follows; Section 2 presents the used deep learning 

models. Section 3 is dedicated to the experiments results and discussions, and finally 

conclusions are drown in Section 4. 

2. Preliminaries :  
This section introduces the deep learning models that will be used for testing. The section is 

split into three parts. The CNN-based models are presented first, followed by the 3D CNN 

model, and finally the RNN models.  
1. Convolutional Neural Networks : 

Parkhi, Vedaldi, and Zisserman [17] from the University of Oxford designed and 

implemented the VGG-Face neural network. The CNN descriptors are calculated using a 



VGG16-based CNN and tested on the Labelled Faces in the Wild [7] and YouTube Faces [26] 

datasets. A 224x224 face image must be used as the CNN's input. The VGG-Face is made up 

of 18 layers, including convolutional, pooling, and activation layers. The 18 layers are divided 

into 11 blocks, with Convolutional layers being the first eight, followed by non-linearities like 

ReLU and max pooling. Fully Connected Layers (FC) [17] are the last three blocks. Table 1 

shows the network's architecture in detail.  

 
Table 1: Fully connected layers are listed as convolutional layers (from [17]) 

The following table presents the CNN parameters: 
Table 2: CNN parameters 

Parameters  values 

Loss Function Sparse Categorical Crossentropy 

Optimizer  Adam 

 

2. 3D Convolutional Network:  

Tran et al. [22] introduced C3D, a 3D CNN model that can learn spatio-temporal properties. 

Figure 4.3 shows the model architecture, which includes 8 convolution, 5 max-pooling, and 2 

fully connected layers, as well as a SoftMax output layer. 

 
Figure 2:C3D Architecture (from [21] ) 

Alberto Montes' GitHub project (github.com/albertomontesg) [10] provided the C3D model 

code implementation used in this work. Monte's implementation is a Keras [2] model, which 

was adapted from Tran et al [21]. Caffe [8] implementation for large-scale video 

classification.  

The following table presents the C3D parameters: 
Table 3: 3D CNN parameters 

Parameters  values 

Loss Function Sparse Categorical Crossentropy 

Optimizer  Adam 

 

3. Recurrent Neural Networks 

• CNN + LSTM 

There are two parts in this model. The first component is a CNN that extracts data from a still 

image. The second component involves layering an LSTM on top of the CNN to gather 

temporal data between frames. Each image is fed into the CNN, which extracts it at the seventh 

layer, which is a fully connected layer. The extracted features have a 4096 dimension. These 

characteristics are then sent into the LSTM. 

• CNN + GRU 



This model is similar to the previous model, except it uses a GRU instead of an LSTM. In a 

two-part network, this model contains both temporal and information networks. The first is a 

CNN, and the second is a GRU with a CNN on top of it. Each image is fed into the CNN, 

which extracts features that are then fed into the GRU. 

The GRU algorithm is a simpler version of the LSTM algorithm. It's fascinating to compare 

their performance. 

The following table presents the CNN + RNN parameters: 

 
Table 4: CNN + RNN parameters 

Parameters  Values 

Loss Function Sparse Categorical Crossentropy 

Optimizer  Adam 

Number of Layers  3 

 

Datasets: 
To test the models, two public datasets were chosen. Both datasets contain videos of different 

participants making facial expressions that represent a variety of emotions. Both are used for 

visual sequences, but only one is used for hidden emotion. 

1. SASE-FE 

The SASE-FE database [15] was used in the first experiments. There are 643 different videos 

in this collection. A total of 50 people take part in the study. The participants are between the 

ages of 19 and 36. The dataset uses six universal expressions (figure 3): Happiness, Sadness, 

Anger, Disgust, Contempt, and Surprise. Each participant in the dataset has two emotional 

facial expressions, one genuine and one fraudulent. 

 
Figure 3: Example of Six universal emotions in Fake vs Real Expressions dataset. 

The following table presents a summary of the dataset content: 

 
Table 5: SASE-FE dataset content details 

Number of Subjects  50 

Age  19-36 

Gender 41% female, 59% male 



Race 7.4% african, 77.8% caucasian, 14.8% asian 

Number of Videos 643 

Frames per second 100 

Video Length  3-4 seconds 

 

The dataset has been divided into two parts: training set and testing set. The training set 

comprises of 80% of the videos, while the validation test is made up of 10% of the videos and 

the test set is similarly made up of 10%. The training set has 40 participant videos, whereas 

the validation set contains 8 participant videos. 

2. OULU-CASIA 

The OULU-CASIA dataset was created by the University of Oulu's Machine Vision Group and 

the Chinese Academy of Sciences' National Laboratory of Pattern Recognition [27]. Figure 5.3 

depicts the six emotions in this dataset (figure 4): happiness, sadness, anger, disgust, fear, and 

surprise. The participants ranged in age from 23 to 58. Males account for 73.8% of those who 

took part in the study. 

 
Figure 4:Figure 3: Example of Six universal emotions in the OULU-CASIA dataset. 

The following table presents a summary of the dataset elements: 

Number of Subjects  80 

Age  23-58 

Gender 26.2% female, 73.8% male 

Race 30 Chinese, 50 Finnish, 

Number of Videos 480 

Frames per second 25 

 

The dataset has been divided into two parts: training set and testing set. The training videos 

account for 80% of the total number of videos, while the validation test accounts for 20%. The 

training set has 65 participant videos, whereas the validation set contains 15 participant videos. 

3. Our proposed method: 
This section presents the proposed method. Our method consists of three main parts: a 3D 

CNN module for extracting spatiotemporal convolutional features of facial expressions, 



multiple temporal-LSTM modules for capturing the temporal dynamics of facial muscle 

motions, and a convolutional-LSTM module designed to capture multi-level features encoded 

in each layer of 3D CNN. 

Let’s now see in details each component: 

a. Spatio-temporal convolutional features : 

As facial expression is essentially a dynamic process, we try to directly extract spatio-

temporal features of facial expression through simpler methods, namely activity detection, 

reading detection, gesture detection, etc. [28]. Unlike traditional CNNs that can only handle 

two-dimensional inputs, 3D CNNs take directly image sequences as input, and thus can 

literally capture its spatio-temporal features. 3D CNN starts from a sequence of known time-

stamped images representing a class of facial emotions, processes the sequence through 

multiple layers of convolution and pooling, resulting in a collection of spatio-temporal data 

features which represents the characteristics of an expression. 

 

 

b. Nested LSTM :  

We suggest the so-called Nested LSTM, made up of the MSPP-stand (standardization), 

Temp-LSTM, and Conv-LSTM, to capture the multi-level features contained in the network's 

intermediate layers. While Temp-LSTM and Conv-LSTM capture the temporal dynamics and 

seize the multi-level characteristics or features contained in the separate convolutional layers 

of the network accordingly, MSSP-stand tries to standardize the spatio-temporal features of 

different sizes to the same dimension. 

The next section presents the Nested LSTM components: 

 

i. MSPP-stand 

 

Since the LSTM inputs need to have the same size, it is impossible to directly input the 

spatio-temporal information obtained from multiple layers of the 3DCNN into the LSTM unit. 

To fill this gap, He et al. [29]'s spatial pyramid pooling network (SPP-net) was used as 

inspiration for our multidimensional spatial pyramid pooling normalization (MSPP-stand) 

operation. The MSSP-stand is used to standardize spatiotemporal features of various sizes to a 

single dimension. In order to create a feature vector with a fixed dimension given by the 

parameter n, we divide a 3D feature map of size N × a × a into N × n × n subregions (with n is 

equal to 2, 4, or 8) then summarize the responses inside each subregion using max pooling. 

 

ii. Temp-LSTM and Conv-LSTM 

 

The spatio-temporal features in each layer of the 3D CNN are converted to feature vectors of 

the same dimension following the MSPP-stand technique. As a result, it is appropriate to 

continue LSTM's study of the spatiotemporal features, which is an advanced RNN 

architecture used in facial expression recognition [30, 31] for sequential data analysis. By 

converting a series of inputs into a series of outputs, the commonly used LSTM can model 

temporal information, which in most cases can capture the correlations between the spatio-

temporal properties retrieved by 3D CNN to a limited extent. Because it is challenging to 

include all of the appearance features, temporal dynamics, and multi-level features by merely 

integrating 3D CNN with LSTM, only a small number of conventional approaches based on 

LSTM fully utilize the information encoded in all the convolutional layers. 

We use two LSTM modules, Temp-LSTM and Conv-LSTM, to handle the spatio-temporal 

data extracted by 3D CNN in order to address the aforementioned problems. A Temp-LSTM 

is created by stacking LSTM units for each feature vector corresponding to a certain 



convolution layer, modeling the temporal dynamics of facial expressions. After that, a Conv-

LSTM is built to accept the outputs of Temp-LSTMs as inputs, allowing for the seamless 

modeling of the needed multi-level features. 

Assume that the 3D CNN has l total convolutional layers. Consequently, the steps in our 

proposed approach can be summed up as follows: 

𝑓𝑗 = 3𝐷𝐶𝑁𝑁(𝑥), 𝑗 = 1, … , 𝑙 

𝑓𝑗
𝑚𝑠𝑠𝑝 = 𝑀𝑆𝑆𝑃 − 𝑠𝑡𝑎𝑛𝑑(𝑓𝑗), 𝑗 = 1, … , 𝑙 

ℎ𝑗 = T − 𝐿𝑆𝑇𝑀𝑗(𝑓𝑗
𝑚𝑠𝑠𝑝), 𝑗 = 1, … , 𝑙 

h = {ℎ1, ℎ2, … , ℎ𝑙} 

o = C − LSTM (h)  
 

Where x stands for an image sequence, fi for the 3D feature map created by the ith 

convolutional layer of the 3DCNN, hi for the feature vector from the ith Temp-LSTM module, 

and o for the classification feature vector. 

 

4. Implementation and discussion:  
The steps involved in pre-processing are discussed in this section. The SASE-FE and 

OULUCASIA datasets both go through the same steps. Videos cannot be used as inputs to 

non-temporal models; instead, frames from videos must be extracted and used as inputs to the 

models. A vector containing a succession of these frames is fed into the temporal models as 

an input. 

• Pre-processing : 

Each frame of the videos was extracted as an image using a pre-processing technique. There 

are some frames that are useless because the videos begin with a neutral face expression and 

then the participant makes the facial expression that corresponds to the emotion. This is 

considered by the pre-processing, which only keeps frames from half of the video duration to 

80% of the video duration. 

This guarantees that the frames obtained convey the desired emotion. 

Hassner et al [5] proposed a procedure called frontalization, which was used to perform a 

second change on the datasets. By transforming unconstrained perspectives to constrained, 

forward facing faces, this method rotates and scales the participant's face, limiting the 

variability of the location of the faces. Although frontalization can assist reduce variability, it 

also has significant disadvantages, particularly when the face is partially occluded. 

Hassner also proposes soft symmetry, which allows for the estimation of occluded sections of 

the face when both parts of the face differ. Blending techniques are used to create a 

symmetrical image on both sides. Figure 5 exhibits a symmetrical image and a symmetrical 

image with soft symmetry. 

 
Figure 5: Left image presents a Soft Symmetry frontalization process. Right image corresponds to an image with No 

Symmetry frontalization. 



Figure 5 shows the Hassner method [5] for obtaining face landmarks, which consists of 68 

fiducial points. These characteristics correspond to sites in the mouth, nose, and eyes, among 

other places. 

These landmarks are then fed into the VGG-Face model as a second input. Because the VGG-

Face only accepts photos as input, an intermediate fusion approach is necessary in the first 

fully connected layers. 

 

 
Figure 6: 68 fiducial points superimposed on the detected face 

• Experimental Results 

This section summarizes the findings from many experiments conducted on various dataset 

configurations with various model layouts. Only the test accuracy is shown for general 

purposes. 

A. SASE-FE Emotion Results 

The first series of experiments focused solely on classifying the six emotions, combining both 

actual and false feelings. Using the SASE-FE dataset, these experiments include fine-tuning 

the model. The goal is to evaluate various configurations and select the model with the best 

test accuracy. 

• No Pre-Processing 

The experiments are designed to see if adding three fully connected layers and/or a pooling 

layer after the convolutional layers enhances the CNN's performance. Other tests include 

freezing all the convolutional layers, freezing only the first few layers, and not freezing any of 

the layers at all. 

The results are shown in the next table. 

 
Table 6: Emotion No Pre-processing configurations Accuracy 

Used configuration Accuracy 

No Freezed + No Pooling 0.2842 

First Freezed + 3 Fully Connected + No Pooling 0.1970 

All Freezed + 3 Fully Connected 

 

0.4281 

All Freezed + 3 Fully Connected + Average Pooling 

 

0.4207 

All Freezed + 3 Fully Connected + Max Pooling 

 

0.4375 

All Freezed + No Pooling 0.4250 

All Freezed + Avg Pooling 0.4226 

All Freezed + Max Pooling 0.4310 

 



With a test accuracy of 0.4375, the optimal configuration is all Convolutional layers freeze 

with three Fully Connected layers at the end and Max Pooling layer at the end. Only this 

configuration will be used in the next experiments. 

• Frontalization 

The next experiment is to apply the frontalization pre-processed dataset after obtaining the 

optimal architecture from the previous tests. Both soft and no symmetry are visible in the 

experiments. The results are shown below. 

 
Table 7: Emotion Frontalization configurations Accuracy 

Used configuration Accuracy 

Soft Symmetry 0.454692 

No Symmetry 0.594999 

 

The difference between no symmetry and soft symmetry is enormous, as shown in the 

previous table. The difference amounts to over 15%. 

 

Hassner et al. [6] noted how soft symmetry "may actually be unneeded and potentially even 

harmful; harming rather than boosting face recognition ability" in some circumstances. Soft 

Symmetry blends the identified facial features with the surface by modifying it. This mixing, 

however, is an approximation that can cause noise. Looking at the accuracies, it appears that 

performing soft symmetry has a significant impact on emotion identification. As a result, the 

next experiment will solely use no symmetry. 

• Two-Stream CNN 

According to the previous section's study, no symmetry leads to greater accuracy. 

Nonetheless, it will be fascinating to see if merging the no symmetry dataset with the 

extracted face may help boost the accuracy even further. The following experiments include 

employing a two-stream CNN, which combines a CNN with no symmetry dataset as input 

and another CNN with no pre-processing dataset as input. Both CNNs are fused before the 

fully connected layers to achieve this. The architecture is unchanged after the fusing layer. 

The results are presented below: 

 
Table 8: Emotion Fuse-Stream configuration Accuracy 

Used Configuration  

 

Accuracy 

Two-Stream  0.583234 

 

The test accuracy for the two-stream CNN was 0.5832, which is lower than the 0.5949 for the 

No Symmetry CNN. The empirical evaluation with this dataset demonstrates that utilizing 

Soft-Symmetry is not useful to the emotion recognition task in the situations investigated 

here. Introducing Soft-Symmetry, as noted by Hassner et al. [12], may "create issues 

whenever one side of the face is obscured... rendering the final product unrecognizable." 

Finally, Soft-Symmetry photos will not be used in future models. 

B. SASE-FE Hidden Emotion Results 

The dataset was divided into fake and real emotions in this set of experiments, yielding a total 

of 12 classes. Each of the six emotions is divided into two categories: fake and real. Because 

there are now 12 courses, the test accuracy is projected to be substantially lower. 

 

• Still Images Input 

 



The VGG-Face is used in the first set of trials, with one experiment using photos of the face 

and the other using the frontalized face. Table 7.4 reveals that frontalization data has a modest 

advantage over only the face in terms of accuracy. 

The second experiment is a two-stream CNN that employs both datasets, with one stream 

using frontalization and the other using face frontalization. One CNN improves the accuracy 

of the combined CNN significantly. There are almost four decimal points in the increase. 

The third experiment is a middle fuse CNN that uses frontalization as an input and geometry 

data as output. The test accuracy of 0.2994 improves when the geometry is added to the base 

accuracy. 

 
Table 9: CNNs Hidden configurations Accuracy 

Model  

 

Used configuration  Accuracy 

CNN  

 

Face 

Frontalization 

0.2806 

0.2866 

Two-Stream CNN  

 

Frontalization + Face 0.3206 

CNN + Geometry  

 

Frontalization + Geometry 0.2994 

 

• Image Sequences Input 

The next set of experiments differs from the prior ones in that they now include temporal 

data. These tests are fed a 5-frame vector containing the range of articulations that each 

participant uses to express the emotion. 

A 3D CNN is used in the first experiment of this type. To get decent performance, most 3D 

CNNs require a large amount of data. This performance issue is well-known, but the 

experiment aims to investigate if a 3D CNN can train even with a short dataset. The 

accuracy of the exam was 0.1281 percent. Despite the decreased accuracy, it is crucial to 

note that this model incorporates temporal information from image sequences. The model 

does not employ any fine-tuning and starts the learning process from the beginning. 

The fine-tuned model developed with the frontalization preprocess provided in table 7.5 is 

used in the next tests. Two models were trained, one of which was fine-tuned with a 5-frame 

input vector. The second step is to extract features from a pre-trained CNN with a vector 

size of 4096; PCA is then applied to the feature vector to minimize its size, with just the first 

100 eigenvectors used. 

The second experiment combines a CNN with an LSTM. It's fascinating to note that feature 

vectors outperform picture vectors in the results. The conclusion is that PCA aids in 

obtaining the most variables, while the LSTM learns the differences that distinguish each 

emotion. 

The final experiment is the CNN, but this time with a GRU on top. Surprisingly, the model 

with image vectors as input performs horribly. One thing to keep in mind is that SASE-FE 

frames begin with a neutral face. The 5 frames picture vector is relatively modest to display 

the emotion's complete spectrum of expression. The features vector model, on the other 

hand, has a very high accuracy. Higher even than the LSTM model. 

 
Table 10: Temporal Hidden configurations Accuracy 

Model 

 

Used configuration Accuracy 

3D CNN  Frontalization 0.128125 



 

CNN + LSTM Features  

Image 

0.159200 

0.148684 

CNN + GRU Features  

Image  

0.183311 

0.084134 

 

 

C. OULU-CASIA Results 

The following experiments were conducted specifically to classify the OULUCASIA dataset's 

six emotions. 

• Still Images Input 

The first set of experiments involves fine-tuning the VGG-Face using photos that have not 

been pre-processed; the second set of tests involves frontalization pre-processed images. 

Preprocessed photos outperformed non-processed images by nearly 0.03 percent. 

The accuracy of the models is improved by this pre-processing. This is because frontalization 

normalizes the faces and aids the model in learning the differences between emotions; 

normalizing the images reduces noise, therefore the performance improves in this situation. 

 

The second experiment employs a two-Stream CNN to investigate if combining both the face 

and frontalization datasets improves the accuracy of the prior two. Frontalization received a 

0.2659 percent in earlier studies. With a higher score of 0.2737 percent, the two-stream CNN 

outperforms the model. This ensures that the model learns all feasible information from the 

face, even information that may have been lost during frontalization pre-processing. 

 

The third experiment employs an intermediate fusion technique, employing one CNN before 

concatenating data from the face's geometry after the final convolutional layer. The geometry 

is made up of 68 fiducial points that are normalized in a new center. It's fascinating to note 

that this model beats all previous studies by a significant margin, with a test accuracy of 

0.4411 percent. The increase is 0.17 percent above the previous highest model. 

The following table presents the results. 
Table 11: Temporal configurations Accuracy 

Model 

 

Configuration Accuracy 

CNN Face 

Frontalization 

0.2386 

0.2659 

Two-Stream CNN  Face + Frontalization 0.2737 

CNN + Geometry Frontalization + Geometry 0.4411 

 

• Image Sequence Input 

 

The next experiments differ from the previous ones in that they now use temporal data from 

image sequences. In this situation, the input is a frame sequence. 

Each frame is made up of five consecutive photos taken from the videos. 

A 3D CNN is used in the first experiment. Although 3D CNNs are known to require a lot of 

data to learn well, this model's performance is comparable to the other temporal models 

shown below. 

The fine-tuned model developed with the frontalization preprocess provided in table 11 is 

used in the following tests. Two types of inputs are tested: image vectors and features vectors. 

They all follow the same steps. 



In the second experiment, a CNN is combined with an LSTM. The picture vector input is 

noticeably more accurate than the feature vector in this scenario. The difference is less than 

0.02%. 

A CNN with a GRU built on top is the third and last experiment. The image vector has a 

greater test accuracy than the features vector, as with the CNN+LSTM. The GRU features 

vector, on the other hand, has a larger disparity between features and image vectors, at 

roughly 0.05 percent. 
Table 12: Accuracy of Temporal Test  

Model Configuration Accuracy 

3D CNN Frontalization 0.2000 

CNN + LSTM Features  

Image  

0.2062 

0.2209 

CNN + GRU Features  

Image 

0.1797 

0.2241 

 

D. Discussion 

For both datasets in table 13, this section discusses the best model for each test. The VGG-

Face and C3D models were investigated in this work. With multi-modality, recurrent neural 

networks, the CNN-based models is improved even further. A voting mechanism is 

considered when evaluating the models. 

The basic CNN is used in the first experiment with pre-processing and no pre-processing data; 

in both datasets, the frontalization method has a higher accuracy. Frontalization is the process 

of mapping the face in a confined, forward-facing position. This reduces the variability in face 

location in the dataset, allowing the models to focus solely on learning the variability of 

emotion recognition. 

In both datasets, the accuracy of the 2-Stream CNN is higher. However, it is the best image 

model in SASE. Overall, including both inputs aid the models in learning the difference that 

may have been lost during the frontalization process, which might result in face misalignment. 

 
Table 13: Summary of used models’ accuracy 

Dataset Model  Best used Configuration Accuracy 

SASE-FE dataset CNN  

Two-Stream CNN 

CNN+Geometry  

Frontalization 

Face + Frontalization 

Frontalization + Geometry 

0.2866 

0.3206 

0.2994 

3D CNN  

CNN+LSTM  

CNN+GRU 

Frontalization 

Features 

Features 

0.1281 

0.1592 

0.1833 

OULU-CASIA dataset CNN  

Two-Stream CNN 

CNN+Geometry  

Frontalization 

Face + Frontalization 

Frontalization + Geometry 

0.2659 

0.2737 

0.4411 

3D CNN  

CNN+LSTM  

CNN+GRU 

Frontalization 

Image  

Image  

0.2000 

0.2209 

0.2241 

 

 

 



Summary of used models’ accuracy 

The geometry data improves the performance of middle fusion models in both the SASE-FE 

and OULU-CASIA datasets when compared to just one input. However, the OULU-CASIA 

boost is substantially bigger than the SASE-FE boost. OULU earns a 0.17 percent rise 

compared to SASE's 0.1 percent. All the models evaluated have a higher boost than OULU's 

Geometry model. 

 Afterwards, we compare the best models with our proposed method. The results are shown 

below: 
Table 14 :12 Summary of our proposed method versus the best models accuracy 

Dataset Model Best used configuration Accuracy 

SASE-FE dataset Two-Stream CNN 

Our proposed method 

Face + Frontalization 

Face + Frontalization 

0.3206 

0.6275 

CNN+GRU 

Our proposed method 

Features 

Frontalization 

0.1833 

0.4298 

OULU-CASIA 

dataset 

CNN+Geometry 

Our proposed method 

Frontalization + Geometry 

Frontalization + Geometry 

0.4411 

0.5890 

CNN+GRU 

Our proposed method 

Image 

Frontalization 

0.2241 

0.5673 
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The results above show that our method outperforms the best models in all configuration 

methods and in both datasets. For SASE-FE dataset, as we can see our method achieves an 

averaged accuracy of 62% in the first set of experiments and 42% in the second set. The same 

for OULU-CASIA dataset, which performs 58% in the first set and 56% in the second set. 

The results of our method greatly exceeded those of the other methods, 30% compared to 

Two-Stream CNN, and 24% compared to CNN+GRU for the SASE-FE dataset. 

 

5. Conclusion 
 

CONCLUSION DU RAPPORT DE STAGE 

 Je tire un bilan très positif de ce stage, qui fut une expérience très enrichissante tant sur le 

plan professionnelque personnel. Sur le plan professionnel d’abord, j’ai pu appréhender toutes 

les facettes du métier dePOSTEOCCUPÉ, notammentLISTER LES MISSIONS / TÂCHES 

RÉALISÉES. J’ai donc rempli les objectifs fixés, à sa-voir :LISTER LES OBJECTIFS 

DONNÉS PAR L’ENTREPRISE. Sur le plan personnel ensuite, j’ai pu 

comprendrequeLISTER LES DIMENSIONS DU POSTE QUE VOUS AVEZ LE MOINS 

APPRÉCIÉ, ne représentait pas ce quime correspondait le plus. Au cours de cette période, 

comme dans toute phase d’apprentissage, il m’est parailleurs arrivé de faire quelques erreurs 

comme :LISTER VOS ERREURS, j’ai pu rapidement les corriger enDÉMONTRER 

COMMENT VOUS LES AVEZ CORRIGÉES.Grâce aux acquis d’une méthodologie de 

travail forte que l’entrepriseNOM DE L’ENTREPRISE m’a transmise,combinée à la 

formation théorique que j’ai reçue, je suis aujourd’hui en mesure d’affirmer qu’à la question 

:"PROBLÉMATIQUE", il y a plusieurs éléments de réponses, à savoir :RÉPONS 
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