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Abstract—In this paper, we introduce the Maximum Distance
Sublattice Problem (MDSP). We observed that the problem of
solving an instance of the Closest Vector Problem (CVP) in a
lattice L is the same as solving an instance of MDSP in the dual
lattice of L. We give an alternate reduction between the CVP
and MDSP. This alternate reduction does not use the concept of
dual lattice.
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I. INTRODUCTION

For any set of linearly independent vectors B =
{~b1, . . . , ~bn} ∈ Rm×n, a lattice L is defined to be the set
of vectors that consists of the integer linear combinations of
vectors from B. Formally it is defined as follows.

L = L(~b1, . . . , ~bn) =

{
n∑

i=1

zibi | z1, . . . , zn ∈ Z

}

Here, we call n the rank of the lattice L and m as the ambient
dimension. We call the set B a basis of the lattice. Note
that, a lattice can have infinitely many bases. Lattices have
an enormous number of applications in Number theory [1]–
[3] and Cryptanalysis [4], [5]. In the last two decade lattices
got special attention due to their applications in Cryptography.
Lattice-based Cryptosystems are considered the most promi-
nent candidate for Post-Quantum Cryptography [6]–[9].

The Shortest Vector problem (SVP) and Closest Vector
problem (CVP) are two well known and widely studied lattice
problems. Given a basis B of the lattice L, the shortest
vector problem is to find a shortest (in some norm, usually in
Euclidean-norm) non-zero vector in the lattice. In the closest
vector problem we are also given a target vector ~t in the
vector space of the lattice and the goal is to find the lattice
vector closest (usually in Euclidean-norm) to the target ~t. CVP
is known to be NP-hard for approximation factor less than
n1/ log logn [10]–[12]. SVP is only shown to be NP-hard to
approximate with constant approximation factor only by a

randomized reduction1 [13]–[15]. It is also known to be poly-
time hard for approximation factor nO(1/ log logn) under some
complexity theoretic assumption [16], [17]. Recently, there is
also a series of works on the fine grained hardness of CVP
[18]–[20] and SVP [21]. It is also know that CVP is at least
as hard as SVP as there is an approximation factor, rank and
dimension preserving reduction from SVP to CVP [22].

All known algorithms for SVP and CVP require at least
exponential time. Kannan [2] gave an enumeration based
algorithm for CVP which takes nO(n) time and polynomial
space. There are also some improvements on running time
of Kannan’s algorithm [23], [24]. In 2001, Ajtai, Kumar and
Sivakumar gave the first 2O(n) time and space sieving algo-
rithm for SVP [25] and CVP [26]. There has been extensive
works to improve the sieving algorithms for SVP and CVP
[27]–[32]. Fastest known classical algorithm for SVP and CVP
takes 2n+o(n) time and space, based on Discrete Gaussian
Sampling [33], [34]. Recently Aggarwal, Chen, Kumar and
Shen gave a faster quantum algorithm for SVP that requires
20.835n+o(n) time and exponential size QRAM and classical
space [35].

In 1982, Lenstra, Lenstra and Lovasz [1] gave a polynomial
time algorithm (known as LLL) for finding an exponential
approximation of the shortest vector in the lattices. The
applications of LLL are found in factoring polynomials over
rationals, finding linear Diophantine approximations, crypt-
analysis of RSA and other cryptosystems [4], [36], [37]. Babai
[38] gave a polynomial time algorithm, which uses LLL, for
approximating CVP with exponential approximation factor.
Schnorr has given improvements over the LLL algorithm [39],
[40].

A. Our Contributions:

In this paper, we introduce the Maximum Distance Sublat-
tice Problem (MDSP). Given a lattice vector ~v, the goal is to

1It is an long standing open problem to show NP-hardness for SVP via a
deterministic reduction.



find a sublattice of n− 1 rank whose distance from the lattice
vector ~v is maximum. We first observe that the MDSP problem
reduces to the CVP on the dual lattice. The main technical
contribution of our work is a reduction between the MDSP and
CVP without using the notion of the dual lattice. The reduction
employs novel geometric results that might be of independent
importance. Our reduction preserves the dimension and rank
of the lattice2.

Theorem 1. There exists a polynomial time rank-preserving
dimension-preserving many-one (Karp) reduction between
MDSP and CVP.

The proof of the theorem is presented in Section III. We
state our reduction for only for exact problem. It is easy to
extend it for any approximation factor.

B. Organisation:

The rest of the paper is organised as follows. In section 2,
we provide definitions and the trivial reduction between CVP
and MDSP. Section 3 contains our new reduction between
CVP and MDSP.

II. PRELIMINARIES

In this paper Z, R and Q will denote the sets of integers,
reals and rationals respectively. Vectors will be denoted by
small letters as in ~v and matrices and basis sets will be denoted
in capital letters. We will use In to denote the n× n identity
matrix. Let B = {~b1, . . . , ~bk} be a set of vectors in Rn. The
subspace of Rn spanned by B will be denoted by span(B).

In this paper, we will work with vector space V = Rn. For
any vectors ~u,~v ∈ Rn, we use the notation 〈~u,~v〉 to denote the
dot-product of the two vectors, i.e., 〈~u,~v〉 =

∑n
i=1 ~ui~vi and

||~u|| denotes the `2 norm of the ~u, i.e., ||~u|| = (
∑n

i=1 ~u
2
i )

1/2.
For a subspace S ⊆ Rn, S⊥ = {~x ∈ Rn|〈~x, ~y〉 = 0, ∀~y ∈ S}
is also a subspace and it is called the orthogonal subspace of
S.

Definition 1 (Lattice). Given a set of linearly independent
vectors B = {~b1, . . . , ~bm} in a vector space V , the lattice
spanned by B is the set

L(B) =

{
m∑
i=1

ci~bi | ci ∈ Z for all 1 ≤ i ≤ m

}
In other words, a lattice is an integral span of B. The set B

is referred to as a basis of the lattice. The rank of the lattice
is the number of linearly independent vectors in B and the
dimension of a lattice is the dimension of the ambient vector
space containing the lattice. In this paper, we denote B by a
matrix where column vectors are the vectors of the generating
set. In this representation, the rank of a lattice is the same as
the rank of the matrix B. Similar to a vector space, a lattice has
infinitely many bases. We will need the concept of unimodular
matrices to characterize the bases of a given lattice.

2We say a reduction is dimension-preserving and rank-preserving as long
as the rank and dimension increases (or decreases) at most by 1.

Definition 2 (Unimodular Matrix). A matrix U ∈ Zn×n which
has a determinant equal to 1 or −1, is called a unimodular
matrix.

Notice that the inverse and the transpose of a unimodular
matrix are also unimodular. The following theorem states that
two bases generate the same lattice if they are related by a
unimodular matrix.

Theorem 2. B and B′ (in matrix form) are bases of the same
rank-n lattice L in Rn if and only if there exists an n × n
unimodular matrix U such that B′ = BU .

An important concept in lattice theory is the dual of a lattice
which is defined as follows.

Definition 3 (Dual Lattice). Let L = L(B) be a lattice in Rn.
Then, the dual lattice of L, denoted by L∗ is

L∗ = {~v | ∀~u ∈ L, 〈~v, ~u〉 ∈ Z}

Let B be an invertible matrix. Then, it can be easily shown
that if B is the basis of L, then D = (B−1)T is a basis for
the dual lattice L∗. D is called the dual basis of B. Observe
that from the definition of dual basis, we have DTB = I .

Claim 1. If D is the dual basis of B, then for a basis B′ =
BU where U is a unimodular matrix, the dual basis is D′ =
D(U−1)T .

We will now proceeds to define certain computationally hard
problems in lattice theory.

Definition 4 (Shortest Vector Problem (SVP)). Given a basis
B = {~b1, . . . ,~bn}, find a shortest non-zero vector ~v in the
lattice L(B), i.e

~v ∈ argmin
~u∈L(B)\{0}

||~u||

Definition 5 (Closest Vector Problem (CVP)). Given a basis
B and a vector ~t, find a vector ~v in the lattice L(B) which is
closest from ~t, i.e

~v ∈ argmin
~u∈L(B)

||~u− ~t||

In this paper, we assume the vector ~t in CVP instance is
linearly independent of basis B. In the case where t is not
independent, we can increase the dimension of the vector space
and obtain linear independence as follows. We work with B′

and t′ such that
~b′i =

[
~bi
0

]
, ~t′ =

[
~t
1

]
Except for a constant factor, this one-dimensional increase has
no effect on our/existing algorithms’ running time.

Definition 6. Given a basis B = {~b1, . . . , ~bk} of a sub-
space in Rn, the subspace span(B) has an orthogonal basis
B∗ = {~b∗1, . . . , ~b∗k} given by ~bi

∗
= ~bi −

∑i−1
j=1 µij

~bj
∗

where

µij = 〈~bi, ~bj
∗
〉/(~bj

∗
)2. This transformation of the basis is

called Gram Schmidt orthogonalization.



Using a Gram Schmidt orthogonalization of a basis of a
subspace S, it is easy to compute the projection of a vector
~v onto the subspace S as follows. Let B = {~b1, . . . , ~bk} be
a basis of a k-dimensional subspace of Rn and ~v be a vector
in Rn. The projection of ~v on the subspace S = span(B) is
its component in S. If B∗ is an orthogonal basis of span(B)
(such as the one computed by Gram-Schmidt orthogonaliza-
tion), then the projection of ~v on S is

projS(~v) =

k∑
i=1

〈~vT , ~b∗i 〉
〈~b∗i , ~b∗i 〉

· ~b∗i

The component of ~v perpendicular to S is ~v − projS(~v). It
is equal to the projection of ~v on S⊥, i.e., projS⊥(~v) = ~v −
projS(~v). The distance of the point ~v from the subspace S is
the length of this vector. So

dist(~v, S) = ||~v − projS(~v)|| = ||projS⊥(~v)||

We now proceed to define Maximum Distance Sublattice
Problem.

Definition 7 (Maximum Distance Sublattice Problem
(MDSP)). Given a basis [~v | B] = {~v, ~b1, . . . , ~bn} for an
n + 1 dimensional lattice L, find B′ = {~b′1, . . . , ~b′n} such
that {~v, ~b′1, . . . , ~b′n} is also a basis for L and the distance
dist(~v, span(B′)) is maximum. Here, we call ~v the fixed
vector.

The following theorem shows that a solution B′ to the
MDSP can be achieved from B by adding integral multiples
of ~v to vectors in B.

Theorem 3. Let [~v | B] be a basis of an n + 1 dimensional
lattice L in Rn+1. Then for any basis of the lattice of the form
[~v | B′′], there exists integers α1, α2, . . . , αn such that [~v | B′]
is also a lattice basis and span(B′) = span(B′′) where

B′ = B + [α1~v, α2~v, . . . , αn~v]

We have included a proof of the above theorem in the
Section A as we were unable to provide a reference for it.

The following theorem shows a trivial reduction between
SVPS and MDSP.

Theorem 4. There exist polynomial time rank and dimension
preserving many-one (Karp) reductions between CVP and
MDSP.

Proof. We will show that MDSP([~v,~b1, . . . ,~bn]) is equiv-
alent to CVP on basis ([~d1, . . . , ~dn]) and target ~u where
[~u, ~d1, . . . , ~dn] is the dual basis of [~v,~b1, . . . ,~bn]. We will first
show the reduction from MDSP to CVP and since all the
computations in the reduction are invertible, the other direction
is trivial.

Let the input to MDSP be B = [~v,~b1, . . . ,~bn] and its dual
basis be D = [~u, ~d1, . . . , ~dn]. From Theorem 3, we know that

a solution B′ = [~v,~b′1, . . . ,
~b′n] to MDSP can be written as

B′ = BU = [~v,~b1 + α1~v, . . . ,~bn + αn~v], i.e.,

U =


1 ~αT

0
...
0

In


where ~αT = [α1, . . . , αn] is an integer vectors. From Claim 1,
we know that the dual basis D′ of B′ is D(U−1)T where

(U−1)T =

[
1 0 . . . 0

−~α In
]

Therefore, D′ = [~u −
∑n

i=1 αi
~di, ~d1, . . . , ~dn]. Also, from the

definition of dual basis, we have (D′)TB′ = I , therefore,

〈~v,

(
~u−

n∑
i=1

αi
~di

)
〉 = 1 (1)

Using the fact that 〈~a,~b〉 = ||~a|| · ||~b|| · cos(θ) where θ is the
angle between ~a and ~b, we get

||~v|| · cos(θ) = 1

||~u−
∑n

i=1 αi
~di||

(2)

where θ is the angle between ~v and ~u −
∑
αi
~di. Using

the definition of dual basis, we know that ~u −
∑
αi
~di is

perpendicular to all~b′i because D′ is the dual of B′. Therefore,
~u−
∑
αi
~di is perpendicular to span(~b′1, . . . ,~b

′
n). This implies

that 90 − θ is the angle between ~v and span(~b′1, . . . ,
~b′n).

Hence, ||~v|| ·sin(90−θ) is the perpendicular distance between
~v and span(~b′1, . . . ,~b

′
n).

Recall that B′ is the solution to the MDSP instance,
which means that the perpendicular distance between ~v and
span(~b′1, . . . ,

~b′n) is maximized. In other words, ||~v|| ·sin(90−
θ) is maximized. Therefore, ||~u−

∑
αi
~di|| is minimized due

to Equation (2). But, this is essentially computing the shortest
vector in the shifted lattice ~u+L( ~d1, . . . , ~dn), which is exactly
CVP with the basis { ~d1, · · · , ~dn} and target ~u.

III. NEW REDUCTION BETWEEN MDSP AND CVP

In this section, we prove our main theorem, i.e., Theorem 1
which is reduction between MDSP and CVP which does not
utilize the concept of dual lattices. Let [~v | B] be an input to
the MDSP.

Keeping Theorem 3 in consideration, the maximum dis-
tance sub-lattice problem can be stated as follows. Given
an (n + 1)-dimensional lattice with basis {~v, ~b1, . . . , ~bn},
compute an alternative basis {~v, ~b1 + j1~v, . . . , ~bn + jn~v} such
that the distance of point v from the subspace spanned by
{~b1 + j1~v, . . . , ~bn + jn~v} is maximum, where ji ∈ Z for all
i ∈ [n].

Let Px1,...,xn
denote the subspace spanned by the vectors

~b1+x1~v, . . . , ~bn+xn~v for (x1, . . . , xn) ∈ Rn. Following result
determines the distance of the point ~v from Px1,...,xn

for the
special case when {~v, ~b1, . . . , ~bn} is an orthonormal basis.



Lemma 5. Let {~v, ~b1, . . . , ~bn} be an orthonormal basis. Then
the distance of point ~v from Px1,...,xn

is 1/
√
1 +

∑n
i=1 x

2
i for

any (x1, . . . , xn) ∈ Rn.

Proof. Let
∑

i ci(
~bi + xi~v) be the projection of vector ~v on

Px1,...,xn . Then ~w =
∑

i ci(
~bi + xi~v)−~v is the perpendicular

drop from point ~v to the plane. This implies that for all i ∈ [n],

〈~w, (~bi + xi~v)〉 = 0 (3)

By expanding the ~w term and crucially using the fact that the
vectors are orthonormal, we get

〈~w, (~bi + xi~v)〉

= 〈
n∑

j=1

cj(~bj + xj~v)− ~v, (~bi + xi~v)〉

= 〈
n∑

j=1

cj(~bj + xj~v), (~bi + xi~v)〉 − 〈~v, (~bi + xi~v)〉

= 〈
n∑

j=1

cj(~bj + xj~v), (~bi + xi~v)〉 − xi

=

n∑
j=1

〈cj(~bj + xj~v), (~bi + xi~v)〉 − xi

=
∑
j 6=i

〈cj(~bj + xj~v), (~bi + xi~v)〉+ ci(1 + x2i )− xi

=
∑
j 6=i

(cjxjxi) + ci(1 + x2i )− xi

= ci + xi ·

 n∑
j=1

(cjxj)− 1


By equating the last equation to 0, we get ci = −xit where
t =

∑n
j=1 cjxj − 1. This gives us

~w =

n∑
i=1

ci(~bi + xi~v)− ~v

=

n∑
i=1

(−xit) · (~bi + xi~v)− ~v

=

(
n∑

i=1

−xit · ~bi

)
+

(
n∑

i=1

−x2i t− 1

)
~v

The square of the distance of ~v from the plane Px1,...,xn
is

||~w||2 =

n∑
i=1

c2i + (

n∑
i=1

cixi − 1)2

=

n∑
i=1

c2i + t2

= t2(1 +

n∑
i=1

x2i )

We now focus on expressing t in terms of xi’s. We have

t =

n∑
i=1

xici − 1

= −t
n∑

i=1

x2i − 1

=⇒ t = −1/(1 +
n∑

i=1

x2i )

Plugging this in the expression for ||~w||2 we get ~w2 = 1/(1+∑n
i=1 x

2
i ).

The distance of a vector from a plane P is equal to the
length of the vector’s projection on the orthogonal plane P⊥

and projection is directly proportional to the length of the
vector. Hence we have a trivial consequence.

Corollary 6. Let {~v, ~b1, . . . , ~bn} be an orthogonal basis
in which all but ~v are unit vectors. Then the distance of
point ~v from Px1,...,xn is ||~v||/

√
1 + ||~v||2

∑n
i=1 x

2
i for any

(x1, . . . , xn) ∈ Rn.

Proof. In this case ~v is no longer a unit vector. The basis
of Px1...,xn

is {~b1 + x1~v,~b2 + x2~v, . . . }. It is same as
{~b1+x′1~u,~b2+x′2~u, . . . } where the additive vector ~u = ~v/||~v||
is a unit vector as required in Lemma 5 and x′i = ||~v||xi.
From the lemma, the distance of the point ~u from Px′

1,...,x
′
n

, is
1/
√

1 +
∑

i(x
′
i)

2 = 1/
√
1 + ||~v||2

∑
i x

2
i . Hence the distance

from ~v is ||~v||/
√
1 + ||~v||2

∑
i x

2
i .

We will now focus on the general case in which the vectors
~bi are not necessarily orthogonal to the vector ~v. Let ~b′i =
~bi − γi~v be perpendicular to ~v for each i, where γi ∈ R,∀i.
So γi = 〈~bi, ~v〉/||~v||2 and the plane spanned by {~b′1, . . . , ~b′n}
is perpendicular to ~v. Note that γi need not be an integer.
Note that a lattice vector ~bi + ji.~v can now be represented as
~b′i + (γi + ji)~v in the new reference frame.

Consider the plane Px1,...,xn
which is spanned by ~b1 +

x1~v, . . . , ~bn + xn~v. In the new basis, we have

Px1,...,xn = span(~b′1+(γ1+x1)~v, . . . , ~b′n+(γn+xn)~v) (4)

Let us now transform the basis, {~b′1, . . . , ~b′n}, of the n-
dimensional subspace into an orthonormal basis. Let B′ denote
the matrix in which column vectors are ~b′1,

~b′2, . . . ,
~b′n. Let L

be a linear transformation such that the column vectors of
B′′ = B′L form an orthonormal basis. Denote the column
vectors of B′′ by ~b′′1 , . . . ,

~b′′n which are unit vectors and
mutually orthogonal. Therefore,

~b′′i =

n∑
k=1

Lki · ~b′k (5)

Note that the new basis {~b′′1 , . . . , ~b′′n} spans the same subspace
which is spanned by ~b′1, . . . ,

~b′n. Now {~v, ~b′′1 , . . . , ~b′′n} forms an
orthogonal basis such that all but ~v are unit vectors.

The plane Px1,...,xn is spanned by ~b′1+(γ1+x1)~v, . . . , ~b′n+
(γn + xn)~v. We will now focus on expressing this plane in



terms of the unit vectors {~b′′i }. If we extend a line parallel
to ~v from the point ~b′′i (where ~v and ~b′′i are perpendicular to
each other, for all i ∈ [n]), then it must intersect this plane
at one point, say, ~b′′i + yi~v. Then the plane spanned by {~b′′1 +
y1~v, . . . , ~b′′n + yn~v} is Px1,...,xn

itself.
Using Equation (5), we have

~b′′i + yi~v =

n∑
k=1

Lki · ~b′k + yi~v

=

n∑
k=1

Lki(~b′k + (γk + xk)~v)−
n∑

k=1

Lki(γk + xk)~v + yi~v

By the choice of yi, ~b′′i + yi~v belongs to Px1,...,xn
. From

Equation (4), we know that vector ~b′k+(γk+xk)~v also belongs
to the plane for each k. But, v does not belong to the plane
because it is linearly independent from the set of vector {~bk}.
Thus, from the linear independence, we can conclude that

−
n∑

k=1

Lki(γk + xk)~v + yi~v = 0

This implies that

yi =

n∑
k=1

Lki(γk + xk)

=⇒ ~y = LT · ~γ + LT · ~x

The plane Px1,...,xn
is spanned by ~b′′1 + y1~v, . . . , ~b′′n + yn~v

where {~b′′1 , . . . , ~b′′n} is an orthonormal basis and ~v is per-
pendicular to each vector of the set. From Corollary 6, the
square of the distance of ~v from the plane Px1,...,xn

is
||~v||2/(1 + ||~v||2

∑
i y

2
i ).

Recall that our goal is to find a sub-lattice plane Pj1,...,jn ,
where ~j ∈ Zn, such that the distance from ~v is maximized.
Equivalently, we want to find a sub-lattice plane such that∑

i y
2
i = ||~y||2 is minimized, i.e., to minimize the length of

the vector ~y. Let ~x = ~j ∈ Zn, then corresponding ~y = LT ·
~γ + LT ·~j.

We now proceed to construct a CVP instance that will solve
the MDSP instance. We start define a lattice L1 with basis LT ,
i.e., the row vectors of L form a basis of L1. We denote the
rows of L by {~r1, . . . , ~rn}. Let ~z = −LT · ~γ = −

∑
i γi~ri.

Then the length of the vector ~y is equal to the distance between
the fixed point ~z and the lattice point

∑
i ji~ri of L1. Thus the

problem reduces to finding a lattice point of L1 closest to the
point ~z. Therefore, we have reduced MDSP to an instance of
CVP where {~r1, . . . , ~rn} is a lattice basis and ~z is the fixed
point.

The following lemma summarises the computations needed
to convert a MDSP instance to a CVP instance.

Lemma 7. Given a basis of an (n + 1)-dimensional lattice
{v, b1, . . . , bn} as an instance of MDSP. Let ~b′i = ~bi − γi~v
for all 1 ≤ i ≤ n where γi = 〈~bi, ~v〉/||~v||2. Let L be a linear
transformation such that B′′ = B′ ·L is an orthonormal basis.
Equivalently {~b′′1 , . . . , ~b′′n} is an orthonormal basis where ~b′′i =

∑
k(L

T )ik ~b′k. Let ~ri denote the i-th row of L. Then the sub-
lattice plane Pj1,...,jn has maximum distance from the point ~v
if
∑

i ji~ri is a closest lattice vector for the CVP instance in
which the lattice basis is {~r1, . . . , ~rn} and the fixed point is
−LT · ~γ.

The entire transformation involves only invertible steps
hence the converse of the above claim also holds.

Lemma 8. Let the basis {~s1, . . . , ~sn} and the fixed point ~t ∈
Rn+1 be an instance of CVP. Let L be the matrix in which
i-th row is ~si for all 1 ≤ i ≤ n. Let γ = −(LT )−1 · ~t. Pick
an arbitrary orthonormal basis {~e0, ~e′′1 , . . . , ~e′′n} for Rn+1. Let
B′′ be the matrix with column vectors ~e′′1 , . . . ,

~e′′n. Let B′ =
B′′ · L−1. Let ~e′i denote the i-th column of B′. Let ~ei = ~e′i +
γi ~e0. If the MDSP instance {~e0, ~e1, . . . , ~en} has an optimum
solution sub-lattice plane formed by {~e1+j1 ~e0, . . . , ~en+jn ~e0},
then

∑
i ji~si is the solution of the given CVP instance.

Finally, Theorem 1 is obtained by combining Lemma 7 and
Lemma 8.
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APPENDIX

PROOF OF THEOREM 3

In this section, we provide a proof for Theorem 3.

Proof. Since [~v | B′′] and [~v | B] generate the same lattice,
there exists a unimodular matrix U ′ (refer Theorem 2) such
that

[~v | B′′] = [~v | B]U ′

where

U ′ =


1 β1 β2 . . . βn−1 βn
0
...
0

U


The determinant det(U ′) = 1 × det(U) = ±1, so det(U) =
±1. Observe that U ′ ∈ Z(n+1)×(n+1), so U ∈ Zn×n and is
unimodular. So U−1 exists and it is also unimodular. Let us
denote [β1, β2, . . . , βn] by ~βT . Then

[v | B′′]


1 0 0 . . . 0 0
0
...
0

U−1



= [v | B]


1 ~βT

0
...
0

U



1 0 . . . 0
0
...
0

U−1



= [~v | B]


1 ~βTU−1

0
...
0

UU−1



= [~v|B]


1 ~βTU−1

0
...
0

In


= [~v | B] + [~0 | α1~v, . . . , αn~v]

where ~βTU−1 = (α1, . . . , αn)
T . The left-hand side in the

above equation is equal to [~v | B′′U−1]. So B′′U−1 = B +
[α1~v, . . . , αn~v].

The matrix U−1 is unimodular so B′′ and B′ = B′′U−1

span the same sub-lattice and B′ = B + [α~v, . . . , αn~v].
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