
EasyChair Preprint
№ 8778

An Automated Approach for Detection and
Code Refactoring of Mobile Applications to
Enhance Performance

Hina Shoaib

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 3, 2022

An Automated Approach for Detection and code

Refactoring of Mobile Applications to Enhance

Performance

Hina Shoaib
Department of Computing

National university of computer and emerging sciences
I202033@nu.edu.pk

Abstract:

Mobile applications are highly dependent on performance.

Performance has become an important aspect on which the

quality of applications relies. Detection of problematic

code is a way to remove the code smells which

automatically improves the performance of the

application. If the source code contains bad smells and

anti-patterns the performance of the application is

compromised. Code smells can directly impact memory,

power consumption, and CPU usage. It is identified that

the existing literature does not detect 2-3 code smells like

“String Concatenation” and Static Views” in android

applications. There is also a need to investigate the effect

of code smell on performance in mobile applications.

Moreover, there is a need to verify empirically that

detection has benefits in improving the performance of

mobile applications. In this study, we propose an

automated approach for the Detection of Code smells in

Mobile Applications to enhance Performance. The

proposed approach ensures to provide detected code smell

with an instance where the smell is detected. Our approach

detected the code smell “string concatenation” from the

android applications and 6 other smells. Experiment

conducted to show the validity of the approach and the

impact of the code smell used. The result of the

experiment shows a clear difference in improved

processing time without using string concatenation. We

evaluated results on open-source applications to detect and

refactor the smell and the results show the smell exists in

the application. It indicates the instances where the smell

was detected.

Keywords: Android Code Smell, Detection Tool,

Refactoring, Static Code Analysis, Performance.

I. INTRODUCTION

Mobile applications have been increasingly developed and

used by society for many years. Android and Apple iOS

are two dominating markets for mobile app development

[2]. Due to the rapid change in requirements and market

demand, developers only work on the functional

requirements without using the architecture or model. This

causes problems latterly and the quality of the application

is compromised [1]. Testing of mobile applications is an

important phase of the application development cycle. The

basic purpose of software testing is to judge software

quality in terms of user acceptance. Testing is involved

throughout the development process of software. Software

testing has been divided into functional testing, security

testing, performance testing, and many others as well.

Performance testing provides a detailed analysis of system

performance, identification of bottlenecks, and the load or

stress range of the system. Most of the time, performance

testing is kept at the end of the development process,

which causes problems afterward. This causes an impact

on the performance of the application [3]. Performance

testing is fulfilled by comparing integrated code with non-

functional aspects of applications. There is a huge

difference in the performance testing of mobile

applications and other systems. due to the limitations in

resources like memory, energy consumption, UI, and

processing power. Performance testing has become a

common factor on which application quality is based [4],

[5]. Mobile applications run on mobile devices with

limited battery lifetime, developers cannot avoid these

characteristics. These factors affect the performance of an

application. To improve performance and deal with

energy consumption, memory, processing time, and

battery lifetime there are several ways to develop an

application. like model-based implementation, use proper

code patterns and styles. Improper way of developing the

application cause problem in performance through coding

style or pattern as well as UML impact the design and

become the reason for design smells. Similarly, the code

can also become the reason for the ruin of performance

and response time. Detection of that problematic part of

code is a way to remove the smelly code which

automatically improves the performance of the application

[6]. Most studies provide detection details of object-

oriented smells that exist in mobile applications. Detection

of Android-specific smells is limited in the literature. Few

papers provide detection techniques for specific smells

from mobile software applications [5]–[13]. These papers

provide detection on static analysis of code. Mobile

application development is still a fresh and rapidly

developing field. In the case of smell detection, the studies

contain limited techniques. Researchers are still finding

code smells related to mobile applications. Several

empirical studies provide detailed knowledge about the

impact of bad code smells and different antipatterns which

impact mobile applications' non-functional aspects. These

smells and antipatterns can impact performance, usability,

and maintainability, increasing the complexity and quality

of software. Previous literature contains studies named

energy consumption or energy leaks, memory utilization,

or memory leaks these all come under the umbrella of

performance. It reflects the importance of performance

and the role of code smells on performance[7]. It

motivates the detection of code smells to improve

performance. Several approaches exist in the literature,

but those are focused on performance testing of GUI and

improvement of the design model. GUI provides usability

testing and performance of system response time. There is

mailto:I202033@nu.edu.pk

a need to target source code to improve the performance

of an application. The application code uses different

patterns and coding styles these could result in

performance degradation of the application. Mobile

applications provide an extensive set of patterns and

coding styles. However, the insufficient testing of source

code can result in total application performance failure as

well as the development effort goes to waste [8]. The need

is to provide a mechanism to test and provide evidence

whether the application’s source code is fulfilling the

performance expectation of the end-user, system

constraints as well as behave reasonably in response to

different user-level and system-level events. The

suitability and effectiveness of any approach can be best

tested if it applies to real industry projects. The approaches

mentioned in the literature for detection and refactoring of

code work the based on static code analysis. Several

smells need to be detected automatically but the existing

tools have limitations in finding few smells. some tools are

available and some of them are not openly accessible. A

systematic study [4]provides detail about different

detection and refactoring tools. According to this study,

the tools aDoctor and Paprika can detect some code smells

but 2-3 smells are still undetected for example “string

concatenation” and “static view”. This leads to the gap in

the detection that code smells to improve the performance

of the application. Through a literature review, it is

identified that the following are some gaps related to the

detection of mobile applications code smells. Firstly, there

is no comprehensive taxonomy of mobile applications' bad

smells. There is also a need to investigate the effect of

undetected code smells on performance in mobile

applications.

In this paper, we proposed an automatic approach for the

detection of code smell to ensure better performance of

mobile applications. The proposed approach ensures to

provide a detection and refactoring mechanism. we had to

identify the list of bad code smells that impact the

performance of mobile applications from literature and

catalog them into a taxonomy. Secondly, we identified

undetected smells that impact energy consumption,

processing time, and memory consumption. Our approach

detects the code smell and provides the name of the

instance where the smell is found. We can apply it to

various mobile applications to evaluate the significance.

This paper contains following contributions

• To define the taxonomy of performance-based

mobile applications code smells and detection

rules

• To identify the appropriate rule for detection of

"String Concatenation".

• To detect "string Concatenation" using an

automated detection approach.

• To evaluate the impact of a detected smell on

performance and evaluation of the proposed

approach by applying it to different open-source

mobile applications.

II. BACKGROUND AND MOTIVATION

Code smells are not errors in the code. a code smell is a

violation of the fundamentals of programming. Code

smells are design or architecture flaws and bad

programming practices. It is not an error directly but it

indicates a deeper problem in the code[9]. It could be in

the form of dead code, unnecessary use of code, empty

method, If statements, etc. All these are examples of code

smells that impact the application badly in terms of

memory, energy, or time. Developing an application or

software does not mean coding. It includes the optimized

way of developing an application that is performance

efficient. Even though, if the software is having smells that

do not mean it will not work. It will do all the tasks and

provide an output. But the issue that can arise is the

process could be slow and the quality of the application

could be compromised. Different types of smells exist in

the code for example design smell, code smell, network

smell, and database smells. that Mobile applications also

have different smells than web applications. Some of them

are common and many are different. Strings are the

common way of handling text and data in a program.

When it is in terms of java development the data type

which is most commonly used for reading data or saving

it is a string. Strings are also used to create big data but, in

that case, string concatenation can be used. Davide and

Rick [45] conducted a detailed study to identify “worst

smells”. The main contribution to the paper is to provide

a detailed list of worst and non-worst smells. They

surveyed 71 expert developers and five telephonic

interviews. They collected 314 smells from 27 large

Apache open-source projects. This study provides 314

code smells in a catalog and 80 are learned to be the worst.

This study also claims that the frequency of occurrence

and change proneness is different in worst and non-worst

smells. The reason behind conducting the study is to list

down the worst smells to help the developer to improve

the quality of applications by removing these smells.

Rodriguez et al. [12] studied that increasing the use of

mobile also increases the demand for mobile applications.

Due to fewer resources, mobile devices have to suffer in

many ways. Similarly, if the application is not developed

by keeping programming fundamentals in mind this will

leads to intensive problems. There is a certain list of

programming primitives found that help in developing a

quality application. This study discusses on important

programming practice “string handling” and its impact on

performance. The study shows that using string

concatenation vs string builder shows a significant

difference in the performance.

Dong kwan kim [4] stated in this research that coding style

and selection or patterns plays important role in enhancing

the performance. This study provides best practices for

Android development. To check the impact of these

practices’ evolution done on different applications and

how much CPU time is consumed. This study also

provides the use of string Buffer as a best practice. Nguyen

et al. [12] investigated the rules and analysis process of

java source code using PMD and Android Lint. This study

provides an automated analyzer and code refactoring tool

which works on a rule-based approach. This study listed

49 different rules using these rules in programming will

help in decreasing battery consumption. Seven rules are

implemented in this paper on two different applications

and that shows optimal results in terms of performance.

This study also mentioned “string concatenation” as bad

programming practice. Yang et al. [17], have proposed an

approach to discover and compute common causes of the

poor response time of Mobile applications. They extend

the delay for problematic operations, by using the test

magnification approach, to establish the effects of

exclusive actions that can be observed by end-users.

Performance testing of mobile applications contains

several challenges like different operating systems and

different mobile devices impact the performance of an

application. secondly, the generation of test cases to

achieve the coverage is challenging [18]. Usman et al[1] .

have proposed a product-line-based approach that will

help to deal with different versions of the system and also

provide a model-based approach to improve the

performance. It provides an automated approach for unit-

level test case generation in the mobile application. By

performing it on two different applications. It captures the

energy consumption, memory allocation, processing time,

and so on. The result shows the improvement in the

performance of the application before and after applying

the UML-based model-based approach. Mobile

application performance testing is a dynamic research area

to detect code-related issues of performance. To auto-

generate the test cases for performance evaluation and

fault detection in software. There are some plug-ins of the

eclipse available that automatically generate the test case.

Test-Driven development helps to find the fault in

software at the unit level [19]. Performance testing of

mobile applications can be improved by the detection of

bad code or code smells that occur in source code. Many

pieces of research investigated the type of bad code smells.

They provide detail of different tools that help in finding

the code smells that impact the performance [20]. The

existing paper contains detail about different tools and

techniques that help to optimize the code through a variety

of APIs plug-ins or detection tools like LoadRunner or

Robotium [21], [[22]]. Chouchane et al.[27] proposed an

approach to detect the presentation layer code smells. How

do these smells impact the performance of the application?

This study uses two tools to detect aesthetic defects and

code smells. One tool is PLAIN which is for aesthetic

defects and the other is an Android UI detector. The

evaluation is done on 120 android applications with 8480

GUI’s. It investigates performance impact empirically on

a different machine learning algorithm. It proposes a

prediction model for the detection of smells from the

presentation layer. 15 android smells are detected which

impacts the presentation layer. The results reflect that the

code smells and aesthetic defects impact the performance

of android applications.

 A large number of studies have been conducted for code

smell identification and detection. Amalfitano et al. [11]

have proposed an automated technique for the detection of

memory leaks. This study focused on the FunesDroid tool.

It tests every activity lifecycle to explore the possible leaks

by comparing before and after event execution states. This

study is exploratory and works on the phenomena of

black-box testing. Memory leaks occur due to bad

programming practices. This can cause temporary or

permanent memory leak issues.

Bhargav and Carlo[10] proposed an automated approach

for the detection and fixing of resource leaks in android

applications. PLUMBDROID tool is used for fixing and

repair of resource leaks. The tool is based on static

analysis or source code. This is evaluated from the base of

nine android applications. This study is based on

experimental evaluation through which it provides the

control flow to detect the resource leaks. The limitation of

this study experiment is it generates false-positive results.

This study evaluates the tool’s performance in repairing

resource leaks and fixing performance bugs. Palomba et

al. [6]presented an automated aDoctor tool for the

detection of android code smells. This tool detects 15

android specific code smells. This study also includes an

empirical investigation to validate the tool. The tool is

evaluated on 18 different android source codes. It

concluded that the tool detects design flaws from code.

Empirical evaluation highlights that detection of two

smells Data Transmission Without Compression and

Inefficient SQL Query lower through this tool. Dong kwan

kim [4] stated in this research that coding style and

selection or patterns plays important role in enhancing the

performance. This study provides best practices for

Android development. To check the impact of these

practices’ evolution done on different applications and

how much CPU time is consumed. This study also

provides the use of string Buffer as a best practice. Nguyen

et al. [9] investigated the rules and analysis process of java

source code using PMD and Android Lint. This study

provides an automated analyzer and code refactoring tool

which works on a rule-based approach. This study listed

49 different rules using these rules in programming will

help in decreasing battery consumption. Seven rules are

implemented in this paper on two different applications

and that shows optimal results in terms of performance.

This study also mentioned “string concatenation” as bad

programming practice.

III. METHODOLOGY

This section presents the detail of an automated approach

for the detection of android applications code smell. The

overview of the proposed approach. The steps with

detailed descriptions and figures to create a clear and

concise understanding. It also contains the detail of the

proposed tool architecture and working details. The

approach takes android mobile applications as input. The

output of the approach is a detected smell with the name

of the class where the smell was found and the total

number of instances where the smell was detected.

To tackle the issue of large application smell detection, we

build a plugin that is integrated with android studio and

helps in the detection of code smells from android

applications. For this process, we have to analyze the

application programmatically. Static code analysis will

help in this regard. In this plugin, we can write customize

rules for each smell. To create a plugin, we use guidelines

from the literature. aDoctor plugin provides the base for

our approach. The plugin is integrated with android studio.

The development of the plugin is core on IntelliJ IDE. It

uses the java libraries, API of java language, and abstract

syntax tree for analysis of code. It also has a proposal and

analyzer which defines the customized rules.

The proposed approach starts with the detection of code

smell in an android application, which is mentioned in the

figure. A rule is set for the detection of that smell in the

proposed plugin. For the detection of that smell, the plugin

consists of the following steps, which work as the main

components in detection. 1) Examination of Android

applications 2) Recognize a rule violation in an

application; 3) provide smell details such as the number of

instances and the name of an instance where the smell is

located.

Figure: Overview of proposed approach
Static analysis of code is used for the detection of code

smells. The rule is written for the detection

of smell through an android's source code. The approach

is written in Java and only Java-specific applications are

used for the detection of smells. These smells badly

impact the performance of a mobile application in terms

of memory, energy, and processing time. This approach

contributes to the detection of the new smell. The

approach is based on a plugin of the Android studio which

can automatically detect the smell from the classes of

Android source code.

a) Approach Component Detail:

The approach consists of different steps for the detection

of smells, and the internal working mechanism for the

approach is as follows: The source

1. code consists of Java and XML files. It first

went to AST for analysis.

2. The AST process categorizes the code elements

into different types like class instance creation,

method declaration, method invocation, and

variable declaration.

3. After AST completion, the smell rule is applied

to it. When an element fails to meet the rule's

criteria, That is considered smelling.

4. Detection identifies the smell and saves the class

details like name and a total number of classes

where the smell is detected and delivered to the

user.

IV. IMPLEMENTATION

Tool’s Architecture

Figure: Class diagram

The plugin is implemented with IntelliJ SDK. It provides

a set of libraries that allows extension by creating a

customized plugin, language, or IDE. This plugin is for

android studio. The proposed plugin is based on two main

layers 1) presentation layer and 2) Application layer/

business logic.

The presentation lay consist of basic controls. A GUI with

a dialog box that shows detected smells and their details.

For that dialog system, java swing is used. The core logic

for the dialog is implemented in CoreDriver class. It

contains the logic for different controls of dialogs like

Start Dialog, NoSmell, Abort, and Smell list.

The business logic is implemented in the Application

layer. It contains Analyzer, Analytics, and AST. i)

Analyzer performs smell detection, ii) Analytics provide

statistical analysis of the like type of smells user selected

from the checklist menu. This can further be used for the

investigation. and iii) AST checks the elements of source

code and then applies the rule written for the detection of

elements.

Figure: Architecture Diagram

V. EVALUATION:

In this section, experiments and results are described. It

also contains a detailed evaluation of the proposed

approach by answering the research questions in detail.

The evaluation of the proposed approach is done by doing

the following steps: 1) Conducting an Experiment to

evaluate the effectiveness of the detected smell, 2)

applying the detection rule to the different applications,

and 3) Detected results of the smell “string

concatenation”.An experiment was conducted to check

the code smell effectiveness. The reason to conduct this

experiment is to check whether the detected smell has any

kind of impact on performance. For this purpose, the

environment needed to build an android application

which will be tested later on is as follows: Android studio

Bumblebee | 2021.1.1 patch 3, Android Gradle plugin

version 7.1.3, Gradle version 7.2, Android Studio default

JDK version 11.0.11, and Android Virtual Device (AVD)

Nexus 5X API 27 (Portrait). The detailed settings of the

tested application are defined in below Table 7. The

application used for the detailed experiment is

“TestAndroid”.

The application is built to check the following features:

1. To check the performance of the android

application while using string vs string builder.

2. To check that our proposed approach can detect

the smell correctly or not

3. How much difference will be occurred when we

use string vs string builder.

We develop an application in android studio using above

mentioned details. This application is built to test and

validate the code smell. This experiment validates that

string builder is better in performance than string.

Test case No Test Case

 Number of

strings

Length of

string

T1 22 2222

T2 222 221

T3 2212 456

String concatenation uses the “+” operator and the

execution time grows four times. The complexity of

concatenation is in a loop of the nth iteration would be

O(n^2). While if we look at the string builder result it is

20ms which is very less compared to the string. In each

string builder append () will take O (1) as constant time.

So, the complexity of the process will be calculated O(n).

After Validating that the string builder is more efficient

than the string or string concatenation. We applied the

detection rule to open-source applications. Our plugin can

detect 7 smells but we are evaluating the plugin only on

string concatenation. After importing the android

application source code into the android studio. we have

to select the refactoring tab from the Refactor tab of

android studio. It will open up with the window. Select the

checkbox from the dialog box and click the run button. It

will start analyzing the source code and detect the

corresponding smell if exist in the code.

Application #Commits Languages

Apg 4376 Java

Notepad 1522 Java, python

Al muazzin 133 Java

Bitcoin-wallet 4142 Java

A photo

Manager

1126 Java, batchfile

The detected smell “string concatenation” is from the

application TestAndroid. The Smell detected the class

“AsyncTaskGenerationStrings”.

It also shows that there is only one instance in which this

smell exists.

NotePad-master application is an open-source

application. It is also taken from GitHub. The smell of

“string concatenation” is detected in the class

“OrgConverter”.

Software version Android Studio

Bumblebee | 2021.1.1

patch 3

Android Gradle Plugin

version

7.1.3

Gradle version 7.2

Android JDK version 11.0.11

Android Virtual Device

(AVD)

Nexus 5X

API 27

A photo Manager application is an open-source

application. It is taken from GitHub also available on F-

Droid . The smell of “string concatenation” is detected in

the classes “ProgressActivity” ,

MediaContentproviderRepository” and OsmdroidUtil

shown in the Figure.

VI Conclusion

Mobile phones are an important part of life nowadays. It

replaces computers in light and daily work &

entertainment activities. The daily increase in the use of

mobile also increases the demand for applications to use.

This needs rapid development of applications to compete

with the market. At the same time, users do not want to

compromise on quality. Quality is the main aspect when it

comes to the long-term market capturing strategy. In the

development process, most of the time developer neglects

the fundamentals of programming. This leads to the

performance degradation issue. As code smells will

introduce, code smells are bad programming practices.

This is a need for a solution to provide quality and

performance upgrading tools. Detection of problematic

code is a way to remove the code smells which

automatically improves the performance of the

application. If the source code contains bad smells and

anti-patterns the performance of the application is

compromised. Code smells can directly impact memory,

power consumption, and CPU usage. It is identified that

the existing literature does not detect 2-3 code smells like

“String Concatenation” and Static Views” in android

applications. There is also a need to investigate the effect

of code smell on performance in mobile applications.

Moreover, there is a need to verify empirically that

detection has benefits in improving the performance of

mobile applications. In this study, we propose an

automated approach for the Detection of Code smells in

Mobile Applications to enhance Performance. The

proposed approach ensures to provide detected code smell

with an instance where the smell is detected. Our approach

detected the code smell “string concatenation” from

android applications. We experimented to show the

validity of the approach and the impact of code smell used.

The results of the experiment show a clear difference in

improved processing time without using string

concatenation. We also use 3 open-source applications to

detect the smell and the results show the smell exists in the

application. It indicates the instances where the smell was

detected.

Limitations And Future Work: This study has

limitations that our thesis doesn’t provide detection and

refactoring for all of smells on same platform. It is also

limited to provide multiple class refactoring of smell. And

whose refactoring might ask to modify more than one

class. In that case, other than the internal core logic, the

GUI of tool should be updated as well, to properly handle

these cases. In the future, We are aiming to use other

types of smells like network, UI and database, etc. to

provide a better perspective on software quality

development.

VI. References

[1] M. Usman, M. Z. Iqbal, and M. U. Khan,

“An automated model-based approach for

unit-level performance test generation of

mobile applications,” Journal of Software:

Evolution and Process, vol. 32, no. 1, Jan.

2020, doi: 10.1002/smr.2215.

[2] G. Rasool and A. Ali, “Recovering

Android Bad Smells from Android

Applications,” Arabian Journal for

Science and Engineering, vol. 45, no. 4,

pp. 3289–3315, Apr. 2020, doi:

10.1007/s13369-020-04365-1.

[3] M. D. Nguyen, T. Q. Huynh, and T. H.

Nguyen, “Improve the performance of

mobile applications based on code

optimization techniques using PMD and

android lint,” in Lecture Notes in

Computer Science

(including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in

Bioinformatics), 2016, vol. 9978 LNAI, pp.

343–356. doi: 10.1007/978-3-319-49046-5_29.

[4] I. Fatima, H. Anwar, D. Pfahl, and U.

Qamar, “Tool support for green android

development: A systematic mapping

study,” in ICSOFT 2020 - Proceedings of

the 15th International Conference on

Software Technologies, 2020, pp. 409–417.

doi: 10.5220/0009770304090417.

[5] C. Mao, H. Wang, G. Han, and X. Zhang,

“Droidlens: Robust and Fine-Grained

Detection for Android Code Smells,” in

Proceedings - 2020 International

Symposium on Theoretical Aspects of

Software Engineering, TASE 2020, Dec.

2020, pp. 161–168. doi:

10.1109/TASE49443.2020.00030.

[6] F. Palomba, D. di Nucci, A. Panichella, A.

Zaidman, and A. de Lucia, “Lightweight

detection of Androidspecific code smells:

The aDoctor project,” in SANER 2017 -

24th IEEE International Conference on

Software Analysis, Evolution, and

Reengineering, Mar. 2017, pp. 487–491.

doi:

10.1109/SANER.2017.7884659.

[7] S. Mõškovski, “Building a tool for

detecting code smells in Android

application code.”

[8] S. Habchi, N. Moha, and R. Rouvoy,

“Android Code Smells: From Introduction

to Refactoring,” 2020, [Online]. Available:

http://arxiv.org/abs/2010.07121

[9] Pldi 12 Proceedings Committee, Pldi 12

Proceedings of the 2012 Acm Sigplan

Conference on Programming Language

Design and Implementation. Association

for Computing Machinery, 2013.

[10] D. Amalfitano, V. Riccio, P. Tramontana,

and A. R. Fasolino, “Do Memories Haunt

You? An Automated Black Box Testing

Approach for Detecting Memory Leaks in

Android Apps,” IEEE Access, vol. 8, pp.

12217–12231, 2020, doi:

10.1109/ACCESS.2020.2966522.

[11] B. N. Bhatt and C. A. Furia, “Automated

Repair of Resource Leaks in Android

Applications,” Mar. 2020, [Online].

Available: http://arxiv.org/abs/2003.03201

[12] M. U. Khan, S. U. J. Lee, S. Abbas, A.

Abbas, and A. K. Bashir, “Detecting Wake

Lock Leaks in Android Apps Using

Machine Learning,” IEEE Access, vol. 9,

pp. 125753–125767, 2021, doi:

10.1109/ACCESS.2021.3110244.

[13] S. Boutaib, S. Bechikh, F. Palomba, M.

Elarbi, M. Makhlouf, and L. ben Said,

“Code smell detection and identification in

imbalanced environments,” Expert Systems

with Applications, vol. 166, Mar. 2021,

doi:

10.1016/j.eswa.2020.114076.

[14] P. Zhang and S. Elbaum, “Amplifying tests

to validate exception handling code,” in

Proceedings -

International Conference on Software

Engineering, 2012, pp. 595–605. doi:

10.1109/ICSE.2012.6227157.

[15] A. Degu, “Android Application Memory

and Energy Performance: Systematic

Literature Review,” vol. 21, no. 3, pp. 20–

32, doi: 10.9790/0661-2103052032.

[16] M. Hort, M. Kechagia, F. Sarro, and M.

Harman, “A Survey of Performance

Optimization for Mobile Applications,”

IEEE Transactions on Software

Engineering, 2021, doi:

10.1109/TSE.2021.3071193.

[17] Institute of Electrical and Electronics

Engineers. and Calif.) International

Conference on Software Engineering

(35th : 2013 : San Francisco, 2013 1st

International Workshop on the

Engineering of MobileEnabled Systems

(MOBS) : proceedings : May 25, 2013 San

Francisco, CA, USA. IEEE, 2013.

[18] P. Kong, L. Li, J. Gao, K. Liu, T. F.

Bissyandé, and J. Klein, “Automated

testing of Android apps: A systematic

literature review,” IEEE Transactions on

Reliability, vol. 68, no. 1, pp. 45–66, 2019,

doi:

10.1109/TR.2018.2865733.

[19] Won. Kim, ACM Digital Library., and

Association for Computing Machinery.

Special Interest Group on Knowledge

Discovery & Data Mining., Proceedings of

the 3rd International Conference on

Ubiquitous Information Management and

Communication. ACM, 2009.

[20] A. Rodriguez, C. Mateos, and A. Zunino,

“Improving scientific application

execution on android mobile devices via

code refactorings,” Software - Practice and

Experience, vol. 47, no. 5, pp. 763–796,

May 2017, doi: 10.1002/spe.2419.

[21] D. Kwan Kim, “Towards Performance-

Enhancing Programming for Android

Application Development 39,”

International Journal of Contents, vol. 13,

no. 4, 2017, doi:

10.5392/IJoC.2017.13.4.039.

[22] M. D. Nguyen, T. Q. Huynh, and T. H.

Nguyen, “Improve the performance of

mobile applications based on code

optimization techniques using PMD and

android lint,” in Lecture Notes in

Computer Science

(including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in

Bioinformatics), 2016, vol. 9978 LNAI, pp.

343–356. doi: 10.1007/978-3-319-49046-5_29.

2020, pp. 3304–3310. doi:

10.1109/BigData50022.2020.9377882.

[23] T. Das, M. di Penta, and I. Malavolta,

“Characterizing the evolution of statically-

detectable performance issues of Android

apps,” Empirical Software Engineering,

vol. 25, no. 4, pp. 2748–2808, Jul. 2020,

doi:

10.1007/s10664-019-09798-3.

[24] S. Boutaib, S. Bechikh, F. Palomba, M.

Elarbi, M. Makhlouf, and L. ben Said,

“Code smell detection and identification in

imbalanced environments,” Expert Systems

with Applications, vol. 166, 2021, doi:

10.1016/j.eswa.2020.114076.

[25] M. Chouchane, M. Soui, and K. Ghedira,

“The impact of the code smells of the

presentation layer on the diffuseness of

aesthetic defects of Android apps,”

Automated Software Engineering, vol. 28,

no. 2, Nov. 2021, doi: 10.1007/s10515-

021-00297-8.

[26] G. Hecht, O. Benomar, R. Rouvoy, N.

Moha, and L. Duchien, “Tracking the

software quality of android applications

along their evolution,” in Proceedings -

2015 30th IEEE/ACM International

Conference on Automated Software

Engineering, ASE 2015, Jan. 2016, pp.

236–247. doi: 10.1109/ASE.2015.46.

[27] F. Palomba, D. di Nucci, A. Panichella, A.

Zaidman, and A. de Lucia, “On the impact

of code smells on the energy consumption

of mobile applications,” Information and

Software Technology, vol. 105, pp. 43–55,

Jan. 2019, doi:

10.1016/j.infsof.2018.08.004.

[28] D. Ogenrwot, J. Nakatumba-Nabende, and

M. R. v Chaudron, “Comparison of

Occurrence of Design Smells in Desktop

and Mobile Applications,” 2020. [Online].

Available: http://web.engr.oregonstate.edu/

[29] K. Rahkema and D. Pfahl, “Comparison of

Code Smells in iOS and Android

Applications,” 2020. [Online]. Available:

http://ceur-ws.org

[30] O. Hamdi, A. Ouni, M. Cinnéide, and M.

W. Mkaouer, “A longitudinal study of the

impact of refactoring in android

applications,” Information and Software

Technology, vol. 140, Dec. 2021, doi:

10.1016/j.infsof.2021.106699.

[31] S. Habchi, N. Moha, and R. Rouvoy,

“Android Code Smells: From Introduction

to Refactoring,” Oct. 2020, [Online].

Available: http://arxiv.org/abs/2010.07121

[32] M. A. Alkandari, A. Kelkawi, and M. O.

Elish, “An Empirical Investigation on the

Effect of Code Smells on Resource Usage

of Android Mobile Applications,” IEEE

Access, vol. 9, pp. 61853–61863, 2021,

doi:

10.1109/ACCESS.2021.3075040.

[33] Effective Impact of Code Refactorings on

Software Energy Consumption,” 2021.

[Online]. Available:

https://hal.archivesouvertes.fr/hal-

03202437

[34] Z. Ournani, R. Rouvoy, P. Rust, and J.

Penhoat, “Tales from the Code #1: The

Effective Impact of Code Refactorings on

Software Energy Consumption,” 2021.

[Online]. Available:

https://hal.archivesouvertes.fr/hal-0320243

	Tool’s Architecture
	VI Conclusion
	VI. References

