
EasyChair Preprint
№ 8821

QPU-System Co-Design for Quantum HPC
Accelerators

Karen Wintersperger, Hila Safi and Wolfgang Mauerer

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 6, 2022

QPU-System Co-Design for
Quantum HPC Accelerators⋆

Karen Wintersperger1[0000−0002−2181−1860], Hila Safi1,2, and
Wolfgang Mauerer2,1[0000−0002−9765−8313]

1 Siemens AG, Corporate Technology,
Otto-Hahn-Ring 6, 81739 München, Germany

{karen.wintersperger,hila.safi}@siemens.com
2 Technical University of Applied Sciences Regensburg,

Galgenbergstraße 32, 93053 Regensburg, Germany
wolfgang.mauerer@othr.de

Abstract. The use of quantum processing units (QPUs) promises speed-
ups for solving computational problems, but the quantum devices cur-
rently available possess only a very limited number of qubits and suf-
fer from considerable imperfections. One possibility to progress towards
practical utility is to use a co-design approach: Problem formulation
and algorithm, but also the physical QPU properties are tailored to the
specific application. Since QPUs will likely be used as accelerators for
classical computers, details of systemic integration into existing archi-
tectures are another lever to influence and improve the practical utility
of QPUs.
In this work, we investigate the influence of different parameters on the
runtime of quantum programs on tailored hybrid CPU-QPU-systems.
We study the influence of communication times between CPU and QPU,
how adapting QPU designs influences quantum and overall execution
performance, and how these factors interact. Using a simple model that
allows for estimating which design choices should be subjected to optimi-
sation for a given task, we provide an intuition to the HPC community on
potentials and limitations of co-design approaches. We also discuss phys-
ical limitations for implementing the proposed changes on real quantum
hardware devices.

1 Introduction

Quantum computers available today are restricted in their performance by rela-
tively small (≈ 50–100) number of quantum bits (qubits), and suffer from various
imperfections. Since they cannot yet implement error correction routinely, they
classify as NISQ (Noisy Intermediate Scale Quantum) hardware [1], whose capa-
bilities are subject to ongoing exploration. Nevertheless, there is a growing inter-
est to deploy NISQ devices in high-performance computing (HPC) scenarios. [2]

⋆ All authors acknowledge funding from the German Federal Ministry of Education
and Research within the funding program quantum technologies—from basic re-
search to market, contract number 13N16093.

2 Wintersperger et al.

Fitting complex problems to NISQ devices usually requires many simplifica-
tions. Also, the mapping of the problem to a quantum model and the algorithm
can be optimised to reduce both, the number of necessary qubits, and the number
of quantum operations [3]. Properties of quantum algorithms strongly depend
on specific QPUs. Many factors, size (number of qubits), the geometric arrange-
ment of and number of connections between the qubits, as well as the specific
errors and execution times of quantum operations, influence quantum circuit
execution. Prior to running a quantum circuit on a quantum device, the circuit
structure must be adjusted to its requirements, which usually increases the num-
ber of quantum operations, and thus the circuit depth. Co-designing QPUs by
adapting them to specific problem classes is therefore a promising approach.

QPUs will likely be used as accelerators for classical computers, and require
integration with classical hardware. Moreover, hybrid algorithms that combine
classical and quantum operations are a commonly occurring pattern. Thus, the
interaction between quantum and classical devices needs to be taken into account
to estimate the performance of a quantum program in practice.

In this work, we investigate optimisation potentials for the co-design of such
CPU-QPU-systems, exemplified by a hybrid quantum algorithm used to solve
the maximum cut (Max-Cut) problem. In detail, our contributions are as follows:

– We analyse the properties of compiled quantum circuits for various instances
of the Max-Cut problem when modifying geometric properties of the QPU,
namely the connectivity between qubits and the number of qubits.

– We estimate the runtime on real quantum hardware based on simulations,
and investigate the overall runtime on QPU-systems including the commu-
nication between classical and quantum machines, and other classical calcu-
lations required to execute and evaluate quantum circuits.

– Based on these results, we give recommendations for the design of quantum
hardware adapted to applications.

– We provide a self-contained replication package [4] for the simulations that
is available at https://github.com/lfd/arcs2022.git.

The Max-Cut problem is an optimisation problem with applications in net-
work design, clustering or statistical physics. Considering an undirected graph
with a set of nodes V and a set of edges E, a cut is defined as a partition of
the node set into two subsets. The Max-Cut problem seeks to find a partition
such that the number of edges connecting the two subsets is maximised. Many
applications for this primitive can be found in all areas of computing; for us, it
suffices to state that Max-Cut serves as typical representative for hard problems
that we will further motivate in Section 2.2.

There are different, yet equivalent models for quantum computation, such
as gate-based [5, 6], measurement-based [7], adiabatic [8], or topological quan-
tum computing. In this work, we focus on gate-based quantum computation. The
Max-Cut problem is solved using the Quantum Approximate Optimisation Algo-
rithm (QAOA) [9], which is a widely used variational hybrid quantum algorithm
for solving combinatorial optimisation problems on NISQ hardware.

https://github.com/lfd/arcs2022.git

QPU-System Co-Design for Quantum HPC Accelerators 3

As a starting point for the investigation of quantum hardware designs, IBM-Q
devices are used, which are based on superconducting qubit technology [10,11].
Superconducting qubits are one of the most common and advanced quantum
hardware platforms, used by many vendors such as IBM, Google and Rigetti.
Since superconducting qubits are artificial quantum systems, they can in prin-
ciple be designed at will. By now, several different types of superconducting
qubits exist, and the technology is continuously developed. However, this also
means that no two qubits are completely identical, and properties such as the
gate fidelity, which is a measure for the quality of a quantum operation, differ for
each qubit. The superconducting quantum devices of different vendors usually
differ by the geometric arrangement of qubits, and the number and structure of
connections between them. The IBM-Q topology that we use as basis for our
considerations is described in detail in Section 2.4.

2 Quantum Max-Cut with QAOA

Before we discuss co-design optimisation possibilities, we need to set the stage
for the considered problem, and illustrate the solution algorithm.

2.1 The Quantum Approximate Optimisation Algorithm

QAOA implements a quantum circuit consisting of p ∈ N layers of unitary op-
erators (the elementary type of operation a quantum computer can effect on

qubits) whose properties are specified by a set of 2p parameters β⃗, γ⃗ ∈ Rp. The
algorithm can determine minima of objective functions specified in quadratic,
unconstrained binary form; these are specified such that the minimum solution
corresponds to a solution of a specific problem of interest. Using well-known tech-
niques from computer science, all problems in NP can be reduced to Quadratic
Unconstrained Binary Optimisation (QUBO) form [12]. Speedups of QAOA com-
pared to classical approaches are not yet fully understood [13]; yet the existence
of a classical algorithm that efficiently samples the output distribution of QAOA
even for p = 1 is impossible, given reasonable complexity-theoretic assump-
tions [14]. This is seen as likely indicator for quantum advantage, but theoretical
or experimental progress is required to find utility on practical problems.

Fig. 1 sketches the structure of the QAOA circuit for p = 2: After apply-
ing the operators to a well-defined initial state, the expectation value of HP ,
which encodes the objective function, is measured in the final state. Using a
classical optimiser, the parameters of the circuit are changed with the goal of
minimising the expectation value of HP . Each layer i consists of two different
kinds of unitaries: First, U(βi) = e−iβHB is applied, implementing the evolution
under a so-called mixer Hamiltonian HB . The mixer Hamiltonian is commonly
chosen as a superposition of X-rotations applied to each qubit, thus consisting
of a series of rotation gates RX(βi). The second part of each layer comprises
U(γi) = e−iγHP consisting of single-qubit Z-rotations RZ(γi) and two-qubit

https://quantum-computing.ibm.com
https://quantumai.google/
https://qcs.rigetti.com/qpus

4 Wintersperger et al.

Fig. 1: Sketch of the QAOA-circuit for p = 2.

rotation gates RZZ(γi). The repeated application of several QAOA layers corre-
sponds to the discretised time evolution governed by the Hamiltonians HP and
HB . It is known that the quality of the approximation increases for a larger
number of layers [9]. The initial state of the QAOA algorithm is usually chosen
as the ground state of HB , in which each qubit is in an equal superposition of
|0⟩ and |1⟩, prepared using a layer of Hadamard gates H.

To characterise the probability distribution of the final state depending on
β⃗, γ⃗ after each iteration of the optimiser, the quantum circuit is executed several
times (known as sampling), and the qubits are measured in the computational
basis {|0⟩ , |1⟩}. The mean of the expectation values of HP for each measurement
outcome is used as the objective function minimised by the classical optimiser.
The optimal solution is then given by the state (or bit string) with the lowest
energy expectation value taken from the probability distribution obtained for
the final set of parameters.

2.2 Background on Max-Cut and QAOA

Given a graph G = (V,E) consisting of a set of vertices V and a set of edges
E ⊆ V × V , the Max-Cut problem is a seminal graph-theoretic task that seeks
two subsets V0, V1 ⊆ V such that V0∪V1 = V and V0∩V1 = ∅, and maximises the
size |C| of the cut set C = {(u, v) ∈ E : u ∈ V0, v ∈ V1} (as a decision problem,
the k-Cut variant seeks a cut with |C| = k). While the Max-Cut problem is
very simple to formulate, it counts among the hardest optimisation problems to
solve [15]. It is textbook knowledge that the decision variant lies in complexity
class NP, while the optimisation variant is APX-hard, which essentially means
that any polynomial-time approximation algorithm can at best find solutions
whose approximation ratio (i.e., the size of the found cut size divided by the
optimal cut size) is bounded by a constant for general graphs.

Classical approximation algorithms and heuristics for Max-Cut, including
formulations adapted to graphs with specific properties, have been studied in
the literature, and polynomial-time approximation algorithms with non-trivial
performance guarantees are known. In particular, the seminal algorithm of Goe-
mans and Williamson [16] achieves an approximation ratio of 87.86% on generic
graphs, while Khot et al. discuss the optimality of inapproximability results for

QPU-System Co-Design for Quantum HPC Accelerators 5

the problem. Ever since Farhi et al. [9] found that QAOA at circuit depth p = 1
(a) already achieves an approximation ratio of at least 69.25% (for the class
of uniform, 3-regular graphs), yet (b) cannot be efficiently simulated by clas-
sical algorithms, assuming the validity of widely accepted complexity-theoretic
hypotheses, there has been a steady interest in understanding properties and
performance guarantees of QAOA on the Max-Cut problem.

Fuchs et al. [17] present an efficient encoding of (weighted) Max-Cut for
QAOA, while Wurz and Lykov [18] discuss open conjectures regarding the quan-
tum performance of the problem. On the negative side from the QPU point
of view, Marwaha [19] showed that classical algorithms outperform QAOA with
p = 2 with a certain type of graphs. On the positive side for quantum algorithms,
Wurtz and Love [20] give performance guarantees for QAOA-Max-Cut for p > 1
in terms of an approximation ratio of 75.59%. Recent approaches solve Max-Cut
with coherent networks [21], and also go beyond standard quantum hardware. A
comprehensive evaluation of quantum annealing performance on different QPUs
for the Max-Cut problem is provided by Willsch et al. [22].

More general investigations of QAOA are plentiful; Barthi et al. [13] sum-
marise many of them. For instance, Xue et al. [23] consider the effect of noise on
QAOA performance, while Yu et al. [24] provide an automatic depth optimisa-
tion technique. At present, a widely accepted and empirically observed, yet not
fully understood hypothesis claims a concentration of the optimisation parame-
ters β⃗, γ⃗ on relatively low-dimensional sub-manifolds of the possible search space.
Akshay et al. [25] report positive results in this directions, and Zhou et al. [26]
give a concrete construction to benefit from this concentration to improve the al-
gorithmic performance of the classical component of the hybrid algorithm (their
FOURIER construction is numerically conjectured to produce quasi-optima in
time O(poly(p)) instead of 2O(p) for the standard QAOA algorithm). Addition-
ally, several extensions to the QAOA algorithm have been proposed, for instance
for quantum alternating operator ansatz by Hadfield et al. [27], or the mixer-
phaser ansätze by LaRose et al. [28].

However, to the best of our knowledge, we are not aware of any discussion on
how to improve performance and feasibility of Max-Cut on quantum computers
(QCs) using co-design, and how to holistically evaluate potential performance
benefits including the overhead by unavoidable classical computing components
beyond the optimisation algorithms employed in the hybrid approach. We dis-
cuss these issues in this paper, and believe they hold potential for more general
insights on how to achieve first practical speedups for quantum algorithms given
realistic systemic constraints and boundary conditions.

2.3 Modelling Max-Cut as QUBO

Following the seminal collection of transformations provided by Lucas [12], the
Max-Cut problem can be cast as a QUBO using binary variables xi with xi = 1
if node i lies within the first subset, and xi = 0 if it lies in the second subset.
If an edge connecting the nodes i and j is part of the cut, thus connecting the
two subsets, exactly one of xi and xj is equal to zero and the other one is equal

6 Wintersperger et al.

to one. In this case, Hi,j = (xi + xj − 2xixj) equals one and in the cases where
xi = xj it equals zero. Finding the maximum cut corresponds to maximising the
sum of Hi,j over all edges of the underlying graph, or, equivalently, minimising
the sum over −Hi,j . In the following, the latter approach will be used. Thus, the
optimal solution of the Max-Cut problem can be encoded as the ground state of
the Hamiltonian HP =

∑
i,j∈E(2xixj − xi − xj), which is passed to the generic

QAOA algorithm as objective function to determine a minimum solution.

2.4 Setup

The problem graphs G = (V,E) subjected to Max-Cut are characterised by the
number of nodes, N = |V |, and the graph density defined as d = |E|/|Emax| ∈
[0, 1], where |E| is the number of edges of G, and |Emax| = n(n − 1)/2 is the
number of edges of a clique comprising |V | nodes, which upper bounds the
possible number of edges in G. Each node is represented by one qubit.

To run a quantum circuit on a QPU, it has to be compiled to meet the re-
quirements of the hardware. The process of compilation consists of several steps
and accounts for the limited connectivity between the qubits as well as for the
native gate set, which describes the set of gates that can be executed on the spe-
cific hardware. Both properties depend on the chosen technology. For instance,
quantum devices such as ion traps exhibit all-to-all connectivity, whereas oth-
ers do not. If the circuit contains gates which are not part of the native gate
set, they are decomposed accordingly. Missing connections between qubits are
countered by adding so-called SWAP-gates, which themselves often need to be
decomposed again into C–X gates, for instance when using the IBM-Q gate set
considered here. All of these steps increase the depth of the circuit. Within this
work, creation, compilation and simulation of quantum circuits was implemented
using Qiskit. For compilation (which is called transpilation in Qiskit), we use a
predefined routine of Qiskit. It consists of the following steps:

1. Virtual circuit optimisation, for instance, parallelisation of gates
2. Decomposition of gates containing three qubits or more into two-qubit gates
3. Placement of the virtual qubits on the physical qubits
4. Routing on coupling map, introduction of necessary SWAP gates
5. Translation to native gate set
6. Optimisation of the resulting physical circuit

Circuit optimisation can be executed at different levels. For all investigations
in this work, the optimisation level was set to the maximal value of 3, which
describes heavy optimisation, including also re-synthesis of two-qubit blocks.
The placement of the SWAP gates is performed using a stochastic method, called
stochastic SWAP, which leads to different compilation results for the same initial
circuit. Therefore, we repeat the compilation process 20 times for each parameter
set and consider the mean of the circuit depth over these values.

The base coupling map is derived from the IBM-Q Washington backend with
127 qubits by adding two connections which are missing in the original hardware.

QPU-System Co-Design for Quantum HPC Accelerators 7

The qubits are arranged in the so-called heavy-hex lattice geometry illustrated
in Fig. 6a. The native gate set of IBM-Q hardware is used: Rotation RZ, phase
shift SX, Pauli (Not) X, and controlled X (C–X).

NISQ QPUs suffer from limited gate fidelities and noise. These effects could
also be included when simulating and compiling quantum circuits. Within the
compilation process, the placement of the virtual qubits could be adapted to
the differences in noise characteristics between the qubits, which occur for su-
perconducting quantum devices, minimising the overall effect of noise. However,
the limited available space does not allow us to consider these aspects.

3 Hardware-System Co-Design

3.1 Optimisation Potentials

QPUs require integration with classical computers to solve problems [29], regard-
less if hybrid or “pure” quantum algorithms are used. This, invariably, induces
temporal overheads that are usually ignored when studying the complexity-
theoretic performance of quantum algorithms. However, especially for NISQ de-
vices that are unlikely to produce exponential speedups, such details cannot be
ignored to judge potential gains by quantum technology [30]. The time required
to execute an algorithm on a QPU that interacts with a CPU comprises several
contributions: (a) Circuit execution time tcirc on the QPU (also considering the
number nsamp of samples required to obtain accurate statistics), (b) time tmeas

for performing measurements of quantum states, (c) classical parameter opti-
misation time topt on the CPU, (d) the amount of optimisation iterations niter,
and (e) time for passing input parameters and output results between QPU and
CPU tcomm. A straightforward model to describe the execution time required for
hybrid algorithms like QAOA is therefore given by

T = niter · [nsamp · (tcirc + tmeas) + topt + tcomm]. (1)

3.2 Parameter Estimation on IBM-Q hardware

To evaluate optimisation potentials using the model in Eq. (1), we need to deter-
mine performance values on QPUs. Obviously, these parameters not only depend
on size and possibly structure of the input instance, but also on the underlying
execution platform. To illustrate the relative influence of the factors for a typ-
ically sized instance, it suffices to consider one set of parameters, for which we
chose a graph with 20 nodes (amounting to 20 qubits) and a graph density of
0.5 solved using QAOA with a single layer.

In the following, we estimate the runtime of such a QAOA circuit using a
custom routine that pre-compiles the logical circuit to the gate set provided by
IBM-Q hardware, and then executes the result on a simulator. We deliberately
do not resort to physical hardware to avoid any degradation by noise, as our
goal is to find optimisation potentials for QPU-system co-design, not to evaluate
limitations of current NISQ devices. The QAOA circuit is parameterised by β⃗

8 Wintersperger et al.

and γ⃗, which are optimised using the COBYLA routine provided by Qiskit.
As an objective function, we compute the mean expectation value of HP , as
described in Sec. 2.3. (see the replication package for details). We sample the
quantum circuit using nsamp = 1, 024 shots in each iteration. We find topt =
159µs, tmeas = 28.6µs, and niter = 25.

A quantum circuit comprises different gates, and the time it takes each gate
to operate is denoted as gate time. To obtain an estimate of the distribution of
classical and quantum contributions to the total algorithmic runtime, we esti-
mate the quantum circuit execution time tcirc from the (known) hardware gate
times and the structure of the circuit.

Table 1: Gate times from
backend FakeBrooklyn.

Gate Execn Std.
time [ns] Dev.

RZ 0 0
SX 35.56 0
X 35.56 0
C–X 370 80

Approximate values for the gate times as pro-
vided by the Qiskit mock backend FakeBrooklyn
are used. In case of C–X gates, different values
arise for different possible qubit pairs, and we con-
sider the average value. The execution times for
the single qubit gates are identical for all qubits.
Table 1 lists the concrete gate times. The execu-
tion time of the circuit calculated from the gate
times is tcirc = 120±20µs, averaged over 20 circuit
transpilation runs.

The CPU-QPU communication time tcomm de-
pends on how QPUs are deployed, and may vary over several orders of magni-
tude. We consider three different scenarios in Table 2: (a) access to a QPU
via cloud services, with a communication round-trip time of about 50ms; (b)
a QPU with direct attachment to the local CPU (for instance via direct LAN
connection), for which we expect tcomm ≈ 1ms, and an integrated system com-
prising a QPU and CPU that communicate via an internal system bus with
tcomm ≈ 25µs.4 Assume that, as in many scenarios of practical interest, we deal
with a “typically” sized problem instance, for which we can assume that niter,
nsamp and topt are approximately independent of the specific input. This leaves
the communication time tcomm and the circuit time tcirc as candidates for op-
timisation. With niter, nsamp and topt constant, they linearly contribute to the
growth of the total execution time T , and the corresponding slopes are 25 for
tcomm and 25,600 for tcirc. The magnitude of the latter slope would seem to
indicate that reducing communication times holds greater optimisation poten-
tial than decreasing circuit execution times. Alas, as Table 2 indicates, moving

4 The given communication times are rough estimates supposed to illustrate opti-
misation potentials and relative parameter influence. We obtained the numbers by
measuring typical ping durations in cloud and local network scenarios, and esti-
mate QPU-CPU communication time by the round-trip time of an inter-processor-
interrupt in a RiscV-system, given the assumptions that a QPU-CPU SoC design
will likely be based on modifiable classical architectures, and that communication
times between QPU and CPU are similar to inter-core communication times.
Owing to the restricted space, we do not provide more fine-grained and realistic
estimates of and models for these quantities, but remark that they would very likely
not substantially change our findings and conclusions.

https://github.com/lfd/arcs2022.git

QPU-System Co-Design for Quantum HPC Accelerators 9

from a local QPU deployment to on-chip integration is much less beneficial than
moving from a cloud deployment to local operation of QPUs.5

Table 2: Communication and to-
tal execution time T for QPU
deployment scenarios.

Scenario tcomm T

Cloud 50ms 5.07s
Local Bus 1ms 3.84s
SoC3 25µs 3.82s

However, when we consider the “Local
Bus” scenario and assume that the circuit ex-
ecution time can be reduced from 120µs to
30µs (see Fig. 3 and later explanations for
a rationale), the overall execution time re-
duces from T = 3.84s to T = 1.28s, which
indicates substantial potential for optimisa-
tion using hardware adaption. Comparing the
baseline scenario (cloud + standard topology)
with the co-design results (local communica-
tion, adapted topology), we find a total exe-

cution time reduction of 1 − 1.28/5.07 ≈ 75%, which may substantially impact
practical scenarios, especially given that accelerators often solve the same prim-
itive repeatedly in inner loops.

3.3 Physical Possibilities and Limitations

Different properties of QPUs can be considered to reduce circuit execution times.
On the one hand, there is the geometric layout of the qubits and their connectiv-
ity. On the other hand, the native gate set, as well as the fidelities and execution
times of the gates influence the performance of algorithms, as well as the effects
of noise. Depending on the hardware platform, the gate times and fidelities can
differ for each individual (pair of) qubit(s), as it is the case for superconducting
qubits. In this work, we focus on the effects of the qubit connectivity and the
number of qubits available on the device compared to the problem size.

Changing the qubit connectivity for superconducting devices necessitates to
physically re-wire qubits. Moreover, issues such as cross-talk can occur if the
connectivity increases too much. This is reflected in the heavy-hex lattice design
of IBM-Q, which features reduced connectivity compared to previous layouts.

In contrast, trapped ion quantum computers feature all-to-all connectiv-
ity [31], but are currently limited to few qubits (≈ 20). QCs based on neutral
atom technology do not feature all-to-all connectivity, but their connectivity is
usually higher than nearest-neighbour, and can be further increased.

3.4 Variation of the Coupling Density

The connectivity between qubits is described by the coupling density c given by
c = NC/NC,max, where NC denotes the number of connections between pairs of
qubits (that is, the possible interactions), and NC,max gives the maximal possible
number of connections, which is obviously reached for a clique connectivity with

5 Moving from locally connected components to on-chip integration might be beneficial
for latency-critical embedded systems with quantum acceleration, but is likely not
overly relevant for many HPC use-cases.

10 Wintersperger et al.

NC,max = n(n − 1)/2 for n available qubits. Thus, c = 1 describes a quantum
device with all-to-all connectivity. The base topology of the IBM-Q devices has
a coupling density of c ≈ 0.0139. For the simulations in this subsection, the size
of the backend is kept constant at 127 qubits. The coupling density is increased
by randomly adding connections between the qubits.6 Each data point shown
in this section is an average over 20 compilation runs, using again the standard
transpilation process of Qiskit with optimisation level 3.

0.0
0.5
1.0
1.5

0.25 0.50 0.75 1.00

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00

Coupling Density

C
ir
cu

it
D
ep

th
[k
]

Problem
Size

10

20

30

40

0

1

2

3

0.00 0.25 0.50 0.75 1.00

Coupling Density

C
ir
cu

it
D
ep

th
[k
]

Graph
Density

0.1

0.3

0.5

0.7

0.9

Fig. 2: Mean circuit depth vs. coupling density for p = 1 (127 qubit backend),
varying problem size (lhs) for d = 0.5 and graph density (rhs) for N = 60.

We investigate the effect of increasing coupling density for different problem
sizes, graph densities, and QAOA layers. In general, a higher coupling density
reduces the number of SWAP gates needed to realise the desired two-qubit in-
teractions, and decreases circuit depth. This is evident in the left panel of Fig. 2,
where the resulting circuit depth is plotted vs. coupling density for different
problem sizes and d = 0.5. The circuit depth saturates for higher coupling den-
sities. The saturation density csat as well as the saturation value of the circuit
depth increase with the problem size, which can also be seen in the inset of the
plot. Solving larger problem instances requires more qubits and thus also more
two-qubit gates, which leads to deeper circuits in general.

50

100

0.00 0.25 0.50 0.75 1.00

Coupling Density

R
u
n
ti
m
e
[u
s]

Fig. 3: Circuit runtime for N =
20, d = 0.5, p = 1.

Modifying the graph density for a fixed
problem size does not change csat, as illus-
trated by the data in the right panel of Fig. 2
for N = 60, where the circuit depth remains
constant for c > 0.8. The overall circuit depth
and its saturation value increase with graph
density. This can be traced back to an in-
creased density of the QUBO resulting from
an increasing amount of edges that necessi-
tate more two-qubit gates. For larger number

6 The placement of new connection favours augmenting regions with existing high
connectivity density, following the assumption that adding extra connections is easier
for regions that are already well connected. Given the lack of space, we refer readers
to the replication package for the exact details.

https://github.com/lfd/arcs2022.git

QPU-System Co-Design for Quantum HPC Accelerators 11

of QAOA layers, the circuit depth increases linearly, whereas the saturation den-
sity csat remains unchanged. The decrease in circuit depth for higher coupling
densities results in shorter runtimes as illustrated in Fig. 3. Since a relatively
small problem instance with 20 qubits is considered, the runtime saturates for
moderate coupling densities, similar as the circuit depth (see Fig. 2).

Both graphs in Fig. 2 show an important trend: Even a moderate increase
in coupling density causes a substantial decrease in circuit depth - growing the
coupling density from the standard topology to a 10% extended density reduces
circuit depth for N = 100 from 7,000 to slightly over 2,000 (the effect is similar,
yet becomes less pronounced for small input instances). We find this decrease
to be a crucial improvement with regards to circuit execution times, but it also
benefits NISQ systems, since shorter circuits pick up less effects of noise. Given
limited space, we can unfortunately not study the impact of noise further in this
paper, but retain this aspect for future work.

0.0139 0.05 0.25 0.5 0.9

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

0

5

10

Qubits

C
ir
cu

it
D
ep

th
[k
]

Graph
Density

0.1

0.5

0.9

Fig. 4: Circuit depth growth behaviour over problem size for different coupling
densities in the panels. Solid lines represent regression models for varying input
graph dependencies.

To quantify the growth of the circuit depth with problem size, we construct
a univariate regression model7 of the form f(x) = c0 + c1x + c2x

2. We have
performed the usual regression diagnostics, and an ANOVA based model se-
lection procedure unambiguously confirms that the choice of quadratic growth
behaviour is preferable to linear and exponential alternative models. Since Fig. 4
visually demonstrates an excellent match between data and model, we do not
explicitly spell out details of these diagnostics.

It is interesting to observe the behaviour of the regression coefficients with
increasing connectivity map density in Fig. 5: The quadratic contribution is
most pronounced for the unmodified topology, but quickly wanes with increasing
connectivity map densities, and saturates in the connectivity density map range
[0.25, 0.75]. Regardless of input problem structure (graph density), any quadratic
contribution to growth vanishes for fully connected topologies. In general, more
effort in implementing physical connections pays off with more favourable QPU
scaling behaviour.
7 Technically, we employ a robust quantile regression approach [32] because the
stochastic circuit generation process produces pronounced outliers.

12 Wintersperger et al.

Intercept Linear Quadratic

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

0

5

10

15

-100

-50

0

50

100

Connectivity Map Density

C
o
effi

ci
en

t
Graph
Density

0.1

0.5

0.9

Fig. 5: Coefficients of the quadratic quantile regression model depending on graph
and coupling density.

3.5 Variation of the Backend Size

Table 3: Backend sizes used for the data in Fig. 7,
characterised by the number of unit cell rows Nrows,
unit cell columns Ncols and number of qubits.

Nrows Ncols Nqubits Nrows Ncols Nqubits

4 2 65 5 3 108
3 3 70 4 4 113
5 2 79 6 3 127
4 3 89 5 4 137
6 2 93 6 4 161

The properties of the
compiled circuit also de-
pend on the size of the
quantum device, namely
the number of available
qubits relative to the
problem size. If the back-
end has more qubits avail-
able than needed, there
are more possibilities for
routing the virtual to
physical qubits. In general, a more efficient placement of the circuit on the hard-
ware can be found, for instance, by assigning more of the virtual qubit pairs that
share two-qubit gates to physical qubits which are directly connected.

(a) c ≈ 0.0139 (b) c = 0.1 (c) c = 0.2

Fig. 6: Sketch of the heavy-hex lattice coupling map for 65 qubits with base (a)
and extended (b, c) coupling density.

To examine the influence of the backend size on the circuit depth, the circuit
for a Max-Cut problem with N = 60, d = 0.5 and p = 1 is compiled on backends

QPU-System Co-Design for Quantum HPC Accelerators 13

of different sizes between 65 and 161 qubits. The qubits are arranged in the
heavy-hex lattice geometry and the size is increased by successively adding unit
cells below or on the right. The smallest backend corresponds to the IBM-Q
Brooklyn device, consisting of four rows and two columns of unit cells, as depicted
in Fig. 6 for the base coupling density as well as c = 0.1 and c = 0.2. Starting
from this layout, ten different sizes are considered, as summarised in Tab. 3.

1

2

80 100 120 140 160

Backend size: # Qubits

C
ir
cu
it
D
ep
th

[k
] Graph Density

0.05
0.1
0.2

0.3
0.5
0.7

1

Fig. 7: Mean depth vs. backend size
for N = 60, d = 0.5 and p = 1.

In Fig. 7, the resulting mean circuit
depths are shown as a function of the
number of qubits for various coupling den-
sities. In general, the circuit depth de-
creases with the backend size, illustrating
the effects of a more efficient placement
of the circuit described above. These ef-
fects become less pronounced for higher
coupling densities, since the backend then
exhibits more qubit pairs that are directly
connected. Consequently, for a backend
with all-to-all connectivity (c = 1), the
backend size has no influence on the depth of the compiled circuit.

4 Conclusion & Outlook

In this paper, we have investigated integration and co-design possibilities for
QPUs that are supposed to act as computational accelerators in high perfor-
mance computing systems. Our results show that designing purpose-specific
QPUs with adapted topologies holds promises in terms of computational ca-
pabilities. We have also shown that circuit depth is reduced by increasing the
connectivity map density, but already saturates at values c ≪ 1, with a slight
dependency on the problem size. Thus, all-to-all connectivity is not needed in all
cases, relaxing the requirements on the quantum hardware devices. We have also
discussed that how integration of QPUs is performed can have effects on their
capabilities, even if these are not as pronounced as for topology adaptations.

For now, we have focused on perfect QPUs that do not suffer from noise and
imperfections. Future work will incorporate these deficiencies into our analysis,
which is important to transfer our results to present-day NISQ systems, and will
help progressing towards practical utility of early-stage quantum computers.

Acknowledgement: We thank Manuel Schönberger for providing his topology adap-

tation simulation code as starting point for our efforts.

References

1. J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2,
p. 79, Aug 2018. [Online]. Available: https://doi.org/10.48550/arXiv.1801.00862

2. Quantum Technology and Application Consortium—QUTAC, “Industry quantum
computing applications,” EPJ Quantum Technology, vol. 8, no. 1, p. 25, 2021.

https://doi.org/10.48550/arXiv.1801.00862

14 Wintersperger et al.

3. T. Krüger and W. Mauerer, “Quantum annealing-based software components: An
experimental case study with SAT solving,” p. 445–450, 2020. [Online]. Available:
https://doi.org/10.1145/3387940.3391472

4. W. Mauerer and S. Scherzinger, “1-2-3 reproducibility for quantum software exper-
iments,” Q-SANER@IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering, 2022.

5. D. E. Deutsch, “Quantum computational networks,” Proceedings of the
Royal Society A, vol. 425, p. 73–90, 1989. [Online]. Available: https:
//doi.org/10.1098/rspa.1989.0099

6. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum
computation,” Phys. Rev. A, vol. 52, p. 3457–3467, 1995. [Online]. Available:
https://doi.org/10.1103/PhysRevA.52.3457

7. R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum
computation on cluster states,” Nature Physics, vol. 68, p. 022312, 2003. [Online].
Available: https://doi.org/10.1103/PhysRevA.68.022312

8. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda,
“A quantum adiabatic evolution algorithm applied to random instances of an
NP-complete problem,” Science, vol. 292, pp. 472–475, 2001. [Online]. Available:
https://doi.org/10.1126%2Fscience.1057726

9. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization
algorithm,” arXiv:1411.4028, Nov 2014. [Online]. Available: https://doi.org/10.
48550/arXiv.1411.4028

10. H.-L. Huang, D. Wu, D. Fan, and X. Zhu, “Superconducting quantum
computing: A review,” arXiv:2006.10433, 2020. [Online]. Available: https:
//doi.org/10.48550/arxiv.2006.10433

11. M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang,
S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state of play,”
Annual Review of Condensed Matter Physics, vol. 11, pp. 369–395, mar 2020. [On-
line]. Available: https://doi.org/10.1146%2Fannurev-conmatphys-031119-050605

12. A. Lucas, “Ising formulations of many NP problems,” vol. 2, 2014. [Online].
Available: https://doi.org/10.48550/arXiv.1302.5843

13. K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand,
M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok,
S. Sim, L.-C. Kwek, and A. Aspuru-Guzik, “Noisy intermediate-scale quantum
algorithms,” Rev. Mod. Phys., vol. 94, p. 015004, Feb 2022. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.94.015004

14. E. Farhi and A. W. Harrow, “Quantum supremacy through the quantum approx-
imate optimization algorithm,” arXiv:1602.07674, 2016.

15. C. W. Commander, Maximum cut problem, MAX-CUT Maximum Cut Problem,
MAX-CUT. Boston, MA: Springer US, 2009, pp. 1991–1999.

16. M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming,” J.
ACM, vol. 42, no. 6, 1995. [Online]. Available: doi.org/10.1145/227683.227684

17. F. G. Fuchs, H. Øie Kolden, N. H. Aase, and G. Sartor, “Efficient encoding of the
weighted max k-cut on a quantum computer using QAOA,” SN Computer Science,
vol. 2, no. 2, 2021. [Online]. Available: https://doi.org/10.1007/s42979-020-00437-z

18. J. Wurtz and D. Lykov, “Fixed-angle conjectures for the quantum approximate
optimization algorithm on regular maxcut graphs,” Phys. Rev. A, vol. 104,
p. 052419, Nov 2021. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.104.052419

https://doi.org/10.1145/3387940.3391472
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1126%2Fscience.1057726
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arxiv.2006.10433
https://doi.org/10.48550/arxiv.2006.10433
https://doi.org/10.1146%2Fannurev-conmatphys-031119-050605
https://doi.org/10.48550/arXiv.1302.5843
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
doi.org/10.1145/227683.227684
https://doi.org/10.1007/s42979-020-00437-z
https://link.aps.org/doi/10.1103/PhysRevA.104.052419
https://link.aps.org/doi/10.1103/PhysRevA.104.052419

QPU-System Co-Design for Quantum HPC Accelerators 15

19. K. Marwaha, “Local classical MAX-CUT algorithm outperforms p = 2 QAOA on
high-girth regular graphs,” Quantum, vol. 5, p. 437, Apr 2021. [Online]. Available:
https://doi.org/10.22331/q-2021-04-20-437

20. J. Wurtz and P. Love, “Maxcut quantum approximate optimization algorithm
performance guarantees for p > 1,” Phys. Rev. A, vol. 103, p. 042612, Apr 2021.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.103.042612

21. S. Harrison, H.Sigurdsson, S. Alyatkin, J. Töpfer, and P. Lagoudakis, “Solving
the max-3-cut problem with coherent networks,” Phys. Rev. Applied, vol. 17,
p. 024063, Feb 2022. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevApplied.17.024063

22. M. Willsch, D. Willsch, F. Jin, H. D. Raedt, and K. Michielsen, “Benchmarking
the quantum approximate optimization algorithm,” Quantum Information
Processing, vol. 19, no. 7, p. 197, Jun 2020. [Online]. Available: https:
//doi.org/10.1007/s11128-020-02692-8

23. C. Xue, Z.-Y. Chen, Y.-C. Wu, and G.-P. Guo, “Effects of quantum noise on
quantum approximate optimization algorithm,” Chinese Physics Letters, vol. 38,
no. 3, mar 2021. [Online]. Available: doi.org/10.1088/0256-307x/38/3/030302

24. Y. Pan, Y. Tong, and Y. Yang, “Automatic depth optimization for a quantum
approximate optimization algorithm,” Phys. Rev. A, vol. 105, p. 032433, Mar
2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.105.032433

25. V. Akshay, D. Rabinovich, E. Campos, and J. Biamonte, “Parameter
concentrations in quantum approximate optimization,” Phys. Rev. A, vol.
104, p. L010401, Jul 2021. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevA.104.L010401

26. L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum approximate
optimization algorithm: Performance, mechanism, and implementation on near-
term devices,” Phys. Rev. X, vol. 10, p. 021067, Jun 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.10.021067

27. S. Hadfield, Z. Wang, B. O'Gorman, E. Rieffel, D. Venturelli, and R. Biswas,
“From the quantum approximate optimization algorithm to a quantum alternating
operator ansatz,” Algorithms, vol. 12, no. 2, p. 34, 2019. [Online]. Available:
https://doi.org/10.3390%2Fa12020034

28. R. LaRose, E. Rieffel, and D. Venturelli, “Mixer-phaser ansätze for quantum
optimization with hard constraints,” Quantum Machine Intelligence, vol. 4, no. 2,
p. 17, Jun 2022. [Online]. Available: https://doi.org/10.1007/s42484-022-00069-x

29. M. Schönberger, M. Franz, S. Scherzinger, and W. Mauerer, “Peel | Pile? Cross-
framework portability of quantum software,” in 2022 IEEE 19th International Con-
ference on Software Architecture Companion (ICSA-C), 2022, pp. 164–169.

30. M. Franz, L. Wolf, M. Periyasamy, C. Ufrecht, D. D. Scherer, A. Plinge,
C. Mutschler, and W. Mauerer, “Uncovering instabilities in variational-quantum
deep q-networks,” Journal of The Franklin Institute, 2022. [Online]. Available:
https://doi.org/10.1016/j.jfranklin.2022.08.021

31. C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion
quantum computing: Progress and challenges,” Applied Physics Reviews, vol. 6,
p. 021314, 2019. [Online]. Available: https://doi.org/10.1063%2F1.5088164

32. R. Koenker, quantreg: Quantile Regression, 2022, r package version 5.88. [Online].
Available: https://doi.org/10.1201/9781315120256

https://doi.org/10.22331/q-2021-04-20-437
https://link.aps.org/doi/10.1103/PhysRevA.103.042612
https://link.aps.org/doi/10.1103/PhysRevApplied.17.024063
https://link.aps.org/doi/10.1103/PhysRevApplied.17.024063
https://doi.org/10.1007/s11128-020-02692-8
https://doi.org/10.1007/s11128-020-02692-8
doi.org/10.1088/0256-307x/38/3/030302
https://link.aps.org/doi/10.1103/PhysRevA.105.032433
https://link.aps.org/doi/10.1103/PhysRevA.104.L010401
https://link.aps.org/doi/10.1103/PhysRevA.104.L010401
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://doi.org/10.3390%2Fa12020034
https://doi.org/10.1007/s42484-022-00069-x
https://doi.org/10.1016/j.jfranklin.2022.08.021
https://doi.org/10.1063%2F1.5088164
https://doi.org/10.1201/9781315120256

	QPU-System Co-Design for Quantum HPC Accelerators

