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Abstract—Robotics and autonomy systems are becoming in-
creasingly important, moving from specialised factory domains
to increasingly general and consumer-focused applications. As
such systems grow ubiquitous, there is a commensurate need
to protect against potentially catastrophic harm. System-level
testing in simulation is a particularly promising approach for
assuring robotics systems, allowing for more extensive testing in
realistic scenarios and seeking bugs that may not manifest at
the unit-level. Ideally, such testing could find critical bugs well
before expensive field-testing is required. However, simulations
can only model coarse environmental abstractions, contributing
to a common perception that robotics bugs can only be found in
live deployment. To address this gap, we conduct an empirical
study on bugs that have been fixed in the widely used, open-
source ARDUPILOT system. We identify bug-fixing commits by
exploiting commenting conventions in the version-control history.
We provide a quantitative and qualitative evaluation of the bugs,
focusing on characterising how the bugs are triggered and how
they can be detected, with a goal of identifying how they can
be best identified in simulation, well before field testing. To
our surprise, we find that the majority of bugs manifest under
simple conditions that can be easily reproduced in software-based
simulation. Conversely, we find that system configurations and
forms of input play an important role in triggering bugs. We
use these results to inform a novel framework for testing for
these and other bugs in simulation, consistently and reproducibly.
These contributions can inform the construction of techniques for
automated testing of robotics systems, with the goal of finding
bugs early and cheaply, without incurring the costs of physically
testing for bugs in live systems.

Index Terms—automated testing, empirical study, robotics,
autonomous vehicles, dataset, repository mining, ARDUPILOT

I. INTRODUCTION

Robotics and autonomous systems have been around for
many years. However, for much of that time, they have been
confined to situations in which they do not interact with
the general public, e.g., factory automation, industrial control
systems, automotive subsystems, vehicles sent to space and
under the sea, and other less-visible uses. More recently, the
use of robotics and autonomous systems has increased beyond
these applications. Companies are currently testing partly
autonomous vehicles on public roads and starting to deploy
package-delivery drones (Levin, 2017; Glaser, 2017). As the
cost of robotics systems has decreased and the technology
has become more advanced, the number of systems that can
interact with and cause danger to the public has grown.

However, as safety-critical systems, failures in robotics
systems can be expensive and, in some cases, deadly. As
potentially dangerous robotics and autonomous systems in-
creasingly come into contact with humans, it is essential to
develop effective quality-assurance methods. Field testing, unit
testing, and verification remain important to quality assurance
in robots, but they cannot cover all situations a system may
potentially encounter. Field testing is especially critical in
safety-critical systems and can identify key issues, but failures
at this late stage can be enormously expensive. One notable
example of the need for simulation testing is the ExoMars
Lander, which crashed in October 2016 at an approximate
cost of $350 million in materials and time. After the crash,
investigators were able to recreate the circumstances of the
crash in simulation, which led to the simulated vehicle also
crashing (exo, 2016).

Instead, ideally, bugs can be identified as early as possible,
reducing the cost of finding and fixing them, and before they
have manifested in physical systems (Williamson, 2008).

Automated full-system testing (e.g., Liu and Mei 2014) in
simulation will ideally assist in addressing these deficiencies.
Indeed, this is our long-term research ambition: to produce
highly effective techniques for automatically detecting bugs
in real-world robotic systems through the use of software-
based simulation, dramatically reducing the cost of such
bugs by avoiding the need of costly deployment. However,
simulation, by necessity, represents a simplified abstraction of
the environment and the system. Is it sufficiently expressive to
trigger and support detection of bugs that manifest in reality?

To answer this question, it is necessary to first understand
the factors, if any, that make reproducing and detecting bugs
in simulation difficult. In this paper, we systematically pro-
duce a dataset of historical bugs in an open-source robotics
ecosystem, specifically seeking insight into the difficulties that
underlie robotics testing in both simulation and deployment.
We then characterise those defects to produce insights into
the challenges and opportunities afforded by system-level test
generation for such systems in simulation. An in-depth and
nuanced knowledge of existing robotics bugs can lead to the
development of techniques capable of catching future bugs
with similar characteristics. Moreover, if a tool can detect bugs
that humans have previously identified in these systems, such
a tool may also be able to detect other latent bugs in the



system, especially if the latent bugs have similar characteristics
to earlier-identified bugs.

Although datasets of robotics bugs do exist (e.g., Wienke
et al. 2016; Steinbauer 2013; Grottke et al. 2010; Cotroneo
et al. 2013; Sotiropoulos et al. 2017), none allows faults to be
reproduced and inspected in simulation, nor do their accom-
panying analyses investigate the difficulties of triggering and
detecting bugs. Ensuring that bugs can be reliably reproduced
allows datasets to be used for a rich diversity of studies,
including testing, fault localisation, and automated program
repair, as similar datasets for non-robotic systems (Le Goues
et al., 2015; Just et al., 2014; Tan et al., 2017; Sahoo et al.,
2010; Do et al., 2005; Henningsson and Wohlin, 2004) have
demonstrated in broader contexts. These studies inspire our
work to recreate and detect robotics and autonomous systems
bugs in simulation, with a view towards detecting new bugs,
which is a direction the previous work does not take. Indeed,
well-defined benchmarks and datasets can be instrumental for
clarifying and advancing a coherent definition of a discipline’s
dominant research paradigms (Sim et al., 2003).

To this end, in this work we identify 228 bug-fixing commits
within the version-control history of the ARDUPILOT project
through a combination of automatic and manual methods. We
examine the bugs that the commits fix and analyse the bugs to
discover the salient characteristics of each bug, including the
circumstances that trigger it and how to detect it in simulation.
Our high-level goal is to determine whether simulation is
a feasible mechanism. Our intuition was that most real-
world bugs would be difficult and impractical to reproduce
in simulation. Specifically, we thought that complex triggering
conditions (e.g., concurrent events) and environmental require-
ments would hamper automated testing; we were pleasantly
surprised. Instead, from our analysis, we found the following
key insights, which inform the development of automated
testing techniques for robotics and autonomous systems:

• The majority of bugs we examine are capable of being
discovered in simulation and are, in fact, highly amenable
to being found in simulation. These bugs do not depend
on environmental factors, the presence of any specific
type of hardware or any hardware at all, or events
happening concurrently.

• Many bugs occur under different configurations, or re-
quire certain input types. In order to detect these bugs
in simulation, the system under test must run in different
configurations, and exercise a variety of input types.

• As a proof of concept, we present a high-level frame-
work for the automated testing of robotics systems and
demonstrate that a fairly simple implementation of that
framework is capable of triggering and detecting a subset
of the real-world bugs in our dataset.

We envision that the research and engineering communities
may benefit from the results of our study in several ways. For
example, developers can use our results to better understand
the types of faults that are common in robotics systems and
take steps to prevent similar faults from occurring in their

code. In addition, our results identify the kinds of faults
that can affect autonomous vehicles; the community can use
these resources to inform development of effective and precise
quality-assurance techniques for autonomous vehicles. Our
dataset is also valuable for evaluating the effectiveness of
techniques for program repair and fault localisation in robotics
and autonomous systems.

The main contributions of this paper are as follows:

• We use a principled methodology to mine 228 bug-
fixing commits from the version-control history of the
popular, open-source autopilot software, ARDUPILOT and
package and release the dataset along with a Docker con-
tainer for each bug, allowing for reliable and consistent
reproducibility.

• We conduct an empirical study of the bugs within our
dataset and produce a number of key insights, which
inform the development of automated testing techniques.

• We present a general-purpose framework for the auto-
mated testing of robotics and autonomous systems, based
on our systematic analysis of how to trigger and detect
the bugs studied above. We also describe an open-source,
Python-based implementation of this framework, as a
proof of concept.

The rest of the paper is structured as follows. Section II
introduces the system, ARDUPILOT, that was used as the
subject of our empirical study. Section III describes our
methodology for collecting, packaging, and analysing our
dataset. Section IV discusses the results of our analysis.
Sections V presents our proof-of-concept framework for test-
ing robotics systems. Section VI presents threats to validity.
Section VII discusses the existing work that we believe is most
closely related to this work. Section VIII concludes, including
directions for future work.

II. ARDUPILOT BACKGROUND

In this section, we introduce the reader to the system used to
focus our study: ARDUPILOT1. The open-source ARDUPILOT
project, written in C++, uses a common framework and
collection of libraries to implement a set of general-purpose
autopilot systems for use with a variety of vehicles, including,
but not limited to, submarines, helicopters, multirotors, and
aeroplanes. ARDUPILOT is extremely popular with hobbyists
and professionals alike. It is installed in over one million ve-
hicles worldwide and used by organisations including NASA,
Intel, and Boeing, as well as many higher-education institutes
around the world.2

Beyond being highly popular and open-source, we choose
the ARDUPILOT project as our case study due to its rich
version-control history, containing over 29,000 commits since
May 2010, and for its consistent bug-fix commit description
conventions (discussed in Section III-A).

1http://ardupilot.org
2http://ardupilot.org/about

http://ardupilot.org
http://ardupilot.org/about


Controller # LOC # Tests

APMrover2 5, 099 4
ArduCopter 15, 002 35
ArduPlane 11, 940 13
ArduSub 7, 317 0

TABLE I
THE NUMBER OF LINES OF SOURCE CODE (CALCULATED USING cloc)
AND TEST CASES FOR EACH OF ARDUPILOT’S VEHICLE CONTROLLERS.

A. Usage

To deploy the ARDUPILOT platform to a given vehicle,
users must first compile the ARDUPILOT source code using
an appropriate set of compilation parameters (describing the
kind and features of the vehicle). The resulting binaries are
then written to the firmware of the physical flight controller
device used by the vehicle. The flight controller may either
be a dedicated hardware device, equipped with a range of
sensors (e.g., barometer, gyroscope, accelerometer), such as
the Pixhawk 2 flight controller,3 or instead, a generic single-
board computer (such as the Raspberry Pi) connected to
sensors via a daughterboard.

After installing ARDUPILOT to the device, users may use
the ARDUPILOT’s desktop mission planning software to pre-
program a mission (described as a sequence of instructions)
and write it to the EEPROM of the device. The parameters of
the system, such as its maximum speed, may also be changed
by writing to the EEPROM.

Users may interact with the vehicle while in operation in
two ways. The operator may issue radio commands to the
vehicle using a set of predefined radio channels. Alternatively,
users may use a ground control system (provided as part of
the ARDUPILOT platform) to indirectly communicate with the
vehicle programmatically via the MAVLINK4 protocol. The
MAVLINK protocol allows the operator to issue commands
to the vehicle (e.g., go to a certain location, land, change
operating mode), and is also used by the vehicle to constantly
communicate its status (e.g., telemetry, operating mode) to
the ground control system. Prior to launch, users may use the
ARDUPILOT’s command-line interface and mission planning
software to interact with the vehicle as it is docked and
connected to an external machine.

B. Project Structure

The source code of the ARDUPILOT project is split across
several modules, each of which occupies its own directory at
the root of its file structure. The APMrover2, ArduCopter,
ArduPlane, and ArduSub modules, Table I, are used to
implement controllers for specific categories of vehicle (i.e.,
rovers, copters, planes, submarines). The libraries module
implements functionalities that are shared by one or more
categories of vehicle. The Tools module provides tools for
interacting with ARDUPILOT systems, such as the mission

3https://pixhawk.org/
4http://qgroundcontrol.org/mavlink/

planner, and replay functionality, as well as a set of automated
tests.

C. Simulation

To facilitate rapid prototyping and reduce the costs of
whole-system testing, ARDUPILOT offers a number of sim-
ulators for most of its vehicles (excluding submarines). In
general, those platforms simulate the dynamics of the vehicle
under test, feed artificial sensor values to the controller, and
relay the state of its actuators to the physics simulation.
Hardware-in-the-loop (HIL) simulators are used to perform
testing on a given flight controller hardware device by directly
reading from and writing to it. In contrast, software-in-the-loop
(SITL) simulators test a software implementation of the flight
controller by running it on a general-purpose computer.

D. Continuous Integration

In an effort to detect regressions introduced during develop-
ment, the ARDUPILOT project uses continuous integration to
automatically test each commit against a developed-provided
test suite. At the time of writing, the developed-provided
test suite checks that: (1) the code can be built, both on
the desktop and a sub-set of supported boards; (2) that each
vehicle controller behaves as expected when passed a series
of commands in a simulated environment; and (3) that flight
logs are successfully produced.

To check the behaviour of the robot, the test suite spawns
the robot at a fixed set of coordinates in simulation, and
sends the robot a sequence of commands. After dispatching a
command to the robot, the test script continually checks to see
whether the command has finished executing. The sequence
of commands is split into two halves: the first half tests the
manual operation of the robot by sending specific commands
to the robot; the second half puts the robot into autonomous
mode, and instructs it to complete a preprogrammed mission.

To expedite the testing process, the test harness makes use
of the simulator’s time multiplier to speed-up the simulation
clock by a factor of ten.

III. METHODOLOGY

In this section, we first discuss our process for identifying
bug-fixing commits within the version-control history of the
ARDUPILOT project. We then discuss how we transform each
bug-fixing commit into an executable Docker image, capable
of reproducing the bug in simulation. Finally, we describe how
we analysed each bug.

A. Bug Collection

To identify which of the > 29, 000 commits within the
version-control history of the ARDUPILOT represent bug fixes,
we used GITPYTHON5 to mine potential bug-fixing commits
from the project’s GITHUB repository6. To do so, we imple-
mented a script that uses a multi-stage process to identify
commits.

5https://github.com/gitpython-developers/GitPython
6https://github.com/ArduPilot/ardupilot
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1) To ensure reproducibility, we restrict our attention to
all 29, 081 commits within the repository that occurred
before October 1st, 2017.

2) Next, we remove all commits that do not modify at least
one .cpp, .hpp, or .pde file. We end up with 24, 897
commits after this step.

3) We then filter the set of commits to those whose de-
scriptions contain either of the following terms: “bug”
or “fix”. There are 2, 213 commits with these keywords
in their description. From manually trawling the commit
history, we find that the majority of bug-fixing commits
use at least one of these terms.

4) We then focus our attention on commits related to
the ARDUPILOT’s vehicle controller modules, with the
exception of the ARDUSUB modules, since at present
time, there exists no simulator. To identify commits
related to these modules, we exploit ARDUPILOT’s con-
ventions for writing commit descriptions7 to determine
the module that was modified by the commit. After this
stage, 414 commits remained.

5) Finally, we perform another round of keyword filtering,
to drop all commits containing a taboo term, suggesting
that the bug is not relevant to our dataset. In this stage,
we remove commits we believe to be related to the
build system, compilation, documentation, or cosmetic
changes. A complete set of keywords, can be found in
the script (included as part of our dataset). At the end,
we found 333 commits that satisfied all the filters.

After automatically identifying the likely bug-fixing com-
mits using our script, we manually inspected each commit,
and discarded those that we deemed to be irrelevant to our
dataset. We deemed refactorings, compilation bugs, cosmetic
tweaks, and documentation changes to be irrelevant. We also
excluded commits that we deemed to be improvements; this
included both non-functional improvements (e.g., use of a
more memory-efficient algorithm, 6da68c53), and functional
improvements (e.g., “nose of copter now points at next guided
point when it is more than 10m away”, 0460147a).

To reduce the likelihood of falsely including or excluding
a bug from our dataset, two of the authors, both of whom are
familiar with the implementation of the ARDUPILOT platform,
independently marked each commit as relevant or irrelevant;
in the case that the reviewer determined the commit to be
irrelevant, a reason was provided. Following this process, the
reviewers unanimously agreed to remove 63 commits, and
disagreed over the relevancy of 57 commits.

To settle the disputed commits, an independent party served
as an arbiter, and was given the responsibility of determining
the relevancy of the commit. The arbiter deemed 42 of the
57 disputed commits to be irrelevant. In total, we identified
228 commits as bug fixes. Our approach to independent bug

7Since April, 2013, almost all commits to the ARDUPILOT repository
observe the following form: “submodule: description”, where submodule
describes that submodule that is modified by the commit, and description
provides a description of the changes.

classification is similar to that used in previous work (Martinez
and Monperrus, 2015).

B. Packaging

After identifying the set of suitable bug-fixing commits in
the version control history of the ARDUPILOT project, we
set about packaging them into minimal Docker containers8,
capable of consistently reproducing the bug within the confines
of simulation. To reproduce the bug, we follow an approach
similar to that used by MANYBUGS (Le Goues et al., 2015),
a widely used dataset (Le Goues et al., 2012; Mechtaev et al.,
2016; Long and Rinard, 2015) of historical bugs in large-scale
C programs, by using the version (i.e., commit) of the source
code immediately before the bug-fixing commit.

We excluded ten of the commits from the dataset, but
included them in our analysis, since they only manifest when
executed on specific physical hardware (e.g., “fix LED notify
during auto esc calibration”; a3450a95).

We have freely released the Dockerfiles used to construct
the images for each bug, together with the results of our
analysis, and scripts for reproducing our bug collection pro-
cess.9 Prebuilt container images may also be downloaded from
DockerHub, as described in the released artifacts.

C. Characterisation

After reaching a consensus on the list of bug-fixing
commits, we manually inspected each commit to determine
whether the bug can be reproduced in simulation, and if so,
what are the requirements for triggering and detecting it. To
obtain this information, we answered the following questions:

1) Does triggering or observing the bug rely on phys-
ical hardware? We ask this question to determine
whether software-in-the-loop simulation approaches are
sufficiently capable of detecting most bugs, or whether
the majority of bugs require physical hardware.

2) Is the bug only triggered when handling concurrent
events? Parallelism and concurrent events are inherent
features of most robotics systems due to their physical
nature. Bugs of this nature cannot be triggered by sub-
jecting the system to a sequential stream of commands.
Automatic detection of such bugs may prove especially
challenging; specification languages, such as process
calculi (Baeten, 2005) and timed automata (Bengtsson
and Yi, 2004), are required to describe how the system
should behave under such circumstances.
We ask this question to determine how many bugs
can be triggered and detecting using simpler modelling
approaches, restricted to describing the behaviour of the
system in response to a sequential stream of commands.

3) Which kinds of input are required to trigger the bug?
In most cases, inputs are essential for triggering the bug.
ARDUPILOT allows inputs to be provided to the system
in a number of different ways. Discrete inputs, such as

8https://www.docker.com/
9https://github.com/squaresLab/ArduBugs



preprogrammed missions and ground control commands,
are more amenable to automated testing than continuous
inputs, such as radio-control inputs. Bugs that require
more than one kind of input place an even greater strain
on testing techniques. We ask this question to determine
how many bugs can be triggered using only a single
discrete input type.

4) At which stage in the execution does the bug
manifest? Bugs can occur at different points during
execution; they may manifest during initialisation or
normal operation, or they may occur during failure
recovery and system reboot. Handling failure recovery
and system reboots places additional requirements on
testing approaches, and requires that failure conditions
can be triggered. We ask this question to determine how
many bugs can be triggered without the need to induce
failure or a system reboot.

5) Is the bug only triggered under certain configura-
tions? Bugs that depend on the static configuration of
the system only manifest when the system is compiled
with certain options. Similarly, bugs may only trigger
under certain dynamic configurations of the system (i.e.,
parameters supplied to the system at run-time). We ask
this question to determine how many bugs are only trig-
gered under certain static and/or dynamic configurations.

6) Is the bug only triggered in the presence of certain
environmental factors? Environmental factors include
the presence of obstacles and geographical features
(e.g., hills and valleys), wind and weather conditions,
unreliable sensor behaviour, and the need for human
interaction. Testing bugs that require such triggers places
an additional burden on the simulation environment, and
vastly increases the search space. We ask this question
to determine how many bugs can be triggered without
requiring specific environmental conditions.

7) How does the bug affect the behaviour of the system?
Bugs can manifest in a diversity of ways, and have
varying consequences on the reliable operation of the
system. Characterising the exact effects of each bug is
difficult, error prone, and hard to interpret. To that end,
we broadly classified the effects of each bug as either
logging-related, behavioural, or (program) crashing.
As their name suggests, crashing bugs are known to
cause the program to crash. Logging-related bugs cor-
rupt the log files or cause incorrect status messages to
be produced, but do not otherwise affect the run-time
behaviour of the robot. Behavioural bugs manifest in
observable changes to the behaviour of the robot; for
these bugs, we also provided a qualitative description of
how the behaviour of the robot is affected.
Since the detection of certain kinds of bug require
different oracles and techniques, we ask this question
to assess the potential effectiveness of those techniques
(e.g., fuzz testing (Csallner and Smaragdakis, 2004,
2005)).

The inspection process consisted of reading the commit de-
scription, understanding the effects of the changes made by the
fix, and in some cases, executing the buggy version. To reduce
the likelihood of a false label, two of the authors independently
went through the list of bugs and assigned labels. The authors
disagreed on more than 150 out of approximately 1,600 labels;
in those cases, an independent arbiter made the final decision.

IV. RESULTS

In this section, we present the results of our analysis on
the set of bugs found in ARDUPILOT code repository. In
total, we collected 228 bugs in three ARDUPILOT subsystems:
157 for ARDUCOPTER, 50 for ARDUPLANE, and 21 for
ARDUROVER.

A. Fix Characteristics

The median number of files changed by the identified
bug-fixing commits is one, and the median number of line
insertions and deletions, according to git diff, is five. 183
of the bugs were fixed by modifying a single file; this finding is
encouraging for the prospects of performing fault localisation
and program repair in robotics systems. The true number of
line insertions and deletions related to the bug fix is likely to
be lower than the observed median; a number of the commits
perform extensive refactoring, unrelated to the bug.

B. Bug Characteristics

Studying the characteristics of bugs can provide us with
the insight of the nature of bugs in the system and help
us to improve bug detection and test-generation techniques.
Below, we discuss the findings of our analysis in terms of the
questions proposed in Section III-C.

(1) Does triggering or observing the bug rely on physical
hardware?

In total, only 10 of 228 bugs relied on the presence of
physical hardware for their detection or observation. 5 of the
10 bugs concerned platform-specific code for the robot, and
thus cannot be tested using software-in-the-loop simulation.
4 of the 10 bugs affected the robot’s lights and sounds; in
theory, these bugs may be detected by using a higher-fidelity
simulator. The remaining bug (52c4715c) only manifested
on hardware with low memory capacity.

This finding suggests that software-in-the-loop simulation
approaches are capable of detecting the majority of bugs
within robotics systems. By alleviating the need for specific
physical hardware, the time and cost of testing robotics sys-
tems can be reduced by using cloud-computing resources.

(2) Is the bug only triggered when handling concurrent events?
To our surprise, we determined that only 13 out of 228

bugs (5%) require concurrent events in order to be triggered.
This particularly interesting result demonstrates that automated
testing techniques with simple oracles, capable only of cap-
turing the expected behaviour of sequential streams of events,
may be sufficient to detect the majority of bugs in robotics
systems. We believe that the lack of a need to describe parallel



Fig. 1. The number of bugs that could be triggered by exclusively using each
input type. The intersection of input types shows the number of bugs that can
be triggered by any of them. Less than a quarter of the bugs rely on continuous
radio-controller inputs, which are normally provided by a human-operator.

behaviours of the system reduces the specification burden on
designers, and thus increases the likelihood of the acceptance
of automated testing techniques.

(3) Which kinds of inputs are required to trigger the bug?
We found that 9 bugs can only be triggered by the system’s

command-line interface, which is used to interact with the
robot when it is docked and tethered. The other 219 bugs
are triggered by ground control system (GCS) commands,
preprogrammed missions, and/or RC inputs. Only 7 of those
219 bugs relied on more than input type in order to be triggered
(e.g., GCS commands and RC inputs). Figure 1 illustrates how
many of the remaining 212 bugs could be triggered by each
non-CLI input type.

Mimicking continuous radio-controller (RC) inputs, usually
provided by a human-operator, is significantly more chal-
lenging than supplying the system with discrete, well-formed
inputs (i.e., GCS commands, and preprogrammed missions).
Encouragingly, our findings show that 165 of the 212 bugs do
not rely on continuous input. Just under half of the bugs (106)
can be triggered by exclusively using GCS commands, which
place the least requirements on the oracle.

(4) At which stage in the execution does the bug manifest?
We discovered that 20 bugs occur when the system is in

its preflight phase (i.e., initialisation), 10 manifest during its
failsafe and recovery behaviours, 3 happen following a soft
reboot, and 11 are encountered during the tuning phase. The
remaining 184 bugs are triggered during the normal operation
of the robot. Some of these execution stages are more difficult
to simulate, model, and encounter. For example, testing the
failsafe behaviour of the robot requires that failures can be
induced during the simulation.

Importantly, the observation that almost 80% of bugs occur
during the normal operation of the robot shows that automated
testing techniques do not necessarily need to cover all modes
of operations in order to detect the majority of bugs.

(5) Is the bug only triggered under certain configurations?
We determined that 81 of 228 bugs depend on either a

particular static (53) or dynamic (20) configuration, or a
combination of both (8). Knowing that more than one-third
of bugs depend on a particular configuration to be triggered
demonstrates the importance of testing the system under a
wide range of configurations. It may be fruitful for automated
testing techniques to explore the configuration space.

(6) Is the bug only triggered in the presence of certain
environmental factors?

To our surprise, once again, we discovered that only 22
of 228 bugs depend on environmental factors. For example,
36634265 is only encountered in windy conditions. Other
bugs, 1e2e24ee and 436062ef, require a human to be
physically present in order to throw the plane. These bugs can
be especially challenging to detect due to the demands they
place on the fidelity of the simulation, and the need to test the
system against a large and variegated range of environments.

Crucially, this finding shows that simpler (and implicitly
more efficient) automated testing techniques that do not at-
tempt to account for environmental factors are capable of
triggering the majority of bugs.

(7) How does the bug affect the behaviour of the system?
We found that 17 bugs only cause corruption of the log

files, or report incorrect status messages to the user. From
inspecting the commit message, the modifications to the source
code, and associated bug report, where one was provided, we
determined that 6 bugs were reported to or are likely to crash.
The remaining 205 bugs resulted in observable, behavioural
changes to the program. Descriptions of the effects of these
bugs are provided as part of our dataset.

These findings suggest that techniques such as fuzz testing
are unlikely to detect many bugs. The vast majority of bugs
can be detected by solely observing the run-time behaviour of
the robot. Although log-checking-based techniques exclusively
detect a relatively small number of bugs, incorporating log
information into the oracle could allow certain behavioural
bugs to be detected more easily.

V. AUTOMATED SYSTEMS TESTING FOR ROBOTICS

Motivated by our finding that most bugs can be repro-
duced using software-in-the-loop simulation without relying
on complex triggering conditions (e.g., concurrent events,
failure handling, environmental factors), we designed a high-
level framework for performing robotics systems testing. In
this section, we first provide a high-level description of this
framework. We then discuss our ongoing work to realise
that framework, and provide proof-of-concept examples that
demonstrate how it can be used to trigger and detect bugs
within the ARDUBUGS dataset.

A. High-Level Approach

In our high-level framework, robotics systems are modelled
as a black box. To test a system using this paradigm, a new



blackbox is constructed for each test using a given set of
configurable parameter values, describing the configuration of
the system. The set of configurable parameters for the system
is split into its static parameters and dynamic parameters.
Static parameters are used to provide an abstract representation
of compilation flags and launch options for the system under
test (SUT). The values of static parameters are immutable
and may only be specified upon the creation of the blackbox.
Unlike static parameters, the values of dynamic parameters are
mutable and may change during the execution of the SUT.

Once the blackbox has been constructed, a portion of the
system’s state, represented by its observable variables and
the values of its parameters, may be inspected by an outside
observer to produce a partial snapshot of the system’s state
at a given moment in time. Observable variables are used to
abstractly represent information about the system that may
be obtained by a (trusted) third-party over a network. For
example, systems built with the popular Robot Operating
System, a.k.a. ROS (Quigley et al., 2009), use a publish-
subscribe model to broadcast their state to a shared topic
over a network. Real-valued observable variables may have an
associated measurement noise, which is to specify and account
for the expected variance in its observed values.

Inputs are provided to the black box in the form of events.
Events are used to describe both intended interactions with the
system, in the form of commands (e.g., a request to move to
a given position), and unintended perturbations, such as the
failure of a given sensor or actuator. Each event is associated
with an event schema. Event schemas are responsible for
specifying the parameters (e.g., target location, sensor ID), if
any, for all events belonging to that schema, along with their
type and range of possible values. Event schemas are also
responsible for describing the set of possible behaviours that
are produced by the system in response to events belonging to
that schema. Since the system may naturally react differently
to an event under different circumstances, the event schema
is responsible for providing a separate specification for each
unique behavioural response (referred to as a behaviour).

We use our framework to test systems by subjecting them
to scenarios. Each scenario tests how a robot with a specified
initial state and configuration responds to a sequence of
events that unfold in a given environment. Scenarios check the
correctness of the system by comparing the observed outcomes
against the expected outcomes that are given by the model.

B. Implementation

In this section, we describe an initial implementation of
this framework. Our implementation, HOUSTON, named after
NASA’s mission control centre, is written as an open-source
Python library. Within our early implementation, we attempt
to produce the simplest possible realisation of our proposed
high-level framework, motivated by the findings of our study.
To that end, we realise scenarios as a sequential stream of
discrete events, where the set of possible events is represented
by a subset of the possible GCS commands. Other types of
input, such as preprogrammed missions and RC inputs, are

not covered; nor do we cover unintended events, such as the
failure of a sensor or the interruption of a GPS signal. Dynamic
and static configurations are not explicitly modelled by our
implementation, but can be manually provided by an end-user.

The set of possible behaviours for each kind of event is
described as set of precondition-postcondition pairs. Precon-
ditions are used to specify the circumstances under which a
given behaviour is applicable; at any given time, only one
precondition for a particular event may be satisfied. Postcon-
ditions describe the consequences of executing a particular
behaviour by describing the state of the system immediately
after an event has finished executing. Both preconditions and
postconditions are expressed in terms of the state of the
system’s observable variables before and immediately after
the execution of the event. Convenience functions are used to
account for measurement noise when specifying relationships
over approximate values.

In addition to providing a precondition-postcondition pair,
each behaviour specification is required to provide an accom-
panying timeout function. This function accepts the (observ-
able) state of the robot, and the values of any parameters for
that event as its input, and produces a suitable timeout for the
execution of the event as its output.

Algorithm 1 describes how scenarios are executed within
our framework, and how their outcomes are checked for
correctness. Scenarios are deemed to be successful if each
of their events is successfully completed within its computed
timeout. In the event that the program crashes, the scenario
is also considered to have failed. To maximise portability,
and to ensure reproducibility and idempotency, our framework
executes each scenario within an isolated, ephemeral Docker
container. To facilitate automated testing, we provide a number
of guided and unguided test generation algorithms in our
framework.

HOUSTON is open-source and available to download at:

https://github.com/squaresLab/Houston

C. Preliminary Results

Here we present three examples of real-world bugs that can
be triggered and detected using our framework.

1) Arming while armed: Commit 742cdf6 resolves an
issue where according to the description written by the de-
veloper, sending an arm command while the copter is armed
would result in the inability to arm the copter in future. For
triggering the bug we must first arm the copter, before issuing
a second arm command whilst it is armed. To detect the
problem, we simply need to disarm the copter and arm it
again. The bug will manifest when the copter is unable to
arm in response to the third arm instruction. The scenario that
we used in HOUSTON is as follow:

ARM→ ARM→ DISARM→ ARM

Executing the last command causes the scenario to fail since
the command’s postcondition is left unsatisfied (the robot is
not armed); thus, the bug is detected.

https://github.com/squaresLab/Houston


Algorithm 1: Scenario Execution
Input: system under test : system
Input: scenario : m = SCENARIO(events, s0, env)
Input: time between state checks : interval

executed← [];
state← s0;
state’← s0;
PREPARE(system, s0, env);

for a : events do
e = EVENT(schema, params);
state← OBSERVESTATE(system);
for b : BRANCHES(system) do

if ISAPPLICABLE(b, params, state, env) then
branch← b

end
end

DISPATCH(system, e);
executed← executed @ e;
timeout← COMPUTETIMEOUT(b, params, state, env);
while true do

state’← OBSERVESTATE(system);
if ISCOMPLETED(b, params, env, state, state’)

then
break

else if run out of time then
return FAILED;

end
SLEEP(interval);

end
end

return PASSED;

2) Unwanted motor test after parachute command: A for-
gotten break statement at the end of one of the cases of
the switch statement, fixed by commit 7613964, introduces
a bug where asking the robot to use its parachute initiates an
unwanted motor test (where a single motor is spun). Triggering
this bug requires that the static configuration enables the sys-
tem’s parachute feature, and that a specification for parachute
command is provided. This bug can be observed when a
parachute command is sent to the copter while it is disarmed.
As a result of executing the motor test, the copter arms itself
(without permission from the user). Using HOUSTON we can
detect this bug with this simple scenario:

DISARM→ PARACHUTE

The parachute command in this scenario violates its post-
condition when it accidentally arms the robot.

3) Arming in Guided mode: Commit 99ca779 fixes a
bug that is both critical and simple. This bug prevents the
copter from arming whilst in its “guided” mode when an arm
command is issued to the copter by the ground control station.
The bug is fixed by flipping the value of a boolean variable
passed to the function responsible for arming the copter.

Triggering this bug is as simple as switching the operating
mode of the copter to “guided”, before issuing a request to
arm, as shown below.

SETMODE(GUIDED)→ ARM

The bug is observed by noticing that the copter fails to arm
after issued with an arming request.

VI. THREATS TO VALIDITY

There is a risk that our results may not generalise beyond
the single system that we used as our case study. Our study
goals motivated us to focus on a single system in depth,
rather than performing a (necessarily) less-detailed study of
multiple systems. This risk is mitigated by the rising popularity
of ROS-based and Ardu* systems in the consumer market,
increasing the potential utility of our results even if they do
not fully generalise. While we do not have exact numbers
for the number of Ardu* systems’ users, we note its active
GitHub development with 350 contributors and over 30,000
commits. It is also possible that the predominance of simple
bugs in our data set was because it was easier for users to
report those bugs and for developers to fix them. However,
the fact that the software enjoys continued use and popularity
suggests that the developers have fixed the the bugs that most
interfered with use. Our findings are also corroborated by
similar studies (Grottke et al., 2010; Cotroneo et al., 2013),
discussed in Section VII, which found, for example, that
relatively simple bugs predominate even in complex software.
The bugs we studied were drawn from all commits; it was
unclear for many whether they were discovered in the field
or in simulation. Additionally, the system we studied operates
on a relatively simple control loop design; systems with more
complex architectures may have bugs that are less amenable to
being replicated in simulation. Addressing this risk motivates
future work characterising defects in more complex systems.

Our approach to identifying bugs is neither sound nor
complete – a known risk in developing datasets from source
control histories (Bird et al., 2009). Some bug-fixing commits
do not satisfy our search criteria, and so they are excluded
from the dataset. Additionally, it may be the case that certain
kinds of bugs are more likely to satisfy our criteria, leading to
an unrepresentative dataset. This risk is likely more applicable
to non-cyber-physical systems, where critical live bugs can
be more easily found and fixed over the course of normal
development.

Similarly, there is a risk that commits were incorrectly
labelled as bug fixes and non-bug fixes during the manual
phase of the bug identification process. To mitigate this,
we used a voting system to perform identification. Indeed,
although we made our best efforts to usefully label the dataset,
we may have mislabelled portions of the dataset or not chosen
the most useful labels. Our approach to using consensus to
classify commits as bug fixes is similar to that used by
Martinez and Monperrus (2015) in their work on learning the
shapes of bug-fixing patches. However, note that the previous
work had all three examiners inspect each commit; we only
require that a third examiner inspect a commit if the other



two examiners disagree or are unsure. We were unable to
characterise 10 commits, which we subsequently dropped from
the dataset. We mitigate this threat by performing three passes
through the dataset and having several evaluators adjudicate
disagreements, and by releasing our dataset and analysis re-
sults publicly for replication and review by other researchers.10

VII. RELATED WORK

Steinbauer (2013) conducted a survey of faults exhibited by
the robots that competed in the ROBOCUP, an international
robot football championship, by asking teams from previous
years’ championships to complete a questionnaire. Participants
were asked to report the faults within their system, and to
characterise those faults according to their frequency, causes,
and symptoms. Additionally, participants were asked to divide
faults into those that related to sensors, manipulators, hard-
ware, software, algorithmic. Steinbauer found that the most
common software faults were caused by misconfiguration, a
lack of timeliness, and memory leaks. Although our study
shares similarities with Steinbauer’s study, our focus and
motivation are different; our study is exclusively concerned
with determining which bugs can be discovered in simulation,
and what is required to trigger and detect them.

Sotiropoulos et al. (2017) performed a study of 33 bugs in
academic code for outdoor robot navigation. The study found
that for many navigation bugs, only a low-fidelity simulation
of the environment is necessary to reproduce the bug. Our
work differs in that it has a larger reach and dataset with
broader applicability, and we analyse different aspects of
reproducibility.

Wienke et al. (2016) also used historical faults in the
ROBOCUP to produce a dataset of “performance bugs” (i.e.,
bugs that do not prevent the robot from completing its mission,
but do degrade its quality of service) for the purposes of
run-time fault identification. Each fault within the dataset is
provided the form of a prerecorded execution; in contrast, our
dataset provides a version of the software that can be run
in simulation, allowing it to be used for a greater variety of
purposes. Additionally, our dataset differs to Wienke et al.’s
in its composition; we focus on software-related bugs, but do
not discriminate between fatal and non-fatal bugs.

Grottke et al. (2010) examined 520 faults in the onboard
software systems used in 14 NASA/JPL space missions. The
authors investigated and categorised the conditions under
which each bug is triggered. Crucially, the authors discovered
that the majority of bugs (61.4%) did not depend upon
“complex” triggering conditions such as timing constraints,
the sequence (or parallelism) of operations, and environmental
interactions.

Cotroneo et al. (2013) conduct a similar investigation into
the triggers of faults, but focus on non-robotics systems
instead. Like our study and Wienke et al.’s study, Cotroneo
et al. find that most bugs are “Bohrbugs” (i.e., they do
not rely on complex conditions). Contrary to popular belief,

10https://github.com/squaresLab/ArduBugs

Cotroneo et al. observe that the frequency of Bohrbugs does
not decrease over time – their proportion remains constant.
Additionally, the authors find no link between the complexity
of triggering conditions and the severity of the bug as reported
by the developers; i.e., bugs that are simple to trigger are
just as severe as those with complex triggers. These findings
suggest that the kinds of bugs that are detected by automated
techniques may be just as important as those that are found
during field testing.

Sahoo et al. (2010) performed a study of reported bugs in a
variety of server software systems to determine the feasibility
of perform automated bug diagnosis. Sahoo et al. are interested
in determining whether known bugs, reported by end-users,
can be reproduced using simple record-and-replay techniques,
which would enable the possibility of automatically diagnos-
ing the bug. In contrast, our study is motivated by the prospect
of automatically detecting previously unknown and potentially
dangerous bugs in simulation without the need for field testing.

Outside of the context of robotics, there exists a number of
widely used datasets of bugs, both artificial and historical. The
DEFECTS4J (Just et al., 2014) and MANYBUGS (Le Goues
et al., 2015) datasets consist of historical bugs in large-scale
Java and C programs, respectively. At the opposite end of the
scale, the CODEFLAWS (Tan et al., 2017) and INTROCLASS
(Le Goues et al., 2015) datasets are composed of bugs in
small, single-file programming assignments (or challenges)
completed by novices, using C. The Software Infrastructure
Repository (Do et al., 2005) represents the first concerted
effort to provide a dataset of reproducible faults. Unlike the
aforementioned datasets, the SIR is predominantly composed
of artificial bugs, and covers programs written in a variety of
different languages. These datasets have been used to conduct
studies on testing (Li et al., 2007), program repair (Le Goues
et al., 2012; Long and Rinard, 2015; Mechtaev et al., 2016)
and fault localisation (Yoo, 2012; Moon et al., 2014; Papadakis
and Le Traon, 2015; Timperley et al., 2017).

VIII. CONCLUSION

Robotics systems are increasingly touching the lives of
the everyday consumer, both through systemic innovations
like self-driving cars and via consumer-accessible systems
based on ROS and other accessible, open-source technologies.
However, these systems remain importantly safety-critical,
even as they become more ubiquitous. Field testing is an
important but enormously expensive assurance stage at which
to identify key bugs. However, simulation is often perceived
as providing an inadequately rich environment for identifying
critical bugs before system deployment in the real world.

Our results, based on an empirical study of historical bugs in
real-world robotics system, dispute this belief. We discovered
that, contrary to our expectations, the majority of bugs can in-
deed be reproduced using software-in-the-loop simulation ap-
proaches without the need for complex triggering mechanisms
(e.g., environmental conditions, concurrent events, component
failures). We found that only a small minority—approximately
10%—of bugs are dependent on particular environmental



factors. However, we also found that continuous events, in the
form of radio-controller inputs, and specific configurations are
required to trigger a large number of bugs. We believe that
both of these challenges, whilst difficult, can be overcome
by developing specialised testing methods and leveraging and
building upon existing knowledge in, e.g., testing of highly
configurable systems (Kästner et al., 2012).

Motivated by these findings, we propose a high-level frame-
work for automatically testing robotics systems, and imple-
mented the simplest possible realisation of that framework as
a proof of concept. We outline directions for developing this
framework, and discuss how it can be used to detect a larger
number of bugs without significantly increasing user burden.

Beyond serving as a source of historical bugs for our study,
our dataset can be used to develop and compare techniques for
testing, localising faults, and performing automated program
repair on robotics systems. We encourage the community to
use it, and publicly release our results and detailed instructions
for their reproduction to support this goal.11

Note that our original goal was to automate the generation of
bug-identifying test suites in simulation for robotics systems.
However, we quickly found that constructing and evaluating
such a (putative) system required an indicative set of known
bugs (or a mechanism for seeding such indicative bugs) and
a modeling approach that can reproduce and detect those
bugs; these needs motivated this work. Fortunately, our results
and framework provide promising support for automating and
improving the quality assurance process for robotics systems,
and present a strong economic case for the development of
automated testing techniques. In addition to research in testing
systems reliant on continuous events and highly configurable
systems, our results motivate several additional future direc-
tions in automated testing and quality assurance for robotics:

a) Test Suite Generation: The ARDUBUGS dataset and
the framework it motivates provide a mechanism to assess
the effectiveness of different test generation approaches with
respect to a well-understood dataset of real-world bugs and
a fixed system specification. In its current form, HOUSTON
implements guided (designed to maximise model coverage)
and unguided methods of test generation. However, whole-test-
suite generation (Fraser and Arcuri, 2011) remains a promising
and underexplored avenue for testing these types of systems.
We anticipate that bespoke algorithms built on such techniques
will be more effective, particularly those that target the detec-
tion of bugs with particular characteristics. Techniques that
target subsets of bug types, rather than targeting all possible
defects, may produce optimised algorithms that are highly
efficient and deliver greater confidence.

b) Modelling Unexpected Events: Robustness testing
consists of checking that a system responds safely and ef-
fectively to unexpected inputs (Kropp et al., 1998). In the
current realisation of our automated testing framework, the set
of possible events consists solely of commands that are sent by
the user to the drone (via the ground control system). To allow

11https://github.com/squaresLab/ArduBugs

a greater number of bugs to be detected, we plan to extend
the set of possible events to include a subset of those that are
outside of the user’s control. These events could be used to
represent the failure of a sensor, an unresponsive servo, or a
(simulated) loss of communications with the GCS. Including
such unexpected events allows our framework to be used to
ensure that the robot fails in a safe and predictable manner.

c) Specification Languages and Inference: Our results
motivate more powerful specification languages that, e.g., ex-
press constraints on the order and timing of events and model
concurrency. Temporal logics (Pnueli, 1977) or timed automata
(Alur and Dill, 1994) may provide a mechanism to accomplish
the former; event calculi (Shanahan, 1999), reactive automata
(Crochemore and Gabbay, 2011), and process calculi (Baeten,
2005) may apply to the latter. Striking an appropriate balance
between the expressive power of the specification language,
and the burden of using it remains an open and significant
challenge. One way to reduce the specification burden is to
focus our attention on ROS-based systems, an increasingly
popular framework for robotics systems12, and to develop a
background theory that does most of the heavy lifting; this
may enable a simple DSL for describing behaviour.

Additionally, rather than requiring manual system specifi-
cations, specification mining techniques (Ernst et al., 2001;
Nguyen et al., 2017; Aliabadi et al., 2017) could be used to
automatically infer likely specifications based on observational
data. Given information about the types and (meaningful)
parameters of different events, and the set of observable system
variables, we plan to use HOUSTON to generate and execute
a set of maximally diverse scenarios. Both static and dynamic
inference techniques may be applicable, with the latter work-
ing over, e.g., the traces of timestamped system observations
produced by HOUSTON (Ernst et al., 2001; Beschastnikh et al.,
2016). Outlier traces that invalidate an otherwise consistent
specification could be flagged for evaluation by a human-
operator for assessment, with additional annotations fed back
into mining. Ideally, such systems can produce high-quality
specifications to aid in the debugging of robotics systems, with
minimal human input required.

In conclusion, the findings of our study strongly support the
idea of applying cheap, simulated-based testing approaches
to the problem of detecting bugs in robotics systems. We
call on the research community to join us in exploiting our
findings to develop a new generation of highly effective testing
techniques.
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