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Abstract-In this paper, methods of workspace analysis of a 3-

PRRS type parallel manipulator are described. The equations of 

spheres and circles on these spheres, along which the center of the 

moving platform can move, are derived, and it is shown that the 

total reachable area of these spheres is the workspace of the 

considered parallel manipulator. Numerical examples of defining 

the workspace of the 3-PRRS type parallel manipulator are 

presented. 
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I. INTRODUCTION 

 Most parallel manipulators with six degrees of freedom 

(DOF) have six legs [1-3]. Parallel manipulators with six DOF 

and three legs or tripods, in comparison with parallel 

manipulators with six legs or hexapods, have a larger 

workspace and less singular configurations. The following 

types of tripods are known: 3-URS [4], 3-ESR [5], 3-PRPS 

[6], 3-RES [7-9], 3-PPSR [10], 3-PRPS [11], 3-CRS [12], 3-

CCC [13].  

 We have developed a novel parallel manipulator - tripod of 

a 3-PRRS type with six DOF (Fig. 1) which in comparison 

with the existing tripods has a large workspace.  In [14, 15], 

the geometry of this parallel manipulator was studied and the 

inverse and direct kinematics were solved. 

 
Fig.1. 3-PRRS type parallel manipulator 

 

 This paper is devoted to a workspace analysis of a 3-PRRS 

type parallel manipulator.  

 

II. WORKSPACE ANALYSIS 

 To analysis the geometry, kinematics and workspace of a 3-

PRRS type parallel manipulator, two coordinate systems UVW 

and XYZ are fixed to each element of kinematic pairs, the W 

and Z axes of which are directed along the axis of rotational 

and translational motions of the kinematic pairs, and the U and 

X axes are directed along the direction of the perpendicular 

drawn from the W axis to the Z axis. Figure 2 shows one of the 

legs 3-4 of the parallel manipulator with the chosen coordinate 

systems. 

 
Fig.2. Leg 3-4 of the parallel manipulator 

 

 In [14], the transformation matrices between the chosen 

coordinate systems, having six parameters, were derived and 

the following expressions for determining the coordinates of 

the spherical joints of the moving platform 2 in the absolute 

coordinate system 0 0 0OU V W , were obtained 
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where , , ,i i i ia b c   are parameters, characterizing the 

geometry of links, 1iL  and 2iL  are the lengths of the legs, c 

and s denote cos and sin.  

 Multiplying the first and the second equations of the system 

(1) on c i  and s i , and add them, we obtain the following 

three equations of planes along which three RRS type dyads 

2 3 4i i iO O O  move  

 

 
4 4

c s 0, ( 1,2,3).
i iO O iU V b ii i        (2) 

 

Adding the squares of the first and the third equations of the 

system (1), we obtain 
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Determining ib  from system (2), and substituting into the 

equations (3), we obtain  

 

 
2

2 2 2 2 2
2 2( c ) ( s ) 0,1 1i i i i iX L Y L Li i         (4) 

 

where 2 2,i iX Y  are the positions of the absolute coordinate 

system 0 0 0OU V W  in the local coordinate system 

2 2 2 2i i i iO X Y Z  defined by the equations 
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 Equations (4) are reduced to the form 
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that have solutions in the case when [16] 
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 Equating the equations (7) to zero, we obtain two equations 

of circles 
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that are the outer and inner boundaries of the workspace of the 

dyads 2 3 4i i iO O O .  

Let write the equations (8) in the absolute coordinate system 

0 0 0OU V W    
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where 
2 2 2

, ,
i i iХ Y ZO O O are the coordinates of the centers of the 

local coordinate system 2 2 2 2i i i iO X Y Z  relative to the absolute 

coordinate system 0 0 0 0O U V W . Fig. 3 shows the graphs of the 

circles (9) with the following parameters [15]:   15,ai    8,ib   

  5,ci  1 60,iL    2  70iL   of the legs and 43h  ,

090 ,1   0210 ,2   0303   , 

3, 10 72d h     of the moving and fixed platforms. 

 
Fig.3. Graphs of the dyads 2 3 4i i iO O O  circles  

 

 Determine the coordinates of the center (point P) of the 

moving platform 2 by the following equations 
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where 
4 4 4

, ,
Pi Pi PiO O OU V W are the coordinates of the center P 

of the moving platform in the local coordinate systems 

4 4 4 4i i i iO X Y Z . 

 Multiplying the first equations of the system (10) on s i , 

and the second equations on с i , and adding the first and 

second equations, we obtain   
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Multiplying the first equations of the system (11) on 

2 3s( )i i  , and the second equations on 2 3с( )i i   , and 

add for them, we obtain  
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To determine 
4PiOV , we also add the two equations of the 

system (11), previously multiplying the first equations on 

2 3с( )i i  , and the second equations on 2 3s( )i i  , and 

obtain  
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To determine 
4PiOW , we add the first and the second 

equations of the system (10), previously multiplying the first 

equation on с i , and the second equation on s i , and obtain 
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Since the distances from the center P of the moving platform 

to the centers of the spherical joints are equal to h  in the local 

coordinate systems 
4 4 44 i i ii O O OO X Y Z  (Fig. 4), the following 

equality is rightly 
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Substituting the equations (12), (13), (14) into the equation 

(15), we obtain three equations of the sphere in the absolute 

coordinate system 0 0 0OU V W  along which the point P moves 
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Fig.4. Moving platform 

 

Thus, the legs of the parallel manipulator move in circles (9) 

relative to the absolute coordinate system 0 0 0OU V W , and the 

center of the moving platform moves in three spheres relative 

to points 4iO  according to the equations (16). The total 

reachable area of three spheres is the workspace of the parallel 

manipulator. 

Let consider the algorithm for determining the workspace of 

the considered parallel manipulator by solving the inverse 

kinematics problem. In [14], the transformation matrix OPT  

between the local coordinate system P P PPX Y Z  of the moving 

platform and the absolute coordinate system 0 0 0OU V W  was 

derived  
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 In the inverse kinematics problem, the matrix (17) or (18) is 

given. Let define the coordinates of the centers of the spherical 



joints in the absolute coordinate system 0 0 0OU V W  through 

the matrix OPT  
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Substituting the coordinates of the centers of the spherical 

joints from the equation (19) into the equations (2), we obtain 

a system of equations connecting the components 

11 12 21 22, , ,t t t t  of the direction cosines of the moving 

coordinate system P P PPX Y Z  

 

 

1 1
11 21

1 1 1

2 2
11 12 21

2 2

2
22

2 2

3 3
11 12 21

3 3

3
22

3 3

c c
0

s s s

c c3

2 s 2 s 2

c3
0 .

2 s s

c c3

2 s 2 s 2

c3
0

2 s s

i
P P

i
P P

i
P P

b
t h t h X Y

h h h
t t t

bh
t X Y

h h h
t t t

bh
t X Y

 

  

 

 



 

 

 



 


         



        



 
       





       



 
      




 (20) 

 

 From the sum of the three equations of system (20) we 

obtain  
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 From the second equation of system (20), we subtract the 

third equation and obtain 
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 From the first equation of system (20) we determine 12t  
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 Thus, we set 11t , and from the equations (21), (22), (23) 

determine 12 21 22, ,t t t . The remaining components of the 3x3 

rotation matrix are determined from the following condition 

  

 

2 2 2
11 21 31

2 2 2
12 22 32

1
.

1

t t t

t t t

   


   

 (24) 

 

 From the equation (24) and the orthogonal conditions we 

obtain 
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 Therefore, all components of the guiding cosines of the 

moving coordinate system P P PPX Y Z  are expressed in terms 

of 11t . Next, we set the values of the coordinates , ,P P PX Y Z  

of the point P, and change the values of 11t  from -1 to 1 with 

a certain step, and find the points with the coordinates 
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satisfied 
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where d  is the distance between the centers of the spherical 

joints. 

 If the conditions (26) are satisfied, then we solve the inverse 

kinematics problem, and in the case when 2 0i   и 3 0i  , 

the computer program puts an point in a space. Fig. 5 shows 

the workspace of the considered parallel manipulator. 

 

 
 

Fig.5. Workspace by invers kinematics 

 

 The workspace of this parallel manipulator can also be 

drawn according to the direct kinematics problem. To do this, 

we change the values of the angles 2i  in the interval ,0
2

 
 
 

 

with a step 
18


 in three cycles and draw the workspace (Fig. 

6).  
 

 

 
 

Fig.6. Workspace by direct kinematics 

 

III. CONCLUSIONS 

 

The workspace of a 3-PRRS type parallel manipulator is 

defined, in this paper. It is shown, that three legs of the parallel 

manipulator move in circles, and the center of the moving 

platform moves in three spheres relative to the centers of the 

spherical kinematic pairs. The total reachable area of the three 

spheres is the workspace of the considered parallel manipulator. 

The numerical results of the 3-PRRS type parallel manipulator’s 

workspace analysis are obtained. 
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