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Abstract: In this paper, both nonlinear model predictive control and sliding mode control 
algorithms are used to control the temperature of the chemical batch reactor utilizing the 
cooling coil system. The main purpose of the model predictive control is to minimize the 
difference between the amount of next output prediction and reference values, by 
considering some constraints on both the states and the inputs. The Sliding mode as a 
second controller is also considered as an efficient method because of high robustness of 
the closed-loop system against uncertainties and external disturbance in addition to 
simplicity in design and practical implementation. With regard to the immeasurability of all 
state variables, designing high gain observer and sliding mode controller based observer is 
discussed to track the system states and adjust the temperature of the reactor. The 
simulation results show the high performance of the proposed algorithms in controlling the 
reaction implementation in addition to avoid exceeding the temperature limit. 
Keywords: Nonlinear Model predictive control; Sliding mode controller; Batch reactor; 
temperature Control 

1- Introduction 
In the past, water was used as the internal parts of the engine coolant because 

of its heat transfer properties and its cheap price. In the following years, the 
use of substances such as methanol, ethyl alcohol and alcohol-based 
antifreezes increased and finally they were outdated due to their weaknesses. 
In 1925 for the first time, propylene glycol was revived as engine coolant. 
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At first, the use of this substance was low, but gradually become more 
because of the benefits of the product and now it is used as a major substance 
in the engine cooling fluid. With the increasing use of propylene glycol and the 
suitable applications for engine cooling fluid, gradually the use of methanol, 
ethanol and other chemicals to produce antifreeze decreased. The use of these 
materials in the engine coolant formulation in general was abolished in 1950 
so that the production rate and the consumption rate of propylene glycol is 
obtained from 49 million liters to 71 million liters per year.   

Propylene glycol is produced by the hydrolysis reaction of propylene oxide 
in a batch reactor. For optimal production of this substance is the need to raise 
the temperature (the reaction starts at the 535 Rankin), however, with the 
temperatures over 585 Rankin, by evaporation of propylene oxide, the reaction 
will be difficult. We are trying to change the temperature of the cooling coil to 
control the reactor temperature during the reaction. Using the change of 
temperature of the coil reactor for control of reactor temperature is one of the 
differences and benefits of the method used in this study than in the other 
articles. Temperature controls were already discussed in a continuous stirred 
tank reactor (CSTR), and their consideration is useful due to the similarity of 
dynamical equations of continuous and discontinuous reactors.  

Reactors are widely used equipment that their control has been a problem for 
the chemical industry because of their high sensitivity and highly nonlinear 
dynamics. In the past, research on reactor control is carried out using different 
methods. Among them, a controller base on the dynamic state feedback is 
designed for CSTR reactor where the steady state error increased with time 
and the control signal becomes large. In another research [2], a geometric 
method was used for minimum phase systems to study dynamical models of 
CSTR. The problem with this approach is that the system and the environment 
will be strongly influenced by the disturbances. In [4], the authors studied the 
polystyrene batch reactor control using fuzzy logic and in [5], the number of 
robust control methods was used to control the batch polymerization reactor. 
Another article [6] used a combination of robust control and input-output 
linearization for temperature control, stability and performance improvements 
by designing system.    

In [7] model predictive control is used to control the building cooling system 
and nonlinear model predictive control is used to control the temperature of 
greenhouse gases in [8]. In [15], NMPC is used to control the polymerization 
process industries and in [16], the robust nonlinear predictive control is used to 
control a semi-batch polymerization reactor. [17] utilized a combination of 
linear predictive control and wiener neural network, [18] uses a NMPC based 
on neural network for continuous intensified reactor control. The stochastic 
nonlinear predictive control is used to control the uncertainty batch 
polymerization reactor in [19]. In [20], the combination of the NMPC, neural 
network and adaptive control is used to adjust an industrial process. In [21, 22] 
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also numerical methods are used to implement nonlinear model predictive 
control. 

In [23], the dynamic state feedback controller is designed for a CSTR reactor 
that steady state error increases with time and the control signal is large. In 
[24], a geometric method has been used for minimum phase CSTR systems. 
The problem with this approach is that it is strongly influenced by system 
disturbances. [33] discusses about designing DMC-optimization PID  
controller for batch reactor temperature control. The sliding mode control is 
discussed for rapid thermal process control systems [34]. Also in [35], the 
sliding mode control is used to control the continuous stirred tank reactor 
temperature. [36] Has used the sliding mode control with a super twisting 
algorithm to control the temperature of PEM fuel cells. In [37], a combination 
of sliding mode control with the adaptive controller is used to control the water 
temperature using fuzzy logic.  

In this paper, at first we obtain the dynamic model of the system by 
considering the methods that explained in [9]. At second step we try to design 
the nonlinear model predictive controller with optimal approach that explained 
in [10]. The advantage of this method is that the stability of the controller is 
guaranteed. Considering the hints that explained in [13] for implementation of 
linear and nonlinear model predictive controller helps us to obtain the best 
results. In [15] also the implementation of MPC in MATLAB is completely 
explained. 

In following the sliding mode controller design will be done and after that 
the high gain observer is designed by considering [28] that in [38] authors 
discussed on robustness of this observer and next step is tuning the controller 
based on the high gain observer. 

Finally, we compare the results of NMPC and sliding mode controllers by 
each other and also with PID controllers. The results show the best 
performance of the proposed algorithms. 

The rest of the paper is organized as follows: section 2 discusses about 
problem statement, section 3 derives control inputs based on nonlinear model 
predictive control, section 4 proposed the sliding mode controller design, high 
gain observer and SM controller based observer. Section 5 shows the 
simulation results and we conclude the paper in section 6. 

 2- Problem statements 
Propylene glycol is produced by the hydrolysis of propylene oxide. 

Propylene glycol makes up about 25% of the major derivatives of propylene 
oxide. The reaction takes place readily at room temperature when catalyzed by 
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sulfuric acid. The feed stream consists of (1) an equivolumetric mixture of 
propylene oxide and methanol, and (2) water containing 0.1wt% H2SO4. The 
temperature of both feed streams is 58°F prior to mixing, but there is an 
immediate 17oF temperature rise upon mixing of the two feed streams caused 
by the heat of mixing. The entering temperature of all feed streams is thus 
taken to be 75°F. Under conditions similar to those mentioned above, the 
reaction is first-order in propylene oxide concentration and apparent zero-order 
in excess of water. There is an important constraint on the operation. 
Propylene oxide is a rather low-boiling substance (b.p. at 1 atm, 93.7 oF) and 
we cannot exceed an operating temperature of 125 oF, or we will lose too 
much oxide by vaporization through the vent system. To solve the problem, 
cooling coil with the area of 40 ft2 is used for temperature control. The overall 
heat transfer coefficient for the coil is equal to 2100 / . .U Btu h ft F  . 

 
Figure 1 - hydrolysis of propylene oxide in chemical batch reactor 

The model used to design the controller can be achieved by following rate 
law and stoichiometry. The design is based on the following form in which 

0AN is the initial moles of propylene oxide and Ar is the reaction rate.   

0 -A A
dxN rdt                                                                                          (1) 

Rate law is defined as below in which Ac  is the initial concentration and k is 
a constant with the unit of '1/hr'.  

- A Ar kc                                                                                               (2) 
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Stoichiometries relationship obtained from the reaction is in the form of 
0( )(1- )AA

Nc xv  which can be rewritten as: 

-12 -1(1- ) ,  16.96 10 ( )  
E

RTdx k x k e hdt                                              (3) 
The temperature is in term of Rankin. The following equation represents 

temperature changes during the conversion of propylene oxide to propylene 
glycol in a batch reactor. 

0
0

(- ( ))(- )
( )

RX A
A ps ps

Q H T r vdT
dt N C C x

   
                                                               (4) 

Where 
( - )aQ UA T T                                                                                          (5) 

Table 1 - Values of system equations parameters 
unit quantity symbol parameter 

2ft  40  A  Cross section of the cooling coil 
2/ . .Btu h ft F  100  U  Overall heat transfer equation 

/ .Btu lb mol  -36450  0( )RXH T  Heat of reaction 
3. /lb mol ft  1.764  0AN  Initial mole of propylene oxide 

/ . . .Btu lb mol A F  403  psC  Specific heat capacity 
/ . . .Btu lb mol A F  0  psC  Specific heat capacity changes 

 
Considering the constant values given in Table 1, the state space model of 

the system will be given as follows: 
32400-12 1.987

32400-12 1.987

16.96 10 ( )(1- )                           
 5.627( - ) 1533.975 10 ( )(1- )

T

Ta

x e x
T T T e x





     



                           (6) 

In the above equation, aT  is as a control term ( u ) the refrigerantently, by 
adjusting the temperature of refrigerant, the reactor temperature is controlled.  
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3- Nonlinear Model Predictive Control 
Nonlinear predictive control (NPC) is an advanced control process that 

began in the 1980 in the process industries, is used in the chemical industry 
and oil refineries. The reason for using this type of controller in the industry is 
because of a sensitive and nonlinear dynamics, lack of steady work, despite the 
uncertainties, high turbulence and noise in the circumstances. The main 
purpose of applying nonlinear model-based predictive control is to minimize 
the difference between the amount of output and reference values taking into 
account constraints on input or on modes. In this way, the future behavior is 
forecast based on model output and with the definition of the cost function and 
constraints imposed on the system input or modes, optimal control is gained to 
minimize the cost function. The advantage of this method is to express the 
nonlinear state-space model, to optimize the current situation with regard to 
the future, simply setting controller, constraints applied to solve the 
optimization problem, including a forward controller to compensate for the 
effect of the measurable disturbance, predicting future events and taking 
appropriate control actions with them. This method is much stronger than 
conventional controllers such as PID and LQR. 

This may be structural or parametric uncertainties that are created because of 
inaccuracies in the statement and system parameters. Uncertainties of 
unstructured or unmodeled dynamics appear to simplify the system targeted. 

Batch reactor systems include uncertainties due to non-linear and 
exponential terms that robust control methods, including sliding mode control 
can control the dynamics of the system to eliminate the effects of these 
uncertainties. 

Model-based predictive control is a wide range of control methods that uses 
explicit model and optimized cost function to obtain a control signal. The 
diagram of predictive control based on the model is shown in Figure 2.  
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Figure 2 - The diagram of a model based predictive control 
In this type of control, using the model of the process, the input and output 

signals in the past, reference signals in the future, and optimization process, 
control input determined in a manner that the difference between the output 
prediction and system reference signal is minimized. Figure 3 shows the 
predictive control strategy.  

Assuming that we are at the time of it and that we have all system 
information, including inputs and outputs until the time at it, we want to 
predict the behavior of the system based on a model using the signals of future 
control to be closed to the output signals of the future plant 

( ),  ( 1),  ... ,  ( )y t y t y t N   to the appropriate values. N is prediction horizon and 
k is control horizon. 

 
Figure 3 - Predictive control strategy 

The selection criteria of plant input signal at the time of future is based on a 
cost function that can be defined with the aim of tracking the reference signal 
in the forecast horizon and of minimizing control efforts u . This cost function 
is usually defined as the square and includes the sum of weighted squared error 
of prediction with the sum of the weighted squares of the development control 
signals as below. This cost function is minimized by using optimization 
algorithm. In this cost function, 1N and 2N are the minimum and the maximum 
forecast horizon and uN  is control horizon.  

1 2
2 2 2

11

( , , )
ˆ( ) ( | ) ( ) ( ) ( 1)
u

NN u
j N j

J N N N
j y t j t w t j j u t j 

 


                                  (7) 

Another important issue is boundary to apply constraints to the system 
design that these constraints can be considered both in the domain and on the 
variation domain. These constraints can be applied to the system in a variety of 
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structural factors (liquid level or flow stream), circumstance factors (the 
maximum temperature in the reactor) and safety factors. A variety of 
constraints, including input domain, input and output changes are defined as 
follows:  

min max
min max

min max

(t) u   0
(t) u(t 1) du  0

(t)  0

u u t
du u t
y y y t

   
     
   

                                                      (8) 

As mentioned, predictive control is defined such that cost function J , which 
is function of the system state variables and inputs ( ( ), (.)x t u ), is minimized 

min ( ( ), (.))u J x t u                                                                                      (9) 
22 2, ( ( ; ( ), ) ( ) ) ( ; ( )( ( ) (. )) ,) t Tp pt Q R PJ x t u x x t t u d x t T x t t                (10) 

Where 2
px  is defined as 

2 :  T
px x P x                                                                                           (11) 

Constraint in the optimization process can be considered to three forms as 
follows: 

* ,  *eq eqA x B A x B                                                                              (12) 
( ) 0,  ( ) 0eqC x C x                                                                                  (13) 

LB x UB                                                                                              (14) 

 (12), (13) and 
2 :  T
px x P x                                                                     

(11) are linear and nonlinear constraints and (14) bounded the states and 
outputs. The cost function (10) must be optimized subject to: 

( , ),   ( ; ( ), ) ( )x f x u x t x t t x t                                                                      (15) 
( ) ,   [ , ]pu U t t T                                                                                 (16) 
( ; ( ), )px t T x t t                                                                                      (17) 

Where n nQ R  and m mR R  denote positive definite, symmetric weighting 
matrices; pT  is a finite horizon; (.; ( ), )x x t t  is the trajectory of (15) driven 
by (.) :[ , ]pu t t T U  . Note the initial conditions in (15): The system model 
used to predict the future in the controller is initialized with the actual, 
measured 
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Finally, cost function limits infinite horizon of nonlinear system.  
2 2 2;( ( ), ( ( ; ( ), ( ) )p t T Q Rp px t T x t t x x t t u d  

                                 (18) 
,   ( ; ( ), )pu kx x t T x t t                                                                   (19) 

By substituting (19) and (20) in in the above equations, we have: 
2 2( ( ), ) ( ( ; ( ), ( ) )t Q RJ x t u x x t t u d                                                   (20) 

( ) ( ; ( ), )  for pu Kx x t t t T                                                                 (21) 
The optimal solution of min ( ( ), (.))u J x t u taking into account the cost function 

and defined constraints in time t  is as below: 
*(.; ( 0, ) :  [ , ]  pu x t t t t T U                                                                   (22) 

The optimal cost function is as follows: 
* *( ( )) : ( ( ), (.))J x t J x t u                                                                             (23) 

The model predictive control implementation is applied to the system when 
the measurement is taken the next step and be available. It is assumed that the 
repeat of this action is done per unit of time   that is called sampling time. 
Finally, the closed loop of the input efforts will be defined as follows: 

* *( ) : ( ; ( ), ) ,  [ , ]u u x t t t t                                                                    (24) 
By measuring the output, the optimization problem will be repeated to be 

solved. In fact, what has been considered here is the optimal solution and 
ultimately offers the appropriate control efforts.  

Note that in this manner, a discrete system should be defined. Here the 
system dynamic equations are defined as differential equations in which the 
derivative is defined as follows:  

( 1) ( )( )   ( 1) ( ) * ( )x k x kx t x k x k T x tT
                                         (25) 

From equation (24), dynamical systems are defined as follows: 

 
- y(k)

- y(k)

x(k 1) (k) (1- (k))

(k 1) (k) [ ( - y(k)) (1- (k))]

b

b
x T a e x

y y T c u d e x

           
                                 (26) 

The first and second states are shown as (1)x and (2)x  respectively. Cost 
function should also be defined as follows 
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21000 ( (k) -1)J x                                                                               (27) 
To pay attention that coefficient applied in cost function is for better 

effectiveness that shows the importance of the final set points value for 
tracking. By reducing this factor, final response reaches the set point later and 
it may also have a steady state error. 

Consider that in this problem we have no linear constraint on bounding the 
states. The only case that must be imposed is a nonlinear constraint on the 
second state (temperature of the reactor) that is of inequality type and defined 
as follow 

(1) 0  ,   (1) (2) - 580, 0eqC C x C                                                          (28) 
So the final constraint is defined as follows 

(2) - 585 0  (2) 585x x                                                                       (29) 
Pay attention that NMPC is an optimal approach for designing controllers 

and its difference from optimal control is that the optimization is done in the 
prediction horizon. For obtaining the optimal control effort in (24) that 
satisfies (23), the cost function in (9) must be optimized.  

 4- Sliding Mode Controller Design 
Uncertainties may come into modeling because of the simplification in 

modeling, disturbances and noises. The uncertainties can be categorized as the 
structural and unstructured that are created because of inaccuracies or 
simplification modeling or the parameter uncertainties.  

Batch reactor system dynamics also due to nonlinear and exponential terms, 
include uncertainties that can be eliminated by the robust control techniques 
including sliding mode control.  The sliding surface can be defined as follows. 

( 1)s x T                                                                                           (29) 
According to the mentioned sliding surface, the control input can be 

considered as follows: 
r equ u u                                                                                               (30) 

In the above equation,  
2 2

2 2 2 2 2
1

-eq
ABx ABx CTx DBx DBx

u AB ABx CT DB DBx ABTCx C CT ABxT CT DBT DBxT

  
         

                    
          (30) 
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( )sign(s)ru                                                                                   (31) 
equ Is to remove certain term ( nomf ) and ru is to remove uncertainties ( unf ). 

Theorem: Consider the dynamic system given in (5). By defining the slides 
surface as (29) the suggested controller structure given in (30), (31) and (32) 
makes the tracking error converge to zero and all signals in the closed loop 
system bounded as well. 

Proof: To prove the stability of the closed loop system, the time derivative 
of the slide variable is as follow replacement 

- -( )(1- ) ( ( - ) ( )(1- ))
B B
T Ts x T A e x C u T D e x                                      (32) 

Where 
12 1216.96 10 ,  16305,  5.627,  1533.975 10A B C D                          (33) 

Because the control input is appeared in the first derivative of variable S, the 
Lyapunov function candidates as 

212v s                                                                                              (34) 
By derivative of Lyapunov function, we have 

( 1 )( )v ss x T x T                                                                            (35) 
For finite time stability, the following condition should be satisfied 

( ) ,  0v ss s t                                                                                (36) 
The above equation can be rewritten as follows. 

0
(0) 0

tr
s

s sss s s ds dts s                                                            (37) 

So the controller is finite time and it is proofed according to (37) that this 
time must satisfy the following inequality equation 

(0)
r

st                                                                                                    (38) 
By replacing state space equations into derivative of Lyapunov function we 

have 

2
( 1 )( ( ))

( )
v x T AB ABx CT DB DBx Cu d t

M Gu d t
            

  
                      (39) 

Where M , G and 2 ( )d t have been defined as follows: 
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2 2
2 2 2 2    -

M ABx ABx CTx DBx DBx AB ABx CT
DB DBx ABT ABxT CT DBT DBxT

   
      
       

                       (40)  
2-G Cx C CT                                                                                    (41) 

2( ) ( 1 ) ( )d t x T d t                                                                                  (42)   
By imposing the control input (30) and (31), we have 

0un r
s sf us s                                                                                       (43) 

If unf  , then ru is obtained by the following equation 
( ) ( )ru sign s                                                                                       (44) 

The second part of the control input for elimination of uncertainties can be 
considered as follows: 

sgn( )ru k s                                                                                   (45) 
By replacing the u in derivative of Lyapunov function 

2 2( ) ( ) ( )eq r rv M G u u d t Gu d t s                                          (46) 
By simplification we have 

( sgn( ) ( )) sgn( )( sgn( ) ( ))s Ck s d t s s Ck s d t                      (47) 
Finally, we have 

sgn( ) ( )Ck s d t                                                                                (48) 
Now by imposing the controller to system it is guaranteed that slides surface 

converges to zero in finite time. 
Here the proof is completed. 
Remark: boundary layer method can be used to eliminate the chattering in 

sliding mode controller. So the second part of controller defined as follows 
( )( )sat( ),  kr

s tu                                                                       (49) 
Where   determines the width of the boundary layer. In addition, we can 

use the continuous function tanh( )s   for better elimination of chattering. 
Parameter k in (45), obtained for worst condition that depends on the 

disturbance d(t). By adding a Sinusoidal perturbation ( ) sin( )d t a t  to the first 
state of the system in (5), worst condition is equal to a. So we have 
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( )k a                                                                                             (50) 
In the next step we will design high gain observer for the system. Consider 

the state space equations of the system as follows 
-( )(1- )

B
Tx A e x                                                                                      (51) 

-( - ) ( )(1- )
B
TT C u T D e x                                                                         (52) 

The only linear term in the equations is CT in (52). By considering that 
couple (A,C) must be observable, the Matrix A defined as follow 

0 0.01
5.627 0.01A                                                                                        (53) 

So the observer structure and estimated state space equation are 
0 0.01ˆ ˆ ˆ( , ) ( )5.627 0.01x x g x u H y Cx      

                                                   (54) 
Where the output of the system is 

1 0y Cx x                                                                                         (55) 
Matrix H must be defined such that (A-HC) be Hurwitz and the observer be 

stable. By using pole placement method, and placing system poles at (100,200) 
this matrix obtained as 

[301  20307]H                                                                                     (56) 
By considering above equations, the observer will be stable and estimated 

states will track the real states as well. 
 5-  Simulation Results 
In this section, first the nonlinear model predictive control designed in 

section 3 practically implemented. The prediction horizon and control horizon 
considered respectively equal to 400 and 5. Sampling time also is set to 0.01. 
The initial values of the states of the system are set (0, 535).  

Figure 4 presents the conversion trend of propylene oxide to propylene 
glycol and Figure 5 shows the changes in the temperature inside the reactor. 
As it stands, despite achieving best in the conversion of raw materials into the 
final product, the reactor temperature does not exceed the allowed limit.  
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Figure 6 indicates control efforts related to design nonlinear model predictive 
control. In fact, with increasing frequency, it can be seen that the figure will be 
continually trying to control the process.   

In section 4, the design of the sliding mode controller and high gain observer 
was discussed. Consider the parameters for the controller as 5    and 1k  , 
the simulation results have been recorded as the following figures.  

Figure 7 shows the conversion of propylene oxide to propylene glycol and 
Figure 8 indicates the reactor temperature changes. Furthermore,  

Figure 9 represents the design control efforts.  As it stands, the first state 
converges to 1. In fact, with conversion of all raw materials to the final 
product, the temperature does not exceed the limit of the 575 degree Rankin.  
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Figure 4- reaction performance after imposing NMPC 

 
Figure 5 – reactor temperature changes after imposing NMPC 

 
Figure 6 – control input obtained by NMPC algorithm 
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Figure 7 – reaction performance after imposing SMC 

 
Figure 8 – reactor temperature changes after imposing SMC 
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Figure 9 – input control obtained by SMC algorithm 
The slide surface is shown in the following figure. 

 
Figure 10 – slide surface 

In the next step, high gain observer designed and sliding mode controller 
tuned based on this observer. Figure 11 indicates the conversion of propylene 
oxide to propylene glycol. Designed controller based on observer lead first 
state variable to the desired value.  

 
Figure 11 – comparing SMC and SMC based high gain observer of the system on first state of 

system 
Figure 12 indicates the second state variable, namely temperature inside the 

reactor. As it shows, designed controller on the basis of observer has also a 
promising performance. This brings the variable state to the desired level. 
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Figure 12 - comparing SMC and SMC based high gain observer system on second state of 

system 
The simulation results show the promising performance of the controller and 

the observer in both convergence of the tracking error to zero and boundedness 
of the signals involved in the closed loop system. 

It can be seen the comparison the performance of PID and NMPC in Figure 
11 and Figure 12. 

 
Figure 13 – comparing PID and NMPC in controlling the reaction performance 
As these figures shows, both controllers have approximately the same 

performance in controlling the reaction. But the main difference is in 
controlling the reactor temperature. As the results show, PID could not keep 
the reactor temperature in the allowed range. 
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Figure 14 – comparing PID and NMPC in controlling the reactor temperature 
Also for MIMO systems, it needs to have a large number of controllers for 

different loops. The main merits of the nonlinear MPC are optimal 
performance of the controller, exerting the linear and nonlinear constraints. 

These are shown comparing the performance of PID and SMC in Figure 15 
and Figure 16. 

 
Figure 15 - comparing PID and SMC in controlling the reaction performance 
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Figure 16 - comparing PID and SMC in controlling the reactor temperature 
As the results shows, although by imposing PID, the reaction complete 

faster, but this controller can’t keep the reactor temperature in the allowed 
range. But SMC by its robust structure could control the reactor temperature as 
well. 

Finally, in Figure 17 and Figure 18, we can see the comparison of NMPC 
and SMC performance. 

 
Figure 17 - comparing NMPC and SMC in controlling the reaction performance 
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Figure 18 - comparing NMPC and SMC in controlling the reactor temperature 

At the these figures shows, in both cases, in addition to  performing reaction 
and conversion of all raw materials to the final product, the reactor 
temperature remained in allowing ranges and there is also not any uncertainty 
in the dynamics of the system.  

 
Conclusion 
This paper discusses about both the nonlinear model predictive control and 

observer based sliding mode controller. The optimal convergence of the 
tracking error to zero in presence of the disturbance, considering the constrains 
in designing procedure and applicability in chemical process are the illustrious 
characteristics of the NMPC. Sliding mode control is more efficient rather than 
traditional method, due to both the robustness against uncertainties and 
external disturbances and simplicity in the designing and implementation in 
practice. Robustness against uncertainties and disturbances, convergence of 
the tracking error to zero and promising performance are the merits of the 
proposed controllers. The simulation results show the promising performance 
of the proposed methods. 
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