
EasyChair Preprint
№ 8531

Discussing Issues in Simulation-Based Uncertainty
Quantification. The Case of Geohazard
Assessments

Ibsen Chivata Cardenas

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 25, 2022



  

Discussing issues in simulation-based uncertainty quantification. The case of 

geohazard assessments 

Ibsen Chivata Cardenas 

Department of Safety, Economics and Planning, University of Stavanger, Norway.  

E-mail: ibsen.chivatacardenas@uis.no 

 

By making explicit the modeling choices and assumptions made, we analyze some issues in quantifying uncertainty 

using geohazard models. Under the often condition of very limited data, a major problem is constraining the many 

parameters involved. We conclude that, despite the availability of recently developed sophistications, the 

quantification based on these ideal parameterized models can hardly be justified since, e.g., they will only reflect 

some aspects of the uncertainty involved. This calls for more insightful approaches which are yet to be developed.  
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1. Introduction 

Uncertainty Quantification, UQ, helps determine how likely the responses of a system are when some 

quantities in the system are not known. Using models, system’s responses can be calculated analytically, 

numerically, or by random sampling. Given the high-dimensional nature of geohazards quantities, 

sampling methods are frequently used because they result in a less expensive and more tractable UQ in 

comparison with analytical and numerical methods. When uncertainty reflects that analysts’ knowledge 

about quantities is incomplete and focused on probabilities measuring that quantities uncertainty, we 

analyze some issues in UQ. We illustrate the points raised by describing critical steps in UQ, which include 

choices and assumptions made by analysts. 

2. Quantifying uncertainty using geohazard models 

Typically, a geohazard model can be described as follows. We consider a system (e.g. debris flow) 

with a set of input quantities X (e.g. sediment concentration, entrainment rate), whose relations to the 

output quantities Y (e.g. runout volume, velocity, or height of flow), can be expressed by a set of models 

Ɱ. All X, Y, and Ɱ are specified by analysts. A vector Θɱ (including, e.g. friction, viscosity, turbulence 

coefficients) parameterize a model ɱ in Ɱ. Parameters Θɱ determine specific functions among a family 

of potential functions modeling the system which constrain the model’s responses. 

Accordingly, a model ɱ can be described as a multi-output function with e.g. Y = {runout volume, 

velocity, height of flow} and we can write Eq. (1) (Based on Lu and Lermusiaux, 2021): 

  

ɱ: Xs,t˟ Θɱ→Ys,t (1) 

ɱ ≡ (E, SGɱ, BCɱ, ICɱ) (2) 

 

where y as realizations of Y are the model responses when X take the values x at a spatial location s 

∈ S and a specific time t ∈ T, and parameters θɱ in Θɱ are used. In Eq. (1), X⊂ℝ𝑑𝑿  is the set of input 

quantities, T⊂ℝ𝑑𝑻 is the time domain, S⊂ℝ𝑑𝑺  is the spatial domain, Θɱ⊂ℝ
𝑑𝜣ɱ  corresponds to a 

parameter vector, and Y⊂ℝ𝑑𝒀   is the set of output quantities. d = 0, 1, 2, or 3. The system is fully 

described if ɱ is specified in terms of a set of equations E (e.g. conservation equations), the spatial 

domain geometry SGɱ (e.g. extension), the boundary conditions BCɱ (e.g. downstream flow), and the 

initial conditions ICɱ (e.g. flow at t = t0), see Eq. (2).  

In the sampling approach to UQ, specified distributions of input quantities are sampled many times 

and the distribution of the produced outputs can be calculated.  When multiple models are considered, 

the output probability distribution for a model ɱ can be denoted as f(y|x,θɱ,ɱ) for realizations y, x, θɱ, 

ɱ of Y, X, Θɱ, and Ɱ respectively. When observations about Y, X exist i.e. ɗ = {Ŷ = ŷ, X̂ = x̂} as part of 

data available Ɗ, we can revise/update f(y|x,θɱ,ɱ) to obtain f(y|x,θɱ,ɗ,ɱ). 



 

If the parameters Θɱ are poorly known, a distribution π(θɱ|ɱ) that weighs each parameter value θɱ, 

can be specified for each ɱ. If some data is available e.g., in the form of corresponding measurements 

ɗ={ŷ,x̂}, ɗ ∈ Ɗ, such distribution can, therefore, be constrained and described as π(θɱ|ɗ,ɱ). However, 

Betz (2017) suggested that the parameter system is fully described by a parameter vector 

Θ={Θɱ,ΘX,Θε,Θo}, in which, Θɱ relates to parameters of the model ɱ, ΘX are parameters linked to the 

input X, Θε is the vector of the prediction-error model, ε=y-y*, (y* are future non-observed system’s 

responses) and Θo is the vector associated with measurement errors. More explicitly, to compute an 

overall output probability distribution for ɱ, in a rather general description, we may have the following. 

f(y|x,θɱ,ɱ) which expresses the probability of the output,  f(x|θX,ɱ) is a distribution reflecting the 

uncertainty of the input, f(y*|y,θε,ɱ) which is linked to model output error, f(x|x̂,θo,ɱ) for measurement 

errors, plus π(θ|ɱ) reflecting overall parameters plausibility. In an attempt to exhaustively quantify 

uncertainty, different models ɱ are considered, and the overall output probability distribution, for models 

assumed mutually independent, is computed as (Betz, 2017): 

 

f(y|x,Θ,Ɗ,Ɱ) =∑f(y|x,θ,ɗ,ɱ)ω(ɱ|Ɗ,Ɱ) (3) 

 

f(y|x,θ,ɗ,ɱ) = ʃ f(y|x,θ,ɱ)π(θ|ɗ,ɱ)dθ     (4) 

  

In Eq. (3), ω(ɱ|Ɗ,Ɱ) is another distribution weighing each model ɱ in Ɱ.  

Back-analysis helps in constraining elements θ, yet in a limited fashion given the considerable 

number of parameters. See in Eq. (3-4). Back-analysis is further challenged by the potential dependency 

among θ or ɱ and between θ and SGɱ, BCɱ, ICɱ. With considerable data and using Bayesian networks 

encoding assumptions (e.g., independence, linear relationships, normality) we may specify a joint 

distribution f(x,θ,ɱ) to be sampled (e.g. Albert, Callies, and von Toussaint, 2022). Yet a more 

conventional case is that the majority of x or θ can only be specified using the maximum entropy principle 

subject to the system's physical constraints and based on analysts' credence, as well as assuming mutual 

independence.  

 Options to address the parametrization problem are surrogate models, parameters reduction, and 

model learning. Remarkably, versions of the latter option do not need any prior information about E but 

require local verification of conservation laws in ɗ (Lu and Lermusiaux, 2021).  Yet such approaches 

are still data demanding.  More importantly, we note that, like many satisfactorily validated models, the 

credibility of not observed surrogate model outputs can always be questioned, since, e.g., records may 

miss crucial events or the models fail to reproduce outputs caused by recorded abrupt changes (e.g., 

extreme velocities turbidity currents). 
 

3. Discussion and conclusion 

By making explicit the modeling choices and assumptions made in UQ, we show that in geohazard 

assessments, it is very difficult to meet data requirements for ideal parameterization of models. In the reported 

analysis, we also note that, if models can be fully parameterized, these could be accurate at reproducing data 

from past events but may turn out to be inadequate for missed input data or quantities or unobserved outputs. 

Under these circumstances, such models can hardly be justified. As presented, model outputs are also not 

only conditional on the choice of Θ (including priors, likelihood functions and linked hyperparameters) 

but on SGɱ, BCɱ, ICɱ, as well as on the complete specification of X, and the many assumptions made 

by analysts. Unfortunately, only some elements in Θ, SGɱ, BCɱ, ICɱ, or X can be constrained by data, thus, 

considering all the above, the quantification will only reflect some aspects of the uncertainty involved. This 

calls for more thoughtful approaches which are yet to be developed. 
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