

Some Game via Grill-Semi-P-Open

Noora Shahatha and Rana Esmaeel

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

May 19, 2021

Some game via Grill-semi-p-open set

N.M. shahatha¹ and R.B. Esmaeel²

Department of Mathematics, Ibn Al-Haitham^{1,2}

College of Education University of Baghdad, IRAQ

¹noora1993327@gmail.com

²ranamumosa@yahoo.com ORCID ID: https://orcid.org/0000-0002-4743-6034²

ABSTRACT

This research presents some kind of games through open collection G-spo set using the grill topological space that are games of type which is Game (G-SP- $T_i - space, G$), when $i=\{0,1,2\}$ By using many figures and proposition, the relation between these types of games has been studied with explaining some examples.

Keywords. Game g (G-SP- T_0 -space, G), Game g(G-SP- T_1 -space, G), Game g(G-SP- T_2 -space, G).

Introduction

A nonempty family G of a topological space X is named a Grill whenever

i. $M \in G$ and $M \subseteq S \subseteq \dot{X}$ then $S \in G$.

ii. M, $S \subseteq \dot{X} \land M \cup S \in G$ then $M \in G \lor S \in G$. [1] Suppose that \dot{X} is a nonempty set, Then the following families are grills on \dot{X} . [1-3]

- 1) \emptyset and $p(X) \setminus \{\emptyset\}$ are trivial examples of a grill on X
- 2) G_{∞} which is the collection of all infinite subsets of \dot{X} .
- 3) G_{co} which is the collection of all uncountable subsets of \dot{X} .
- 4) $G_p = \{\Lambda : \Lambda \in p(\dot{X}), p \subseteq \Lambda\}$ is a specific point grill on \dot{X} .
- 5) G_A= {S: S∈p(X), S∩M ≠ Ø}, and If (X, T) is a topological space, then the family of all non-nowhere dense subsets called G= {M:*int_T* cl_T(M) ≠ Ø}. Is the one of kinds of a grill on X. Suppose that G is a grill on (X,T) The operator Ø: p(X)→p(X) is defined by Ø (M)={x ∈ X\ u ∩ M ∈ G, for all u ∈ T(X)}, T(X) indicate the neighborhood of x. A mapping Ψ: p(X)→p(X) is defined as Ψ (M) = M ∪ Ø (M) for all M ∈ p(X). [4,5]

The map Ψ satisfies Kuratowski closure axioms: [3,4]

- 1. $\Psi(\emptyset) = \emptyset$
- 2. If $M \subseteq S$, then $\Psi(M) \subseteq \Psi(S)$,
- 3. If $M \subseteq \dot{X}$, then $\Psi(\Psi(M)) = \Psi(M)$,
- 4. If $M, S \subseteq \dot{X}$, then $\Psi(M \cup S) = \Psi(M) \cup \Psi(S)$.

A subset M of (\dot{X},T) is a preopen set if $M \subseteq intcl M$ The complement of a preopen set is named preclosed set. The collection of all preopen sets of \dot{X} is indicate by $po(\dot{X})$. The collection of all preclosed sets of \dot{X} is indicate by $pc(\dot{X})$. [7]

Now PCL= $\cap \{M \subseteq \dot{X}; \dot{u} \subseteq M \text{ whenever } M^c \in PO(\dot{X})\}$. [7]

A subset M of (\dot{X}, \mathcal{T}) is named semi-p-open set, if and only if there exists a preopen set in \dot{X} say \bigcup such that $\bigcup \subseteq M \subseteq PCL \bigcup$. The collection of all semi-p-open sets of \dot{X} is indicated by S-PO(\dot{X}). The complement of a semi-p-closed set. The family of all semi-p-closed sets of \dot{X} is indicated by S-PC(\dot{X}). [7]

It is clearly that every preopen set is a S-PO set. [7]

In this paper, we study the G-SP-closed set and its complement G-SP-open set with many functions by these notions like: G-SP-open function, G*-SP-open function, G**-SP-open function, G-SP-continuous, strongly-G-SP-continuous, and G-SP-irresolute function and new separation axioms like G-SP- \mathcal{T}_0 -space, G-SP- \mathcal{T}_1 -space, G-SP- \mathcal{T}_2 -space with G-SP-convergence sequence.

Let g be a game between two players ρ_1 and ρ_2 . The set of *choices* $\hat{L}_1, \hat{L}_2, \hat{L}_3, \dots, \hat{L}_n$ For each player. These choices are called moves or options. [6,7]

We have two kinds of games are alternating game, and simultaneous game

which will be explained in the following. Alternating game is one of players ρ_1 chose one of the *options* $\hat{L}_1, \hat{L}_2, \hat{L}_3, \dots, \hat{L}_n$. Next player ρ_2 choose one of these moves when knowing the chooses of ρ_1 . In alternating games must determine the player who he starts the game [8,9]. A simultaneous game is both players select their moves in the same time without knowing the choice of the other player. If a game has more than one stage then the game is called a repeated game. The game possible infinite or finite to the number repetition of the game in the end of all stage all players get a certain reward [6].

In this research provided the sorts of game through a given set. The winning and losing strategy for any player ρ in the game g, if ρ has a winning strategy in gshortly by ($\rho \nearrow g$) and if P does not have a winning strategy shortly by ($\rho \nearrow g$), if P has a losing strategy shortly by ($\rho \searrow g$) and if ρ does not has a losing strategy shortly by ($\rho \gg g$).

1.Preliminaries.

Definition 1.1: [10] Let (\dot{X}, \mathcal{T}) be a topological space, define a Game g (T_0, \dot{X}) as follows: The two players ρ_1 and ρ_2 are play an inning for each natural numbers, in the Z- th inning, the first round, ρ_1 will choose $m_z \neq s_z$, when $m_z, s_z \in \dot{X}$.

Next, ρ_2 choose $V_z \in \mathcal{T}$ such that $m_z \in V_m$ and $s_z \notin V_z$, ρ_2 wins in the game, when $\beta = \{V_1, V_2, V_3, \dots, V_z, \dots\}$ satisfies that for all $m_z \neq m_z$ in \dot{X} there exist β such that $m_z \in V_z$ and $s_z \notin V_z$. Other hand ρ_1 wins.

Definition 1. 2: [10] Let (\dot{X}, T) be a topological space, define a Game g (T_1, \dot{X}) as follows: The two players ρ_1 and ρ_2 are play an inning for each natural numbers, in the Z- th inning, the first round, ρ_1 will choose $m_z \neq s_z$, when $m_z, s_z \in \dot{X}$.

Next, ρ_2 choose $V_z, Q_z \in \mathcal{T}$ such that $m_z \in (V_z - Q_z)$ and $s_z \in (Q_z - V_z)$, ρ_2 wins in the game, when $\beta = \{\{V_1, Q_1\}, \{V_2, Q_2\}, ..., \{V_z, Q_z\}, ..., \}$ $h_s \in (Q_z - V_z)$, satisfies that for all $m_z \neq s_z$ in \dot{X} there exists $\{V_z, Q_z\} \in \beta$ such that $m_z \in (V_z - Q_z)$ and $s_z \in (Q_z - V_z)$. Other hand ρ_1 wins.

Definition 1. 3: [10] Let (\dot{X}, \mathcal{T}) be a topological space, define a Game g (\mathcal{T}_2, \dot{X}) as follows: The two

players ρ_1 and ρ_2 are play an inning for each natural numbers, in the z- th inning, the first round,

 ρ_1 will choose $m_z \neq s_z$, where $m_z, s_z \in \dot{X}$.

Next, ρ_2 choose V_z , Q_z are disjoint, V_z , $Q_z \in \mathcal{T}$ such that $m_z \in V_z$ and $s_z \in Q_z$, ρ_2 wins in the game, where $\beta = \{\{V_1Q_1\}, \{V_2, Q_2\}, ..., \{V_z, Q_z\},\}$, satisfies that for all $m_z \neq s_z$ in \dot{X} there exists $\{V_z, Q_z\} \in \beta$ such that $m_z \in V_z$ and $s_z \in Q_z$. Other hand ρ_1 wins.

2.G-SP-Openness on Game.

Definition 2.1: Let $(\dot{X}, \mathcal{T}, G)$ be a grill topological space and let $M \subseteq \dot{X}$, Then M is called Grill semi-p-open set denoted by "G-SPO set " if $\exists v \in PO(\dot{X})$ such that $v-M \notin G \land M$ -PCL $(v) \notin G$. the set of all G-SPO sets denoted by G-SPO (\dot{X}) .

Example2.2: Let $\dot{X} = \{m_1, m_2, m_3\}, \mathcal{T} = \{\dot{X}, \emptyset, \{m_1\}\}$ PO(\dot{X})= { $\dot{u} \subseteq \dot{X}; m_1 \in \dot{u}$ } $\cup \emptyset$, PC(\dot{X}) = { $\mathcal{F} \subseteq \dot{X}; m_1 \notin \mathcal{F}$ } $\cup \dot{X}$. Then G-SPO (\dot{X}) = $p(\dot{X}$). **Example 2.3:** Let $\dot{X} = \{m_1, m_2, m_3, m_4\}, \mathcal{T} = \{\dot{X}, \emptyset, \{m_1\}, \{m_4\}, \{m_1, m_4\}\}, G= p(\dot{X}) \setminus \{\emptyset\},$ PO (\dot{X}) = { $\dot{X}, \emptyset, \{m_1\}, \{m_4\}, \{m_1, m_4\}, \{m_1, m_2, m_4\}, \{m_1, m_3, m_4\}\}.$ PC(\dot{X}) = { $\dot{X}, \emptyset, \{m_2, m_3, m_4\}, \{m_1, m_2, m_3\}, \{m_2, m_3\}, \{m_3\}, \{m_2\}\}, G-SPO(\dot{X})=\{\dot{X}, \emptyset, \{m_1\}, \{m_4\}, \{m_1, m_2, m_3\}, \{m_1, m_2, m_3\}, \{m_1, m_2, m_4\}, \{m_1, m_3, m_4\}.$ **Remark 2.4:** [7] $\bigcup_{i \in \Lambda} PCL(\dot{u}_i) \subseteq PCL(\bigcup_{i \in \Lambda} \dot{u}_i)$.

Proposition 2.5: If $M_i \in G$ -SPO(\dot{X}) $\forall i \in \Lambda$, then $\bigcup_{i \in \Lambda} M_i \in G$ -SPO(\dot{X}).

Proof: Let M_i ∈ G-SPO(Ẋ), ∃ ů ∈ PO(Ẋ), (ů_i − M_i) ∉G ∧(M_i −PCL(ů_i))∉ G∀ i ∈∧ . this implies, U_i(ů_i − M_i) ∉ G, so (U_i ů_i − U_i M_i) ⊆ U_i(ů_i − M_i) ∉ G, therefore, (U_i ů_i − U_i M_i) ∉ G, On the other hands, (M_i − PCL (ů_i)) ∉ G ∀ i ∈ ∧ ,U_i (M_i − PCL(ů_i)) ∉ G, (U_i M_i − U_i PCL (ů_i)) ⊆ U_i(M_i − PCL(ů_i)) ∉ G so, U_i M_i − U_i(PCL(ů_i)) ∉ G ,since U_i PCL(ů_i) ⊆ PCL(U_i ů_i), there for (U_{i∈∧} M_i − PCL(U_i ů_i)) ⊆ (U_i M_i − U_i PCL(ů_i)) ∉ G so,(U_i M_i − PCL(U_i ů_i)) ∉ G. **Corollary 2.6:** If *F_i* ∈ G-SPC(Ẋ), then ∩_i *F_i* ∈ G-SPC(Ẋ). **Remark 2.7:** *let* M, S ∈ G -SPO(Ẋ) then M ∩ S need not to be a G-SPO set. **Example 2.8:** *Let* Ẋ = {m₁, m₂, m₃, m₄}, *T* = {Ẋ, Ø, {m₁}, {m₄}, {m₁, m₄}}, PO(Ẋ) = {Ẋ, Ø, {m₁}, {m₄}, {m₁, m₂, m₃}, {m₂, m₃}, {m₂}, {m₃}, {m₂}}, G=p(Ẋ)\{Ø}, G-SPO(Ẋ) = {Ẋ, Ø, {m₁}, {m₄}, {m₁, m₂, m₄}, {m₁, m₃}, {m₁, m₄}, {m₁, m₃, m₄}},

Remark 2.9: let M, $S \in G$ -SPC(\dot{X}) then M $\cup S$ need not be a G-SPC set. See Example 2.8, let $M = \{m_1, m_2, m_3\}$, $S = \{m_2, m_4\}$, $M^c = \{m_4\}$, $S^c = \{m_2, m_3\}$, M^c , S^c are G-SPC(\dot{X}), then $M^c \cup S^c = \{m_1, m_3, m_4\}$ which is not a G-SPC(\dot{X}). **Remark 2.10:** [7] Each open set is a preopen set. **Proposition 2.11:** Each open set is a G -SPO set. **Proof:** Let $M \in \mathcal{T}$ by Remark 2.4, so M is a preopen set; $\exists M \in po(\dot{X})$, such that, $M - M = \{\emptyset\} \notin G$, And M-PCL $(M) = \{\emptyset\} \notin G$, therefor M is a G-SPO set. **Corollary2.12:** If F is a closed set, then F is a G-SPC set. **Proposition 2.13:** Every semi-PO set is G-SPO set. **Proof:** Let $M \in S$ -PO(\dot{X}) for that $\exists \dot{u} \in PO(\dot{X})$ such that $\dot{u} \subseteq M \subset PCL(M)$, further more \dot{u} -M= $\{\emptyset\} \notin G \land M$ -PCL $(M) = \{\emptyset\} \notin G$. Hence, M is a G-SPO set. As for the reverse proposition (2.13) it is not necessarily to be achieved. **Example 2.14:** suppose that $\dot{X} = \{m_1, m_2, m_3, m_4\}, \mathcal{T} = \{\dot{X}, \emptyset, \{m_1\}, \{m_4\}, \{m_1, m_4\}\}, \{m_1, m_2, m_4\}, \{m_1, m_3, m_4\}\},$

 $PC(\dot{X}) = \{\dot{X}, \emptyset, \{m_2, m_3, m_4\}, \{m_1, m_2, m_3\}, \{m_2, m_3\}, \{m_3\}, \{m_2\}\},\$

G-SPO(X)=p(X). Then $\{m_2\} \in G$ -SPO(X), But $\{m_2\} \notin G$ -SPO(X).

Remark2.15: The collection of all G-SPO set is a supra topological space.

Definition 2.16: The space $(\dot{X}, \mathcal{T}, G)$ is a G-SP- \mathcal{T}_0 -space if for each $M \neq S$ and $M, S \in \dot{X}$, there exist $\bigcup \in G$ -SPO (\dot{X}) whenever, $M \in \bigcup$ and $S \notin \bigcup$ or $M \notin \bigcup$ and $S \in \bigcup$.

Definition 2.17: The space $(\dot{X}, \mathcal{T}, G)$ is a G-SP- T_1 -space if for each $M \neq S$ and $M, S \in \dot{X}$. then there exist V_1, V_2 are G-SPO set, whenever $M \in V_1, S \notin V_1$ and $M \in V_2, S \notin V_2$.

Definition 2.18: The space $(\dot{X}, \mathcal{T}, G)$ is a G-SP- T_2 -space if for each $M \neq S$, there are G-SPO set $\exists V_1, V_2$ wherever $M \in V_1, S \in V_2$ and $V_1 \cap V_2 = \{ \emptyset \}$.

<u>Remark 2.19</u>: If The space $(\dot{X}, \mathcal{T}, G)$ is a G-SP- T_{i+1} -space then it is a G-SP- T_i -space (for every $i \in \{0,1\}$).

3-Some Game in G-SP-open sets

Definition 3.1:

Let $(\dot{X}, \mathcal{T}, G)$ be a grill topological space, define a Game g (G-SP- \mathcal{T}_0 , \dot{X}) as follows: the two players ρ_1 and ρ_2 are play an inning for each natural numbers, in the Z- th inning, the first round, ρ_1 will choose $m_z \neq s_z$, when $m_z, s_z \in \dot{X}$. Next, ρ_2 choose $V_z \in G$ -SPO(\dot{X}) such that $m_z \in V_z$ and $s_z \notin V_z, \rho_2$ wins in the game, when $\beta = \{V_1, V_2, V_3, \dots, V_z, \dots\}$ satisfies that for all $m_z \neq s_z$ in \dot{X} there exist β such that $m_z \in V_z$ and $s_z \notin V_z$. Other hand ρ_1 wins.

Example 3.2:

Let Game $g(\mathcal{T}_0, \dot{X})$ be a game, $\dot{X} = \{m_1, m_2, m_3, m_4\}$ and $\mathcal{T} = \{\dot{X}, \emptyset, \{m_1\}, \{m_4\}, \{m_1, m_4\}\}$.

G=Ø therefor, G-SPO(X)= P(X) then in the first round ρ_1 will choose $m_1 \neq m_2$, whenever

 $m_1, m_2 \in \dot{X}$.Next, ρ_2 choose $\{m_1\} \in G - SPO(\dot{X})$ such that $m_1 \in \{m_1\}$ and $m_2 \notin \{m_1\}$, in the second round ρ_1 will choose $m_1 \neq m_2$, whenever $m_1, m_2 \in \dot{X}$. Next ρ_2 choose $\{m_1\} \in G - SPO(\dot{X})$ Such that $m_1 \in \{m_1\}$ and $m_2 \notin \{m_1\}$, in the third round ρ_1 will choose $m_2 \neq m_3$ whenever $m_2, m_3 \in \dot{X}$. Next, ρ_2 choose $\{m_3\} \in G - SPO(\dot{X})$ Such that $m_2 \in \{m_2\}$ and $m_3 \notin \{m_2\}, \rho_2$ wins in the game, whenever, $\beta = \{\{m_1\}, \{m_2\}\}$.

<u>Remark 3.3</u>: for any grill topological space $(\dot{X}, \mathcal{T}, G)$:

- i. If $\rho_2 \nearrow$ in a Game g (\mathcal{T}_0 , \dot{X}) then $\rho_2 \nearrow$ in a Game g (G-SP- \mathcal{T}_0 , \dot{X}).
- ii. If $\rho_2 \searrow$ in a Game g (\mathcal{T}_0 , X) then $\rho_2 \searrow$ in a Game g (G-SP- \mathcal{T}_0 , X).
- iii. If $\rho_1 \nearrow$ in a Game g (G-SP- \mathcal{T}_0 , X) then $\rho_1 \nearrow$ in a Game g (\mathcal{T}_0 , X).

Proof: It is clear by Remark 2.4.

<u>Theorem3.4</u> Let (\dot{X} , \mathcal{T} , G) is a G-SP- \mathcal{T}_0 - space if and only if $\rho_2 \nearrow$ in a Game g (G-SP- \mathcal{T}_0 , \dot{X})

Proof: Since $(\dot{X}, \mathcal{T}, G)$ is a G-SP- \mathcal{T}_0 - space then in the Z- th inning any choice for the first player ρ_1 choose $m_z \neq s_z$, when $m_z, s_z \in \dot{X}$. The second player ρ_2 can be found $V_z \in G$ -SPO (\dot{X}) .thus $\beta = \{V_1, V_2, V_3, \dots, V_z, \dots\}$ is the winning strategy for ρ_2 .

Conversely, Clear.

Theorem 3. 5: The grill topological space (\dot{X} , \mathcal{T} , G) is a G-SP- T_0 -space if and only if for each elements m \neq S there exists two G-SPC set containing only one of them.

Proof: \Rightarrow) Let m and S are two distinct elements in X. Since X is a G-SP- T_0 -space then there is a G-SPO set V containing only one of them, then (X-V) is a G-SPC sets containing the other one.

 \Leftarrow)Conversely, let m and S are two distinct elements in \dot{X} and there is a G-SPC set W containing only one of them. then (\dot{X} - W) is a G-SPO set containing the other one.

<u>Corollary 3.6</u>: For a space $(\dot{X}, \mathcal{T}, G)$, $\rho_2 \nearrow$ in a Game g (G-SP- \mathcal{T}_0 , \dot{X}) if and only if, for every $s_1 \neq s_2$ in \dot{X} , there exists $V \in G$ -SPC(\dot{X}) such that $s_1 \in V$ and $s_2 \notin V$.

Proof: Let $s_1, s_2 \in \dot{X}$ when $s_1 \neq s_2$, since $\rho_2 \nearrow$ in a Game g (G-SP- \mathcal{T}_0 , \dot{X}) then by Theorem 3.4, the space (\dot{X}, \mathcal{T}, G) is a G-SP- \mathcal{T}_0 -space. Then Theorem 3.5 is applicable.

Conversely, By Theorem 3.5 the grill topological space $(\dot{X}, \mathcal{T}, G)$ is a G-SP- \mathcal{T}_0 - space Then Theorem 3.4 is applicable.

<u>Corollary 3.7</u>: let $(\dot{X}, \mathcal{T}, G)$ is a G-SP- \mathcal{T}_0 - space if and only if $\rho_1 \nearrow$ in a Game g (G-SP- \mathcal{T}_0, \dot{X}).

Proof: By theorem 3.4 the proof is over.

<u>Theorem 3.8</u>: let $(\dot{X}, \mathcal{T}, G)$ is not a G-SP- \mathcal{T}_0 - space if and only if $\rho_1 \nearrow$ in a Game g(G-SP- \mathcal{T}_0, \dot{X}).

Proof: In the Z-th inning ρ_1 in a Game g (G-SP- \mathcal{T}_0 , \dot{X}) choose $m_z \neq s_z$, where $m_z, s_z \in \dot{X}$. ρ_2 in a Game g (G-SP- \mathcal{T}_0 , \dot{X}) cannot be found V_z is a G-SPO sets containing only one element of them, because $(\dot{X}, \mathcal{T}, G)$ is not G-SP- \mathcal{T}_0 -space hence $\rho_1 \nearrow$ in a Game g (G-SP- \mathcal{T}_0 , \dot{X}).

Conversely, Clear.

<u>Corollary 3.9</u>: let $(\dot{X}, \mathcal{T}, G)$ be not a G-SP- \mathcal{T}_0 - space if and only if $\rho_2 \nearrow$ in a Game g (G-SP- \mathcal{T}_0 , \dot{X}).

Proof: By theorem 3.4 the proof is over.

Definition 3. 10: Let $(\dot{X}, \mathcal{T}, G)$ be a grill topological space, define a Game g $(G-SP-\mathcal{T}_1, \dot{X})$ as follows: The two players ρ_1 and ρ_2 are play an inning for each natural numbers, in the Z- th inning, the first round, ρ_1 will choose $m_z \neq s_z$, where $m_z, s_z \in \dot{X}$. Next, ρ_2 choose V_m , $V_s \in G-SPO(\dot{X})$ such that $m_z \in (V_m - V_s)$ and $s_z \notin (V_s - V_m)$, ρ_2 wins P_2 wins in the game, where $\beta = \{\{V_1V_1\}, \{V_2, V_2\}, \dots, \{V_z, V_z\}, \dots\}$,

satisfies that for all $m_z \neq s_z$, in \dot{X} there exists $\{V_m, V_S\} \in \beta$ such that $m_z \in (V_m - V_S)$ and $s_z \in (V_S - V_m)$. Other hand ρ_1 wins.

Example 3.11:

Let Game $g(\dot{X},\mathcal{T},G)$ be a game, $\dot{X} = \{m_1, m_2, m_3\}$ and $\mathcal{T} = \{\dot{X}, \emptyset, \{m_2\}\}$. $G = \{\hat{u} \subseteq \dot{X}; m_2 \in \hat{u}\}, PO(\dot{X}) = \{\dot{X}, \emptyset, \{m_2\}, \{m_2, m_3\}, \{m_1, m_2\}\}$ and $PC(\dot{X}) = \{\dot{X}, \emptyset, \{m_1, m_3\}, \{m_1\}, \{m_3\}\}$ therefor, G-SPO $(\dot{X}) = \{\dot{X}, \emptyset, \{m_2\}, \{m_1, m_2\}, \{m_2, m_3\}\}$ then in the first round ρ_1 will choose $m_1 \neq m_2$, whenever $m_1, m_2 \in \dot{X}$.Next ρ_2 connot be found $V_z, Q_z \in G - SPO(\dot{X})$ such that $m_1 \in (V_z - Q_z)$ and $m_2 \in (Q_z - V_z)$, so ρ_1 wins in the game.

<u>Remark 3. 12</u>: For any grill topological space $(\dot{X}, \mathcal{T}, G)$:

i. If $\rho_2 \nearrow$ in a Game g (\mathcal{T}_1 , \dot{X}) then $\rho_2 \nearrow$ in a Game g (G-SP- \mathcal{T}_1 , \dot{X}).

ii. If $\rho_2 \searrow$ in a Game g (\mathcal{T}_1 , \dot{X}) then $\rho_2 \searrow$ in a Game g (G-SP- \mathcal{T}_1 , \dot{X}).

iii. If $\rho_1 \nearrow$ in a Game g (G-SP- \mathcal{T}_1 , \dot{X}) then $\rho_1 \nearrow$ in a Game g (\mathcal{T}_1 , \dot{X}).

Theorem 3. 13: Let $(\dot{X}, \mathcal{T}, G)$ is a G-SP - space if and only if $\rho_2 \nearrow$ a Game g(G-SP- \mathcal{T}_1, \dot{X}).

Proof: Let $(\dot{X}, \mathcal{T}, G)$ be a grill topological space, in the first round ρ_1 will choose $m_1 \neq s_1$, where $m_1, s_1 \in \dot{X}$. Next, since $(\dot{X}, \mathcal{T}, G)$ is a G-SP - space ρ_2 can be found $V_1, Q_1 \in G$ -SP O(X) such that $m_1 \in (V_1 - Q_1)$ and $s_1 \in (Q_1 - V_1)$ in the second round ρ_1 will choose $m_2 \neq s_2$, where $m, s_2 \in \dot{X}$. Next, ρ_2 can be found $V_2, Q_2 \in G$ -SP O(X) such that $m_2 \in (V_2 - Q_2)$ and $s_2 \in (Q_2 - V_2)$, in the Z- th round, ρ_1 will choose $m_n \neq s_n$, where $m_n, s_n \in \dot{X}$. Next, ρ_2 can be found $V_n, Q_n \in G$ -SP O(X) such that $m_n \in (V_n - Q_n)$ and $s_n \in (Q_n - V_n)$. Thus $\beta = \{\{V_1, Q_1\}, \{V_2, Q_2\}, \dots, \{V_n, Q_n\}, \dots\}$ is the winning strategy for ρ_2 .

Conversely Clear.

Theorem 3. 14: The grill topological space $(\dot{X}, \mathcal{T}, G)$ is a G-SP- T_1 -space if and only if for each elements $m \neq s$ there exists two G-SPC sets H_1 and H_2 such that $m \in (H_1 - H_2)$ and $s \in$

 $(H_2 - H_1).$

Proof: Let m and s are two distinct elements in \dot{X} . Since \dot{X} is a G-SP- T_1 -space then there exists two G-SPO sets H_1 and H_2 such that $m \in (H_1 - H_2)$ and $s \in (H_2 - H_1)$. then there exists G-SPC sets $(\dot{X}-V_1)$ and $(\dot{X}-V_2)$ such that $m \in ((\dot{X}-H_2)-(\dot{X}-H_1))$, $s \in ((\dot{X}-H_1)-(\dot{X}-H_2))$ where $(\dot{X}-H_1) = \ddot{Y}_1$ and $(\dot{X}-H_1) = \ddot{Y}_2$. then there exists two G-SPC sets \ddot{Y}_1 and \ddot{Y}_2 satisfy x

 $\in (\ddot{\mathbb{Y}}_1 - \ddot{\mathbb{Y}}_2{}^{c}) \text{ and } s \in (\ddot{\mathbb{Y}}_2 - \ddot{\mathbb{Y}}_1{}^{c}) \text{there for } x \in (\ddot{\mathbb{Y}}_1 - \ddot{\mathbb{Y}}_2) \text{ and } s \in (\ddot{\mathbb{Y}}_2 - \ddot{\mathbb{Y}}_1).$

Conversely Let m and s are two distinct elements in \dot{X} and there exists two G-SPC sets \ddot{y}_1 and $\ddot{y}_{2 \text{ satisfy}} m \in (\ddot{y}_1 - \ddot{y}_2^c)$ and $s \in (\ddot{y}_2 - \ddot{y}_1^c)$ then there exists G-SPO set $(\dot{X} - \ddot{y}_1)$ and $(\dot{X} - \ddot{y}_2)$ whenever $m \in ((\dot{X} - \ddot{y}_2) - (\dot{X} - \ddot{y}_1))$, $s \in ((\dot{X} - \ddot{y}_1) - (\dot{X} - \ddot{y}_2))$ where $(\dot{X} - \ddot{y}_2) = H_1$ and $(\dot{X} - \ddot{y}_1) = H_2$.

Corollary 3.15: For a space $(\dot{X}, \mathcal{T}, G)$, $\rho_2 \nearrow$ in a Game g (G-SP- \mathcal{T}_1 , \dot{X}) if and only if, for every $s \neq s_2$ in \dot{X} , there exists $\ddot{y}_1, \ddot{y}_2 \in G$ -SPC(X) such that $s_1 \in (\ddot{y}_1 - \ddot{y}_2)$ and $s_2 \in (\ddot{y}_2 - \ddot{y}_1)$.

Proof: Let $s_1 \neq s_2$ where $s_1, s_2 \in \dot{X}$, since $\rho_2 \nearrow$ in a Game g (G-SP- \mathcal{T}_1 , \dot{X}) then by Theorem 3.13, the space $(\dot{X}, \mathcal{T}, \mathbf{G})$ is G-SP- \mathcal{T}_1 -space. Then Theorem 3.14 is applicable.

Conversely, by Theorem 3.14 the grill topological space $(\dot{X}, \mathcal{T}, G)$ is a G-SP- \mathcal{T}_1 -space Then Theorem 3.13 is applicable.

<u>Corollary 3. 16</u>: Let $(\dot{X}, \mathcal{T}, G)$ is a G-SP- \mathcal{T}_1 - space if and only if $\rho_1 \nearrow$ in a Game g (G-SP- \mathcal{T}_1 , \dot{X})

Proof: By Theorem 3.13, the proof is over.

Proposition 3. 17: Let $(\dot{X}, \mathcal{T}, G)$ is not G-SP- T₁- space if and only if $\rho_1 \nearrow$ in a Game g (G-SP- \mathcal{T}_1 , \dot{X}).

Proof: In the Z-th inning ρ_1 in a Game g(G-SP- \mathcal{T}_1 , \dot{X}) choose $x_m \neq x_s$, where x_m , $x_s \in \dot{X}$, ρ_2 a Game g(G-SP- \mathcal{T}_1 , \dot{X}), cannot be found V_m , Q_m are two G-SPO sets such that $x_m \in (V_m - Q_m)$ and $x_s \in (Q_m - V_m)$ because $(\dot{X}, \mathcal{T}, G)$ is not G-SP- \mathcal{T}_1 -space hence $\rho_1 \nearrow$ a Game g(G-SP- \mathcal{T}_1 , \dot{X})

Conversely Clear.

<u>Corollary 3.18</u>: Let $(\dot{X}, \mathcal{T}, G)$ is not G-SP- \mathcal{T}_1 -space if and only if $\rho_2 \not \geq$ in a Game g(G-SP- \mathcal{T}_1, \dot{X}).

Proof: By theorem 2. 19. The proof is over.

Definition 3.19: Let $(\dot{X}, \mathcal{T}, G)$ be a grill topological space define *in a* Game g(G-SP- \mathcal{T}_2 , \dot{X}) as follows: The two players ρ_1 and ρ_2 are play an inning for each natural number, in the Z- th inning, the first round, ρ_1 will choose $m_z \neq s_z$, where $m_z, s_z \in \dot{X}$. Next, ρ_2 choose V_z, Q_z are disjoint, $V_z, Q_z \in G$ -SPO(\dot{X}) such that $m_z \in V_z$ and $s_z \in Q_z$. ρ_2 wins in the g ame, when $\beta = \{\{V_1, Q_1\}, \{V_2, Q_2\}, \dots, \{V_n, Q_n\}, \dots\}$

satisfies that for all $m_z \neq s_z$ in X there exists $\{V_z, Q_z\} \in \beta$ such that $m_z \in V_z$ and $s_z \in Q_z$. Other hand ρ_1 wins.

By the same way of Example 2. 12 we can be explained that ρ_2 wins in the Game g(G-SP \mathcal{T}_2 , \dot{X}) where V, Q are two disjoint, G-SPO sets and β be a collection of all disjoint G-SPO sets in \dot{X} other hand ρ_1 wins.

Example3.20:

Let Game $g(\mathcal{T}_2, \dot{X})$ be game $, \dot{X} = \{m_1, m_2, m_3\}$ and $\mathcal{T} = \{\dot{X}, \emptyset, \{m_2\}\}$. $G = \{\hat{u} \subseteq \dot{X}; m_2 \in \hat{u}\}$, $PO(\dot{X}) = \{\dot{X}, \emptyset, \{m_2\}, \{m_2, m_3\}, \{m_1, m_2\}\}$ and $PC(\dot{X}) = \{\dot{X}, \emptyset, \{m_1, m_3\}, \{m_1\}, \{m_3\}\}$ therefor, G-SPO $(\dot{X}) = \{\dot{X}, \emptyset, \{m_2\}, \{m_1, m_2\}, \{m_2, m_3\}\}$ then in the first round ρ_1 will choose $m_1 \neq m_2$, whenever $m_1, m_2 \in \dot{X}$. Next, ρ_2 cannot be found $V_n, Q_n \in G - SPO(\dot{X})$ such that $m_1 \in V_n$ and $m_2 \in Q_n$, $V_n \cap Q_n = \{\emptyset\}$ thus ρ_1 wins in the game.

<u>Remark 3.21</u>: for any grill topological space $(\dot{X}, \mathcal{T}, G)$:

- i. If $\rho_2 \nearrow$ a Game g (\mathcal{T}_2 , \dot{X}) then $\rho_2 \nearrow$ in a Game g (G-SP- \mathcal{T}_2 , \dot{X}).
- ii. If $\rho_2 \searrow$ a Game g (\mathcal{T}_2 , \dot{X}) then $\rho_2 \searrow$ in a Game g (G-SP- \mathcal{T}_2 , \dot{X}).

iii. If $\rho_1 \nearrow$ a Game g (G-SP- \mathcal{T}_2 , \dot{X}) then $\rho_1 \nearrow$ in a Game g (\mathcal{T}_2 , \dot{X}).

Proof: It is clear by proposition 2.4

<u>Theorem 3. 22</u>: A space $(\dot{X}, \mathcal{T}, G)$ is a G-SP- \mathcal{T}_2 -space if and only if $\rho_2 \nearrow$ in a Game g(G-SP- \mathcal{T}_2, \dot{X}).

Proof: Let $(\dot{X}, \mathcal{T}, G)$ be a grill topological space in the first round ρ_1 will choose $m_1 \neq \hat{s}_1$, where $m_1, s_1 \in \dot{X}$. Next since $(\dot{X}, \mathcal{T}, G)$ is a G-SP- \mathcal{T}_2 -space ρ_2 can be found V_1 and $Q_1 \in G$ -SPO (\dot{X}) such that $m_1 \in V_1$ and $s_1 \in Q_1$, $V_1 \cap Q_1 = \{\emptyset\}$ in the second round ρ_1 will choose where $m_2 \neq \hat{s}_2 \in \dot{X}$. Next choose V_2 and $Q_2 \in G$ -SPO (\dot{X}) such that $s_2 \in V_2$ and $s_2 \in Q_2$, $V_2 \cap Q_2 = \{\emptyset\}$ in the Z-th round ρ_1 will choose. where $m_n \neq s_n$, where $m_n, s_n \in \dot{X}$. Next ρ_2 choose $V_n, Q_n \in G$ -SPO (\dot{X}) such that $m_n \in V_n$ and $s_n \in Q_n$, $V_n \cap Q_n = \{\emptyset\}$. Thus $\beta = \{\{V_1, Q_1\}, \{V_2, Q_2\}, \dots, \{V_n, Q_n\}, \dots\}$ is the winning strategy for P₂.

Conversely Clear.

Corollary 3. 23: A space $(\dot{X}, \mathcal{T}, G)$ is a G-SP- \mathcal{T}_2 -space if and only if $\rho_2 \nearrow$ a Game g (G-SP- \mathcal{T}_2 -space, G).

Proof: By Theorem 2. 24 the proof is over.

- **<u>Theorem 3. 24</u>**: A space $(\dot{X}, \mathcal{T}, G)$ is not G-SP- \mathcal{T}_2 -space if and only if $\rho_1 \nearrow$ in a Game g (G-SP- \mathcal{T}_2, \dot{X}).
- *Proof:* By corollary 2. 25 the proof is over.
- **Corollary 3. 25:** A space $(\dot{X}, \mathcal{T}, G)$ is not G-SP- \mathcal{T}_2 -space if and only if $\rho_2 \nearrow$ In a Game g (G-SP- \mathcal{T}_2, \dot{X}).
- **<u>Remark 3. 26</u>**: For any space (X, \mathcal{T}, G) :
- **i.** If $\rho_2 \nearrow$ a Game g (G-SP- \mathcal{T}_{i+1} , \dot{X}) then $\rho_2 \nearrow$ in a Game g (G-SP- \mathcal{T}_i , \dot{X}). whenever $i = \{0, 1\}$.

ii. If $\rho_2 \nearrow$ a Game g (\mathcal{T}_i, \dot{X}) then $\rho_2 \nearrow$ in a Game g $(G-SP-\mathcal{T}_i, \dot{X})$. whenever $i = \{0, 1, 2\}$.

The following Diagram 2. 1 clarifies the relationships given in the Remark 3. 26.

The winning and losing strategy for any player in Game g (G-SP- \mathcal{T}_i , \dot{X}) and Game g (\mathcal{T}_i , \dot{X}).

<u>Remark 3. 27</u>: For any space $(\dot{X}, \mathcal{T}, G)$:

- **i.** If $\rho_1 \nearrow$ Game g (G-SP- \mathcal{T}_{i+1} , \dot{X}), then $\rho_1 \nearrow$ Game g (\mathcal{T}_i , \dot{X}), whenever i= {0, 1}.
- **ii.** If $\rho_2 \nearrow$ Game g (G-SP- \mathcal{T}_{i+1} , \dot{X}), then $\rho_2 \nearrow$ Game g (\mathcal{T}_i , \dot{X}), whenever $i = \{0, 1\}$.

iii. If $\rho_1 \nearrow$ Game g (\mathcal{T}_i , \dot{X}), then $\rho_1 \nearrow$ Game g (G-SP- \mathcal{T}_i , \dot{X}), whenever i= {0, 1, 2}. The following Diagram 2. 2 clarifies the relationships given in the Remark 3.27.

Diagram (2.2)

The winning and losing strategy when \dot{X} is not G-SP-T_i-space and not T_i-space.

References:

- [1] G. Choquet, 1947 Sur les notions de filter et grille, *Comptes RendusAcad. Sci. Paris*, 224, pp171-173.
- [2] B. Roy and M. N. Mukherjee, 2007 On a type of compactness via grills, Matematicki Vesnik. 59, pp 113-120.
- [3] B. Roy and M. N. Mukherjee, 2007 on a typical topology induced by a grill, Soochow J. Math., 33 (4), pp 771-786.

- [4] Shawqi A Hazza, Sobhy A EL-Sheikh, Ali Kandil and Mohamed Ahmed Abdelhakem, 2015 on ideals and grills in topological spaces, South Asi^AHan Journal of Mathematics, Vol. 5 (6), pp 233-238.
- [5] P. Thenmozhi, M. Kaleeswari and N. Maheswari, 2015 Regular Generalized Closed Sets in Grill Topological Spaces, International Journal of Science Research, ISSN, pp 2319-7064.
- [6] A. E. Radwan, Essam El seidy and R. B. Esmaeel, 2016 Infinite games via covering properties in ideal topological spaces, International Journal of Pure and Applied Mathematic, Vol. (106) No.1.
- [7] A. A. Jassam and R. B. Esmaeel, 2019 On Per-g-Closed Sets Via Ideal Topological Spaces, Ibn Al-Haithatham Journal for Pure and Applied Science.