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Abstract—In around the corner radar, particle filter track-
ing can help to improve the estimation accuracy of a Non-
Line of Sight target position. However, in case of using one
single receiving antenna, the measurement model only contains
multipath delay information. Due to the lack of information
in the model, particles corresponding to ambiguous positions
can be assigned high weight values. This can leads the particle
cloud to diverge from the actual target trajectory and requires
several time steps to converge on it again. In this work, our
proposed solution consists in exploiting additional Direction-of-
Arrival information provided by an array of receiving antennas in
the particle filter framework. By simulation and experimentation,
we will show that the proposed solution allows to solve the
aforementioned problem, and thus achieves better localization
results compared to single antenna-based tracking as well as
non-tracking localization algorithm.

Index Terms—NLOS target tracking, particle filter, around-
the-corner radar, multipath, ambiguities, ray tracing simulation.

I. INTRODUCTION

Detection and localization of targets in urban settings is
a relatively new area of study in radar applications. The
presence of buildings creates shadow areas where targets are
not visible in light of sight of the radar (NLOS). However,
targets in these NLOS areas can still be detected by exploiting
multipaths produced by reflections on surrounding surfaces.
These multipaths often pose a challenge in classical radar
applications. But in urban radar applications, radar information
carried by multipaths represent an opportunity to locate and
track NLOS targets. This technique is called “around-the-
corner radar” [1]. First papers on this topic have demonstrated,
via experiments its feasibility [1]- [3]. Then, several works [4]-
[6], have proposed different methods for target localization
based on parameters association.

Especially, the authors of [7] proposed a joint detection and
localization algorithm of a target using the Matched Subspace
Filter (MSF) [8], derived from the Maximum Likelihood
(ML) criterion. This method enables to detect and locate
directly in the target space [9], by exploiting the multipath
delay information provided by a simple ray tracing model
and a rough knowledge of the scene geometry. To assess
the localization performance, the authors of [7] applied the
algorithm on experimental data using a handheld radar system
having a single receiving antenna. Although the estimation of

the target position is accurate most of the time, estimation error
is still significant. Indeed, the use of a single receiving antenna
only provides multipath delay-only information. Due to the
geometry configuration, ghost positions may share several
common delays with the true target position in their model. As
a result, they are assigned high likelihood values at the MSF
output, thus are likely to create estimation bias, especially
when paths signal-to-noise ratio (SNR) is low.

To deal with this problem, called localization ambiguity
in [7], the authors of [10] adopted the tracking approach,
for instance using the particle filter. The simple idea behind
is to exploit the dynamics of the target over several radar
measurements to remove the ghost positions which are not
relevant and are not belonging to the target track. The use of
a particle filter was justified by the high non-linearity of the
measurement model [11], since multipath radar parameters are
linked to the target position states by unknown and complex
geometrical relations that are specific to each scenario. More-
over, the Generalized Likelihood Ratio Test (GLRT) particle
filter algorithm, first introduced in [12] in the Track-Before-
Detect framework, has been chosen for implementation in [10].
It is designed to circumvent the disadvantages of sampling
multipath amplitude by replacing it with its ML estimator.
Interestingly, particle weight update is straightforwardly pro-
portional the MSF cost function. By simulations, the GLRT
particle filter has been shown to achieve higher estimation ac-
curacy compared to a localization algorithm without tracking
using the MSF approach in [7].

Despite its straightforward implementation, the GLRT par-
ticle filter performance is highly sensitive to the state ini-
tialization. Indeed, particles located at MSF ghost positions
will be equivalently granted high weight values. This becomes
problematic when these heavily weighted particles attract
the particle cloud to converge too far from the true target
trajectory. Worst still, the well known resampling mechanism
of the particle filter can exacerbate the situation: it tends
to confine the misled cloud around ghost positions. For this
reason, the filter needs several time steps before correcting this
estimation bias, then likely leading to low convergence rate.

In this work, we present a solution for the above described
problem of the GLRT particle filter by using an array of
receiving antennas which provides additional Direction-of-



Arrival (DoA) information. Indeed, the idea of exploiting DoA
information has been introduced in [13] for the non-tracking
MSF localization approach, which has shown a significant
reduction of ghost positions level at the MSF output. It is
worthwhile to integrate this additional information into the
particle filter framework with the aim of reducing the weight of
ghost position particles, then improving the estimation results.
Both simulated and experimental results obtained with the
proposed multiple receiving antenna particle filter show that it
can achieve higher convergence rate and robustness compared
to single antenna-based tracking [10], thus better localization
results.

The article is organized as follows. In Section 2, state and
measurement models will be presented. In Section 3, we will
present proposed particle filter for NLOS tracking. Section 4
provides the experimentation setup and localization results on
both simulated and real data. The last section is dedicated to
the conclusion and perspectives.

II. MODELLING
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Fig. 1: The urban scenario

Let us introduce the framework by first considering a simple
scenario: an urban intersection as depicted in Fig. 1. Only
a rough knowledge of the 2D scene geometry is required,
namely the coordinates of the building walls. The radar system
is placed into the scene, which is composed of a single
transmitting (Tx) antenna and a linear array of () receiving
(Rx) antennas. At each radar measurement, a signal s(t),
with bandwidth B and carrier frequency f. is transmitted
by the Tx antenna. In this study, we only consider high
frequency band radar system, for instance f. > 10 GHz,
so that electromagnetism (EM) multipath propagation in the
given scene can be well approximated by the ray tracing
model. Here, only specular reflection paths are considered,

as illustrated in Fig. 1. Diffraction paths are supposed to be
too weak regarding the considered radar operating frequency
range.

Despite the specific configuration described above, the
model as well as the solutions derived in the sequel can be eas-
ily extended to any other scene geometry or EM propagation
models supported by more realistic simulation tools.

A. State model

Here, we tackle the problem of tracking a single moving
target. Specifically, at discrete time k € N, the target dynamic
state is characterized by the state vector xy, = [Tk, Yk, Tk, Uk)
which includes both the target current position in Cartesian
coordinates (z,yx) and its velocity components (&g, ).
The dynamic model of the target is then represented by the
following linear state equation:

xp = Frxp_1 + vy, (D
where
1 0 7,, O
01 0 1T,
Fr=100 1 o 2)
0 0 O 1

is the transition matrix that depends on the discretization time
T, that represents the duration between 2 consecutive radar
measurements. Hence, for the rest of the paper, k£ will inter-
changeably designate the discret time and the measurement
number. The variable v represents the process noise vector
which is assumed to be white Gaussian with known covariance
matrix Q; = o2L

B. Measurement model

At each radar measurement &, we propose a scheme where
the multipath received signal is collected by the @) antennas
of the Rx array. Let us assume that paths corresponding
to fixed echoes returned from different reflecting walls are
first removed from the received signal by a classic zero-
Doppler cancellation filter, leaving only the contribution of
the multipath signals from the target. Then, for the sake of
simplicity, we will also neglect the Doppler shift term in
the measurement model, although we keep in mind that this
information has been exploited for fixed echoes cancellation.

Under these assumptions, the signal received from the target
of interest by the g-th Rx antenna at time k is given by

M (zk,yx

yq,k(t) = Z
m=1

)
.kT
o8 (= T (T, yi)) € o (eromn) P

+1Uq7k(t),

3)
where M (z,y) denotes the number of multipaths provided
by the ray tracing model for the target current position
coordinates (zj,yr). om 18 the complex amplitude of path
m, assumed to be unknown. 7,,(x, Yk ), Om (K, yr) are the
round-trip delay and DoA of path m, respectively, and are
provided by the ray tracing model. ky is the wave vector



in the path receiving direction 6. p, denotes Cartesian co-
ordinate position vector for g-th antenna. wy (¢) represents
the observation noise on this antenna, assumed to be complex
circular complex white Gaussian with known variance 2. The
matched filter to the reference signal s(t) is first applied on
Yk,q and yields

M (zk,yx) o
Zqk(t) = Z am kT (t — Tm(xk,yk))e] Om (2pwp) PO
m=1
nq,k(t)’
“4)

where z, x(t), ngx(t) are obtained by correlating y, (%),
wq,k (t) with s(¢) and r(¢) is the auto-correlation of s(¢). Then,
sampling each z, (t) at time period ¢; = 1/B, we obtain the
N-dimensional observation vector:

Zgk = [2gk(ts), 2gk (2ts), . . . 2 (Nt . (5)

Stacking the observation vectors z, j, of all @) Rx antennas,
we obtain the measurement equation at time k:

z, = R(wp, yr) oy + 0y, (6)
where .
T T T
2k = [Zl,kvzz,ka e 7ZQ,JJ ) @)
T T T 1T
ng = [nLk,nz}k,...,an] s (8)
T
o = [ ks 02 ks - OM (o) k]

Rz, yk) = [01 (Ths Uk) - T (argn) (@ Uk)] - (9)

Each column r,, (zx,yx) of R(xk, yr) corresponds to a char-
acteristic multipath vector for the target position (z, yx):

o (2, Yi) = (T (2h, i) @ (0 (Tr, Yk)), (10
where

r(r)=[r(ts —7),r(2ts — 7) ..., 7(Nts — 7)], (11)
and a (0, (x5, yx)) = {ejkeTm<wk,yk>p17 i Pe

denotes the steering vector for the direction 6,,(xy, yx). The
operator ® represents the Kronecker product.

The measurement model in (6) can be seen as an extension
of the model presented [10] in order to cover multiple antennas
scheme. In case of a single Rx antenna, i.e., Q = 1, the
measurement model boils down to that presented in [10]. It
can also be highlighted that the measurement equation here
is highly non-linear. Worse still, the observation vector zj is
not related to the state variables (zy, y) by any explicit func-
tion, but through the parameters 7, (g, yx) and 6., (zx, yx)
of each characteristic multipath r,, (x,yx) in the matrix
R (zk, yr). These parameters, in turn, are linked to (x, yx) by
a complex geometrical relation specific to each scene, that can
only be retrieved for instance via ray tracing simulation. Note
that the number of characteristic multipath vectors M (zk, yx),
that is the number of columns of R (x,yr) and ay also
depend on the target position (zy, yx)-

III. GLRT PARTICLE FILTER TRACKING ALGORITHM

Since the particle filter is a suitable approach for addressing
non-linearity, it is adopted here for the target tracking problem.
In order to implement the particle filter, the measurement
likelihood should be computed conditionally to the target state.
However, amplitude vector c;, depends on the target position
(zk,yr). However, ay information is unknown and can not
be retrieved from the ray tracing model. Indeed, multipath
amplitude modelling is generally involved due to the lack of
knowledge about propagation environment factor, such as the
propagation losses, the reflection coefficient on each reflective
surface, target aspect angle, etc. Classical particle filter strat-
egy deals with unknown amplitude vector by including it to
the particle states [14]. In our case, Tthis yields the augmented
state vector Xy, = [(xk)T , (ak)T}

Now we seek to approximate the posterior density function
p(Xx|z1.1) by a cloud of N,, weighted particles { X}, w,lc}jvzpl
The state X of each particle i consists of

i i\ T 717 i i i i 117

k= (Xk) 7(ak) = xk7yk7xk7yk7(ak) . (12)
Particles are propagated from time & — 1 to time k via
2 steps procedure: first new particle states Xj are drawn
from their previous states X} _; according to a proposal

importance density ¢ (X% |X%_;,21.x). Second, unnormalized
particle weights are updated via the following equation [11]:

P (zX3) p (X}, 1X_1)
q (XZ:‘XZ:—NZLIC)

Though a classical particle filter would sample the target
amplitude according to the prior model, this strategy presents
two drawbacks: first it assumes a coherent behavior of the
amplitude along time enabling to describe it via a Markov
chain model, that is unrealistic in our context. Second, am-
plitude parameter implies increasing considerably the state
space dimension, thus the number of required particles [12].
In order to circumvent the amplitude sampling, we seek to
replace amplitude parameter with its Maximum Likelihood
(ML) estimator. To do this, first we propose to factorize the
importance density as proposed in [12]:

q (me;cfla zl:k) =q (aﬂx;wzk) p (XHXZA) .

This means that the position and velocity of the target are
sampled according to the state equation, while the multipath
amplitude vector is sampled conditionally to the target position
and velocity at time k and to the observation at time k. Here,
we choose the following importance density for amplitude
variable as proposed in [10]:

~ % i

Wy, X Wy _q

13)

(14)

q (a;€|xf<:7 Zl:k) ~N (d;ca U?)cIItI(mi,y}c)) ; (15)

where d;c denotes the ML estimator of the particle amplitude
aj, given by:

i i i iy L i
&, = [R(z}, 92) "Ri@i )] Riapvi) 2, (16)



and o2 is an adjustable variance of the amplitude variable and
M (z%,yt) is the number of multipaths corresponding to the
position of the particle X?%. Considering the specific case in
which 02 — 0, the amplitude importance density becomes a
point mass distribution, i.e., ¢ (o |x},z1.) = dai (a}). This
means sampling o}, from ¢ (o |x},z1.;) directly yields its
ML estimator. Hence, the weights update (13) becomes

_||z,c—R(wz,yz)a,;||2>’ a7

W, o wh_; exp ( o2
that yields the GLRT particle filter proposed in [12]. Here
|z —R(} yi ) &1

the quantity exp ( — —= is proportional to the

likelihood of the observation given the multipath model at
position (x%,y!), known as Matched Subspace Filter (MSF)
[8]. The latter yields the Maximum Likelihood (ML) criterion
that is used in [7] to locate the target, based on a single
observation. Particles weights are then normalized so that
25\2’1 wi = 1. After normalization, a resampling step might be
necessary to avoid particle degeneracy [11]. The usual criteria
for resampling is provided by an estimate of the number of
effective particles Neg = 1/ 3 2 (wi)? that is compared to
a threshold Nyes. The discrete approximation of the posterior
density up to time k by the particle cloud is given by

NP

P(Xilz1k) & Y whdx: (Xi). (18)
i=1

Then it is possible to retrieve an estimate of the target position

at time k, for instance using a classical Minimum Mean Square
Error (MMSE) estimator

1 & 1 &
&y = N Zwixi and g, = N wacyllc (19)
P =1 P =1

The particle filter for NLOS target tracking is summarized in
Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we propose an experiment using a radar
system with a linear antenna array, performed in a realistic
urban scenario. The collected data are used to assess the
localization performance of the particle filter (PF) in case of
exploiting multipath information from multiple Rx antennas
(delay and DoA) as presented in the previous sections in
comparison with the case of using a single Rx antenna
(delay only) presented in [10]. We will also compare the
localization results of the particle filter with the non-tracking
localization algorithm based on the Matched Subspace Filer
(MSF), presented in [7] and [13].

A. Experiment description

1) Measuring equipment: the radar system used for the
experiment is the EVAL-TINYRAD FMCW [16]. It has a
linear array of () = 4 receiving antennas where the element
spacing is one-half of the wavelength, which results in an
angular resolution Ay ~ 28°. The signal s(t), composed by

Algorithm 1 Particle filter for NLOS target tracking

. . ; ;N
Require: Particle cloud {X} |, wj_,} " atstep k—1
1: fori=1to N, do
2:  Draw xf? according to p (x}c\x}%l) '
3:  Draw aj, by computing its ML estimator &, according

to (16)
. . Z — Ii 1\ a2
4:  Update weight wj, oc wy,_; exp <| R ak;yk)aku )
5: end for

6: Normalize weights:
7: fori=1to N, do
w} :

k
8: end for i
9: Compute Ner = 1/ 307, (wi)?
10: if Neff < Nipres then
11:  Resample NV, particles
12 Reset weights w! < ——
13: end if o

. N
14: return {X} wji} "

a train of pulses, is transmitted towards the scene by one
single Tx antenna. Each elementary pulse is a chirp signal with
carrier frequency f. = 24.05 GHz and bandwidth B = 235
MHz, thus yielding a radar range resolution A, = ¢/B = 1.3
m. The pulse repetition interval and the number of pulses are
set to PRI = 200 and Npyises = 400, which results in Doppler
velocity resolution A, = 0.07 m/s.

oy

Fig. 2: Urban scene photo

2) Experiment scenario: the considered urban scene is a T-
junction, photo of which is displayed in Fig. 2. The walls 2D-
coordinates are then transcribed in the ray tracing simulator
as shown in Fig. 3. The radar system is placed at the coor-
dinates (4.26;5.94). The target is a pedestrian, first located
at A(15.88, —5.05), starts moving up to C'(25.41, —5.05) in
which he appears in LOS at B(20.58, —5.05). 61 measure-
ments have been recorded at a 7,, = 80 ms interval, that
covers the total duration of the target movement.

3) Preprocessing: for each measurement k, in order to
obtain the observation vector from the received radar raw
signal of each Rx receiving antenna g, first, fixed echoes are
cancelled by filtering out all zero-Doppler components from
the signal spectrum. Then, range and Doppler matched filters
are applied, yielding the range-Doppler 2D-FFT matrix. The
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Fig. 3: The ray tracing simulation performed for the
experiment scenario.

range-dependent only observation vector z, is extracted from
the range-Doppler matrix by selecting, for each range bin,
the corresponding Doppler bin with highest peak. This can
be done under the assumption that each path only occupies
a single range-Doppler bin with dominant magnitude. Fig. 4a
presents the observation vectors for one Rx antenna over 61
measurements. Here, it is possible to identify different rays in
Fig. 3, where p,; refers to the multipath which goes from the
radar to the target through path a and back through path b.

In order to compare with the real data, we also simulated the
same scenario as described above, thus obtaining the simulated
observation vectors as displayed in Fig. 4c. In the simulation, it
is assumed that the direct path SNR is roughly 30 dB, in view
of its maximum SNR value from the real data. Based on the
direct path energy, multipath energy losses are simulated with
propagation loss inversely proportional to the path propagation
distance and reflection loss of —5 dB per reflection.

One can note that in case of 4 Rx antennas, the resulting
paths SNR is 6 dB larger than in the one Rx antenna case.
However, to have a fair comparison, it is preferable that the
paths SNR be the same in both cases. Hence, we subsequently
consider that the observation vector in the single antenna case,
on which will be applied localization algorithms, is obtained
by integrating the observation vectors from 4 Rx antennas
coherently.

B. Farticle filter setting

At first glance, the linear evolution of the target range profile
shown in Fig. 4a is relevant to the linear uniform state model
in (1). The state noise is empirically set to o2 = 0.1. Position
states (x,y) is initialized in the search domain defined in
Fig. 3 whereas particle velocities (v, v,) are evenly drawn

from the interval [—2,2] m.s~!, based on the assumption of
the pedestrian radial velocity. Hence, at k = 0, particles x{
are initialized uniformly over all the space (x,y, vy, vy). All
particle weights are initialized to wj) = 1/N,,.

In addition, we note that computing the particles weights
at each time step k requires obtaining in real time the matrix
R (z},y}) corresponding to each particle position (z%,y})
via ray tracing simulations, which would imply an extremely
high computational cost. To circumvent this drawback, the
search domain is first finely discretized into J = 6155 cells of
size 0.16 x 0.16 m, which is equal to one eighth of the range
resolution. Then the matrix R(z;,y;) for position (x;,y;)
located at the center of each cell j, is built and stored in
advance. This enables to reasonably approximate the matrix
R (z,yi) by the nearest cell position matrix R (z;,y;).
Here, the number of particles is also chosen to be equal to the
number of cells, i.e., N, = 6155 and the degeneracy threshold
Ninres 1s set to N,/100 = 61.

C. Localization results

Now we present the localization results obtained both on
simulated and real data for the scenario described above with
the different localization approaches mentioned earlier. Fig. 4b
and Fig. 4d show the estimated root mean squared error

RMSE = \/(z1, — 1) + (yr — i)?

for the target position at each time step k on real and simulated
data, respectively. Tracking yields better estimation results
compared with non-tracking MSF in both LOS and NLOS
zones. It can be noted that the particle filter exploiting one
Rx antenna information converges quite slowly towards the
right trajectory in the middle of the NLOS zone. On the
contrary, in case of a particle filter using 4 Rx antennas, good
localization results are obtained on the whole target trajectory
and it reaches a lower variance compared to the single Rx
antenna case.

To better analyze the above localization results, Fig. 5
shows the real data localization maps in the research domain
at three time steps £k = 1,5 and 17, all corresponding to
instants at which the target is actually in NLOS. As mentioned
earlier, particle weights are updated proportionally to the
likelihood of the measurement, i.e., the MSF cost function,
according to (17). However, in case of using one single Rx
antenna, the MSF output exhibits strong ambiguities, i.e., false
positions which yield high likelihood values as depicted in
Fig. 5a. Thus, particles corresponding to these false positions
are granted high weight values. The particle cloud is then
misled and converges quickly to the wrong zone after a few
measurements, thus losing the true target position (Fig. 5e).
The estimated location progressively comes back to the true
target trajectory when ambiguities are reduced (Fig. 5f), that
explains the slow convergence not helped by the resampling
mechanism. On the contrary, in case of using 4 Rx, it can
be observed that MSF ambiguities (Fig. 5g) are much lower
compared with the one Rx case thanks to the contribution of
the DoA information. Thus, the particle cloud converges early

(20)
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towards the right trajectory and successfully tracks it over the
whole recording (Fig. 5k and Fig. 51).

V. CONCLUSION

In this paper, we propose an improved solution for estimat-
ing the position of a single NLOS target using an array of
receiving antennas with the GLRT particle filter. Results from
simulations and experiments demonstrate that incorporating
DoA information allows for correcting estimation errors, par-
ticularly at the beginning of the target’s trajectory. Our future
work aims to enhance the tracking performance by optimizing
the choice of importance density and exploring extensions of
the approach to multi-target scenarios.
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Fig. 5: Real data localization maps in the search domain at some measurements/time steps k of the particle filter (PF) and
the Matched Subspace Filter (MSF) in case of using one Rx antenna and 4 Rx antennas. The true target position is marked
by a circle; the estimated position is marked by a cross.
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