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Abstract—To manifest numerous heterogeneous electronic de-
vices of the futuristic Internet of Things (IoT) as an ensemble, the
factors of connectivity and interaction/ information dispersion
are (if not more) important as sensing / actuating, context-
awareness and services provisioning etc. Internet of Vehicles (IoV)
is turning out to be one of the first notable examples of IoT. Very
rapidly, the meanings of these factors are changing due to the
evolution in technologies from physical to social domain. For
example, Social IoV (SIoV) is a term used to represent, when
vehicles build and manage their own social network. Towards
these futuristic systems, in addition to physical aspects, the social
aspects of connectivity and information dispersion should also
be explored. In this paper, an agent-based model of information
sharing (for context-based recommendations) of a hypothetical
population of smart vehicles is presented. Some important aspects
are modeled under reasonable connectivity and data constraints.
The simulation results reveal that the closure of social ties and
its timing impacts the dispersion of novel information (necessary
for a recommender system) substantially. It is also observed that
as the network evolves as a result of incremental interactions,
the recommendations guaranteeing a fair distribution of vehicles
across equally good competitors is possible.

Index Terms—Internet of Things, Social IoV, Agent-Based
Model, Adaptive Behavior, Recommendation System

I. INTRODUCTION

With the increase in number of vehicles equipped with
10T [1], the traditional Vehicular Adhoc Nwtworks (VANETS)
are transforming into Internet of Vehicles (IoV) [?]. ToV
is a progressive form of modern vehicles equipped with
sensors, which can receive and transmit useful information for
navigation and traffic management [2]. Another technology is
Vehicular Sensor Networks (VSN), which enables passengers
to exchange data related to entertainment, social networks,
and situations [3]. Furthermore, the evolutionary pathway is
taking us to the Social Internet of Vehicles (SIoV), which
originated from [4] as an application engaging human social
behavior into the physical vehicular networks. Later, it attained
a more general form in which it is considered to be a network
of vehicles in which vehicles build, and manage their own
social network [5]. Just like social networking opening up a
plethora of new recommendation applications, SIoV has an
unlimited potential of changing what we do, and how we
live. It can be used to recommend location- and profile-based
services, including finding trustworthy services [6], vehicles
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navigation and monitoring [7]-[9], managing network access
[10], targeted advertising [11], drivers behavior modeling [12],
and more. Although these examples are mostly related to
the vehicular networking, we can easily imagine a broader
perspective wherever recommendation services in a dynamic
and, evolving network of objects are involved, such as social
networking, IoT, WSN, micro-robotics etc. Hence, the findings
of this paper can be applied to any other related domain
equally well.

All these technologies (at least for now) designed to be
subservient to humanity, always have an intrinsic attachment
with its users - drivers and passengers in case of SloV.
Therefore, when a vehicle is part of SloV, it must build
and deploy its network (of vehicles) in order to accomplish
users’ goals. But, then the resolution of the dichotomy of
vehicular, and human social network turns out to be a real
challenge. The model proposed in this paper builds on the
belief that the evolution of inter-vehicle social network can be
realized by examining the characteristics of the human social
network. In this paper, we investigate the interfacing of these
two kinds of networking, and the extend of users’ satisfaction
with respect to their goal achievement while making use of
vehicular networking. In a nutshell, the focus of the paper is
on investigating the potential of vehicular social networking
towards achieving human goals. We perform this research by
designing an agent-based model and simulating it in various
conditions.

The study revolves around the competence of SIoV for
providing accurate recommendations to the users in a dynam-
ically changing environment. The changes occur in resources’
quality and network dynamics. The concept behind the model
makes use of basic assumptions such as IoT connectivity,
principles of social network evolution, and users profiling.
Some interesting what-if questions are asked against a couple
of intuitive hypotheses.

The remainder of the paper is structured as follows. In
Section II, we present the related work in detail. The proposed
model is explained in Section Section III. Simulation settings
and the analysis of the simulation results is presented in
Section IV followed by Section V, which provides conclusion
of the paper.



II. BACKGROUND AND RELATED WORK

First social networking framework for VSN, RoadSpeak
presented by the Smaldone et al. [4] for the commuters and
named as a VSN. The passengers traveling along the same road
can dynamically form interest groups or social communities
based on the spatial and temporal preferences/interests to
share messages using a chatting application. SocialDrive [13]
is a crowdsourcing-based VSN for the socialization of the
drivers to be aware of their driving status/behavior, to improve
drivers safety and reduce fuel consumption. This framework
leverages traditional social networks and cloud computing.
Other VSNs based on traditional social networks includes
[14], where drivers may share their driving experiences with
other drivers in the social groups. These experiences of drivers
are further aggregated based on the temporal and spatial
context. In Roadcast [15], where vehicles can share content
based on the query i.e., a vehicle can query other vehicles in
the network. The system returns the highly matched content
based on key-words, therefore, the result may not always
be appropriate/useful, but it may be beneficial in the future
for the other vehicles. However, in [16] vehicles spread the
queries in a VSN, which impulses the potentially useful
data in a bounded time towards the vehicles. Ning et. al
[17] has presented case-studies of VSN applications in the
context of smart cities. Yasr et. al. [18] studied information
sharing in the VSNs through social relations to ensure that
relevant and trustworthy information has to be shared in VSNs.
Furthermore, information can be reliably shared in the social
groups in terms of trust [19].

VSNs have been modeled and evaluated based on agent-
based methodology. For instance, [20] presented a semantic-
based multi-agent platform, which integrates semantic tech-
niques and software agents to provide a framework for the
VSN applications. This work was further extended by the au-
thors in [21], which provides a service-oriented VSN platform
that enables commuters to improve transportation efficiency by
collaboration, including context aware mechanism to predict
traffic congestion. An agent-based architecture for a swarm
of socially aware IoV known as social vehicle swarms is
proposed in [22], which leverages the agent-based modeling,
big data, and cloud computing to analyze and reveal hidden
patterns in social relationships.

The Social Internet of Things (SIoT) [23] enables IoT
device to establish a social-like relationship to create social
groups/communities based on common goals and interests.
SIoV is an application of SIoT in the vehicular networks,
where vehicles are social objects [24]. A middleware for SloV
was proposed by [25], which extends the intelligent transporta-
tion system (ITS) station for SIoT. Moreover, [2] presents an
architecture for the SIoV, which outlines the main components,
interrelations objects, and defines interactions. TNote [26] is
a social network of vehicles, which defines the key aspects
of the social structure of vehicles, their interactions, and
relationships. This framework helps the vehicles to share
efficiency and safety-related notes in communities.S-Aframe

[27] is an agent-based multi-layer framework with context-
aware semantic service that utilizes the context information
and provides a high-level platform for the development of
applications for SIoV of drivers, passengers, and pedestrians.
Some other notable researches in these area are [28], [29],
[30], [31], machine learning [32], [33], image processing [34].

However, all the presented papers have not addressed the
incentive mechanism in SIoV to ensure cooperative involve-
ment of users. It is linked to the selfishness of the users [35],
therefore, we argue that users cooperate for common interests
and useful recommendations, furthermore, it works as positive
feedback in a whole system in sense of user’s goal achievement
and improvements in productivity, that stabilize the SIoV. In
this paper, we have studied information dissemination in terms
of recommendation system which is entangled to the user’s
goals and quality of experience that leads to successful SIoV
strategies.

III. MODEL
A. Scenario and Motivation

Most of our time during the weekdays is consumed in
traveling between home, work, school, and shopping. Drivers
use ample applications such as navigators [36] to reduce the
travel time or to switch between various possible choices.
Realization of a recommendation system in collaboration with
the capabilities of SIoV is an interesting topic. It is possible
to accomplish this due to the recent industrial efforts. It is
predicted that by 2020, 50 billion objects will be linked to
the Internet, and the considerable number of objects will be
vehicles [37]. In the Carestream project [38], technological
integration is performed to provide data-driven services. The
system collects a variety of information such as “vehicle
status, driver activity, and passenger-trip information” from a
network of approximately 30,000 chauffeured driven cars. The
parameters such as pickup point, pickup time, arrive time, and
destination are collectively used to initiate the user demand.
These data fields motivated us to use the concepts of ID,
Time and Duration, to characterize a resource. Then, a
vehicle (user) plan is created making use of User profiling
(inspired by [39]), in which a user has to visit some resources
every week.

A vehicle serves its user. The social networking of users
are not considered in this model; only a network of vehicles
is established. Therefore, a vehicle and its user are dealt with
as a single entity or a agent. The plan of an agent consists of a
number of activities. An activity is constituted by a source, a
destination, a time and a duration. Agent’s home is the source
of an activity. A resource is the destination of an activity
represented by identity (ID) of a resource, time is the time
to reach to the resource, and duration is the time to stay at
a resource. The initial plan is generated randomly choosing a
number of resources and assigning an hour to visit a resource
(a whole week is distributed in hours) and duration of a few
hours.

The objective of the model (presented next) is to investigate
the competence of SIoV in providing resource recommenda-



tion to the agents, particularly when there is no obvious/natural
choice. This can happen if resources known to an agent are
no more an attractive choice due to the poor quality of service
or the agent individually having a much higher expectation.
It is assumed that the interface between a vehicle and its
owner (user) is seamless so that a vehicle does not only have
information about its owner’s plan but also if the current
experience regarding a resource was good or bad.

Figure 1 presents an abstract realization of modeling modal-
ities presented next.

B. Cases

An agent has a plan for several activities. Each activity
requiring the agent to visit a resource at a particular time.
An agent starts and ends an activity at its source. It visits a
resource for a specific duration and returns back. The purpose
of an activity is to get a service provided by the resource at
the time of the visit. However, the quality of service provided
is related to the agent’s expectations - if the quality is less
than expected, it will make the agent unhappy, and happy if
the quality is up to the expectation. The model compares four
cases.

In case 1 of the model, we do not provide any alternative
to an unhappy agent and it follows the activities of its plan
without any change. Case 1 represents a situation in which
agents are mute to the environment, also termed as indifferent
case - due to the reason that the agents are not affected by the
dynamics of the environment. The purpose of including this
seemingly primitive case in experimentation is to demonstrate
the strength of pure randomness. The mechanism is quite
simple (indicated by transitions shown in yellow color in
Figure 1). If it is time to visit a resource in the plan of an
agent, the agent will move to the resource. As the duration to
stay at the resource is completed, the agent comes back to the
source.

Case 2 represents when agents are influenced by the en-
vironment extremely - extreme in the sense that they are
affected by the environment once and for all and without
any possibility of reconsideration. In this case, an agent after
visiting resources with lesser quality than its expectations
would never visit it again. Hence, this case is termed as
pessimistic. The mechanism is again quite simple (indicated
by transitions shown in green color in Figure 1). If it is
time to visit a resource in the plan of an agent and the last
experience of the agent (for that particular resource) was up
to the expectation, the agent will move to the resource. As the
duration to stay at the resource is completed, the agent comes
back to the source and registers the experience is had at the
resource which is equal to the quality of resource at the time
of the visit. If it is time to visit a resource in the plan of an
agent and the last experience of the agent (for that particular
resource) was not up to the expectation, the agent will not
visit that resource.

Although it should substantially reduce visits of agents to
an underperforming resource, however, with an increasing
number of underperforming resources, the plan of agents

would be affected. After some time, most activities in the
plan of agents would not be executed, and the number of not
possible activities would surpass possible activities. This is
particularly counterproductive if resources are able to improve
their quality periodically - as suggested by quality variability
mechanism given below. By comparing case 1 with case 2,
we will analyze if indifference is better or being pessimistic.
Quality Variability becomes an important factor as it is directly
related to the agent experience. We could have kept variability
equal to zero i.e. assigning a static value to the resource
quality, but it was avoided due to the lack of realism. We also
deliberately avoided representing this variability as random
walk to accommodate human control, which is partial in nature
- the quality of resource decreases (increases) for some time
and then switch its direction oppositely - which in our view
most closely represents a simplistic human behavior. Hence,
the individualistic behavior of being pessimistic cannot by any
means considered a rational choice, when quality variability
promises a previously under-performing resource to perform
better now.

Quality variability also provides necessary conditions for
models which are based on social networking dynamics and
information sharing. The next two cases of the model are based
on social networking between the vehicles.

The communication between vehicles through a mechanism
such as a vehicular ad-hoc network (when vehicles come close
to each other while visiting resources) results into friendship
network. This network evolves with time and acts as a mean
of novel information sharing in case an agent has a not
possible activity. The activity is replaced by an activity which
is registered as a possible activity in one of friend’s list of
activities. This strategy is case 3, which is termed as reactive,
which means that agents react to ’bad’ resource and replace
them, where information about ’good’ resources is available
from the network they built. Transitions shown with blue color
in Figure 1 represent case 3.

This need to be a seamless process, in which network
creation, updating, and replacement of activities happen at
vehicles level without the agent’s knowledge. The only issue is
how a vehicle would know about the agent’s experience, which
can potentially be achieved using IoT infrastructure. For ex-
ample, sensing that the products being used are wasted or not,
or any formal feedback mechanism, or even some other means
such as semantic mining of conversation of family members.
However, this should not be a grave concern. Nevertheless,
reactivity happens through technological interference and is
seamless.

Extending case 3 by explicitly performing closure on friend-
ship ties is case 4. We named this case as adaptive strategy,
in which the vehicular network of friendships is extended
automatically based on theoretically proven evolution of net-
work structure. Transitions shown with red color in Figure 1
represent case 4. Triadic closure is a concept, which states
that if an agent A has a strong tie with both agents B and
C, ultimately B and C would become friends. The question
is given that the closure process is explicitly introduced into
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Fig. 1. Representation of the proposed model as a transition system - indifferent case (case 1): yellow, pessimistic case (case 2): green, reactive case (case

3): blue, and adaptive case (case 4): red.

the network, would that be helpful from the users perspective.
For example, if a vehicle has a strong tie (due to repeated
encounters/communications) with 2 vehicles, given that these
two vehicles become friends, how much this process would
guarantee the effectiveness of replaced activity when compared
to case 3.

Hence, through this model, we can compare case 1 and case
2 and argue that randomness is an important factor. Case 3 and
case 4 should be better than case 1 and 2. We compare case 3
with case 4 to see the potential of closure if we can perform
triadic closure artificially.

IV. SIMULATION AND RESULTS
A. Simulation Setup

The model is created in NetLogo [40], a agent-based
modeling environment. A grid of cells of size 75 x 75 is used
to populate agents. There are three types of agents, two static
and one mobile. The static resource and source agents are
randomly placed in the environment. The count of resources is
15, available for 500 sources. Vehicles are mobile agents and a
vehicle is attached randomly to a source. The users (owners of
the vehicles) are abstract entities encapsulated within vehicles
termed as agents. One simulation iteration is equal to one hour,
hence, a week is equal to 178 hours. We have simulated 800
hours which is equal to more than 4 weeks (a month). Initially,
a random weekly plan, constituted by three scheduled activities
is generated (represented by ID, time and duration of a
visit), which executes on weekly basis. Figure 2 depicts visual
of simulation space when initialized.

B. Evaluation Parameters

The four case (as explained before) are evaluated based on
three parameters:
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Fig. 2. A view of the simulation world, when initialized for 500 sources
(green houses), 500 vehicles (white cars) and 15 resources (red flags).

o Experienced quality: When an agent visits a resource, it
experiences the quality offered by that resource at that
time. In one week, an agent has to visit three resources,
that is why the quality-index is the average of three
experiences of the agent at each hour. The quality-index
of the whole simulation space is then an aggregation of
all agents’ experiences.

o Resources utilization: The population of agents at a
resource at an hour determines its current utilization.
Derived from it is the standard deviation of utilization
of all resources.



e No or bad move: In case an agent has a time to visit
and the move is not possible (due to bad experience
of the agent with the resource), or agent moves to a
resource which is providing a sub-standard service, the
agent performs no move or a bad move is performed.
This measure counts the total number of agents which
performed no move or bad move at an hour.

C. Analysis of the Results

Simulation Parameters
143 BINa or bad move
M Experienced quality
Ereosurces wtilization

0 iterations 801

Fig. 3. Simulation results of case 1.

The graph shown in Figure 3 shows the progression of
three simulation parameters for case 1. The number of agents
which made a no (not possible in this case) or bad move are
consistent through out 800 hours of simulation and hovers
around 7 agents on average. This is around 50% agents
which is expected. The quality experienced by the agents and
utilization of the resources is also consistent throughout. These
numbers have little quantitative significance and are used for
qualitative comparison with other cases.

Simulation Parameters
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Fig. 4. Simulation results of case 2.

The graph shown in Figure 4 shows the progression of
three simulation parameters for case 2. The number of agents
which made a no or bad move are increasing as the simulation
progresses. It may reach up to 10-12 agents on average. This
is around 80% agents is really bad. The quality experienced
by the agents and utilization of the resources also decreases
considerably, thus making this case the worst case.

Simulation Parameters
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Fig. 5. Simulation results of case 3.

The graph shown in Figure 5 shows the progression of three
simulation parameters for case 3, which is better than case 2
particularly in terms of the quality experienced by the agents
and utilization of the resources. Hence recommendations ac-
quired through SIoV help agents.

Simulation Parameters
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Fig. 6. Simulation results of case 4.

The graph shown in Figure 6 shows the progression of three
simulation parameters for case 4, which is better than case
2 for sure, but this is also better when compared with case
3. The improvement in particular is in experienced quality
of the agents which improves as a new starts throughout the
simulation.

V. CONCLUSION

In a dynamically changing quality of service provisioning
by resources, the vehicles with excluded resources in their
plan can utilize their strong ties to have novel information
about some resources that are not excluded at a particular time.
Is this information turns out to be useful? We analyzed this
question through an agent-based simulation. We simulation re-
sults reveal that SIoV based recommendation system facilitates
information sharing that results in resources being distributed
more fairly. Also the number of agents not performing an
activity or visiting a potentially bad store in case of SloV
is decreased substantially when compared with individualistic
agents.
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