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Deep Learning Based Car Damage Classification and Detection

Abstract. In this paper, we designed and implemented a car damage classification/detection pipeline, which can
be used by insurance companies to automate the process of vehicle insurance claims. The recent advances in
computer  vision largely due to  the adoption of fast,  scalable  and end to  end trainable  Convolutional  Neural
Networks(CNN’s) makes it technically feasible to recognize vehicle damages using deep convolutional networks.
We manually collected and annotated images from various online sources using web crawler containing different
types of vehicle damages. Due to the relatively small size of our dataset, we used models pre-trained on a large
and  diverse  dataset  to  avoid  overfitting  and  learn  more  general  features.  Using  CNN models  pretrained  on
ImageNet dataset and applying preprocessing techniques to improve the performance of our system, we were able
to  achieve  accuracy of  96.39%,  significantly better  than   results  achieved  in  the  past  on  a  similar  test-set.
Furthermore  to  detect  the region  of  damage  we  used state-of-the-art  YOLO object  detector  and achieving  a
maximum map score of 77.78 % on the held-out test set, demonstrating that the model was able to successfully
recognise  different  vehicle  damages.  In  addition  to  this  ,  we  also  propose  a  pipeline  for  a  more  robust
identification of the damage in vehicles by combining the tasks of classification and detection.  Overall  these
results pave the way for further research in this problem domain and we believe collection of a more diverse
dataset would be sufficient to implement an automated vehicle damage identification system in the near future 

Keywords:  Car damage classification/detection, Pre-trained CNN models, YOLO object detector.

1. Introduction
Nowadays car insurance companies deal with frequent insurance claims. Using manually validation  on large scale
of claims, companies are not able to meet the speedy requirement for insurance claim processing resulting in Claim
Leakage[1].  Claim  Leakage  is  simply  defined  as  lost  money  through  claims  management  inefficiencies  that
ultimately result from failures in existing processes (manual and automated). Claim amount primarily depends on
the  damage  type  and  damaged  part  of  the  car,  so  we  need  an  automated  system for  the  car  insurance  claim
processing as used by some startups[2] which can efficiently classify and detect damage and helps to minimize the
claim leakage. This motivates us to explore several means of automating this process , of which computer vision
could be an alternative.

The revolution because of Krizhevsky and others leaves the field of computer vision open for further research.
Convolutional  Neural  Networks  have  shown superior  accuracy on image  classification tasks,  as  shown on  the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) and are dominating most of the problems faced in
computer vision. CNNs have also been applied on the problem of object detection, such as R-CNN [3] that are
significantly better than the conventional feature-based detectors in terms of accuracy.In RCNN selective search [4]
is used to propose regions which are more likely to have an object. These proposed regions are then resized to pass
through a CNN with SVM classifiers to assign the type of object in the region. However as for each proposal
generated by selective search algorithm, we have to perform a forward pass through the CNN, it  is quite slow.
Further improvements in the architecture came in Fast R-CNN [5] which instead of passing proposed region through
the CNNs processes the whole image to extract a feature map. Feature map is used for object proposals with the help
of a region of interest  (ROI) pooling layer. In  addition, faster R-CNN [6] improves the architecture further  by
proposing Region Proposal Networks (RPNs) that share convolutional layers with object detection networks.
Architecture’s following the approach of [3] for object detection use regions to localize objects within the image and
tend to look at the only those regions of image which have a higher chance of containing an object. In contrast to
this  technique,  YOLO  framework  [7]  uses  the  whole  image  simultaneously  for  detection.  Furthermore,  it’s
significantly faster than R-CNN family of architectures.Yolov3 [8] is currently the best among different available
models in the YOLO family, it is improved by making the network bigger and adding residual networks by adding
shortcut connections.
Taking this into consideration, we used CNNs for classification/detection of vehicle damages.  For this problem
statement we created our own dataset by collecting images from internet and manually annotating them. We focused
on seven commonly observed car damage types such as smashed,  scratch,  bumper dent,  door dent,  head lamp



broken, glass shatter and tail lamp broken.We started with basic CNN model, pre-training a CNN using autoencoder
followed by fine-tuning image-classification models pretrained on the ImageNet dataset. We observed that Transfer
learning performs best. To increases the robustness of the system, we propose a architectural pipeline that will first
extracts the damaged region of the vehicle from the image and then passes it to the trained classifier network. As
described earlier, for detection purposes, We also use YOLOv3 [8], an object detector that uses features learned by a
deep convolutional neural network to detect an object.

This  paper  is  organized  as  follows.  In  section  2  we  briefly  review  related  work  in  the  field  of  car  damage
classification/detection . The collected  dataset is introduced in section 3. Section 4 deals with transfer learning and
the results achieved on various deep learning based models used for classification of car damage. Section 5 deals
with techniques used to further improve the accuracy of the CNN based models.  In  section 6 we implement a
technique known as “Class Activation Mapping” to visualize the region used by CNN’s to identify a specific class.
Section 7 & 8 deal with damage detection and proposed pipeline for inference of results in a more robust manner
respectively. Conclusion and references are given in section 9 and 10 respectively.

2. Related Works 
Several  damage  detection  approaches  have  been  proposed  applied  to  car  body damage  detection.  Srimal.al[9]
propose to use 3D CAD models to handle automatic vehicle damage detection via photograph.To identify damage in
a car they use a library of undamaged 3D CAD models of vehicles as ground truth information. In principle, image
edges which are not present in the 3D CAD model projection can be considered to be vehicle damage. An Anti-fraud
System for Car Insurance Claim Based on Visual Evidence - they proposed an approach to generate robust deep
features by locating the damages accurately and used YOLO to locate the damage regions.  Gontscharov.al [10] tries
to solve vehicle body damage by using multi sensor-data fusion. Keyence Vision[11] proposed an industrial solution
for car damage by hail by applying a high-resolution Multi-camera vision system. Cha. et al.[12] adopt image based
deep learning to detect crack damages in concrete, the methodology used is - acquiring images with the help of
camera, then the preprocessing stage where the acquired images undergo scaling and segmentation, and finally to
get the shape of crack, feature extraction is done, while [13] adopted a phase-based optical flow and unscented
Kalman filters. A. Mohan and S. Poobal. study and review Crack detection using image processing. Based on the
analysis, they conclude that more number of researchers have used the camera type image for the analysis with a
better segmentation algorithm [14]. 

3. Dataset Description
As far as we know there is no publicly available dataset for car damage classification, for instance , since vehicles
have very reflective  metallic  bodies  & the  photographs  are  taken  in  an  uncontrolled  environment  ,  it  is  very
challenging to apply standard computer vision techniques in this context, therefore we created our own dataset by
collecting  images  using  web  crawling  as  done  by  [15].  We manually  filtered  and  categorised  images  into  7
commonly observed damage types as shown below in Table 1. We also collected images belonging to No Damage
class. Some sample images of our dataset are shown in Figure 1 where each column from left to right represents a
damage types bumper dent, scratches, door dent, glass shatter, head-lamp broken, tail-lamp broken and smashed
respectively. 

3.1 Data Augmentation
Training our model with small dataset may cause overfitting, so to overcome this problem and improve our model
we used data augmentation to increase dataset size. We enlarged the dataset to approx. 4X by applying rotation-
range of 20 degrees, shear-range of 0.2, zoom-range of 0.2 and horizontal-flip.For classification, we randomly split
the data into 80%-20% where 80% was used for training and 20% was used for testing.



 
                                      Figure 1: Sample images of different damage-types

                                                                              Table 1. Dataset Description

Classes Train Size Aug. Train Size Test Size

Bumper dent 150 750 30

Scratch 112 560 22

Door dent 146 730 25

Glass shatter 104 520 25

Head-lamp broken 107 535 20

Tail-lamp broken 39 195 11

Smashed 256 1280 30

No damage 947 4735 225

4. Transfer Learning
To avoid the problem of overfitting on small datasets, instead of training the CNN models from scratch we can use
Transfer learning which has shown a significant improvement on classification problems when the dataset available
is scarce[16] [17]. So it is more common to train a CNN on an already available large dataset (e.g. ImageNet, which
contains  1.2 million images with 1000 categories) and then transfer  this knowledge to the target  task with the
intuition that some knowledge may be common between the source domain and target domain. Learning features
from a large and diverse input data distribution has been found to be more effective than using features from a data
distribution specific to just the target class. Instead of just pretraining our model on a large car dataset, it is better to
learn features on a more diverse dataset.[15]. After training on Imagenet dataset, we retrain the classifier on top of
the CNN on our dataset. We also fine-tune all the layers of the CNN while keeping in mind that the earlier layers
learn more generic features that are common  in all classification tasks[18] . 



4.1 Alexnet

AlexNet [19] was designed by Alex Krizhevsky , is one of the deep ConvNets designed to deal with complex scene
classification task on Imagenet data.The Network had a very similar architecture to LeNet [20], but was deeper,
bigger, and featured Convolutional Layers stacked on top of each other. It contains eight layers, the first five are
convolutional layers, some of them followed by max-pooling layers, and the last three are fully connected layers. To
reduce overfitting alexnet uses another technique called dropout that was introduced by G.E. Hinton in a paper [21]
in 2012.

4.2 VGG19

The  best-performing submissions  to  the  ILSVRC2013  (Zeiler  & Fergus,  2013;  Sermanet  et  al.,  2014)  utilised
smaller receptive window size and smaller stride of the first  convolutional  layer.  VGG-19[18] address another
important aspect of ConvNet architecture design – its depth. They fixed other parameters of the architecture, and
steadily increase the depth of the network by adding more convolutional layers, which is feasible due to the use of
very small ( 3 × 3) convolution filters in all layers.As a result, came up with significantly more accurate ConvNet
architecture.

4.3 Inception V3

The InceptionV3[22] deep convolutional architecture also known as GoogleNet , was developed by Google.With 42
layers, lower error rate is obtained and make it become the 1st Runner Up for image classification in ILSVRC
(ImageNet Large Scale Visual Recognition Competition) 2015. All the architectures prior to Inception, performed
convolution on the spatial and channel wise domain together. This model is comprised of a basic unit referred to as
an "Inception cell" in which we perform a series of convolutions at different scales and subsequently aggregate the
results. By performing the 1x1 convolution, the inception block is doing cross-channel correlations, ignoring the
spatial dimensions. This is followed by cross-spatial and cross-channel correlations via the 3x3 and 5x5 filters. All
of these layers then go through dimension reduction to end up in 1×1 convolutions.  

4.4 MobileNets

As consumer technology becomes thinner and lighter, a rising interest in small, efficient neural networks for mobile
applications has developed [23] [24] [25].
MobileNets [26] is based on the concept of factorised convolution, which factorises a standard convolution into a
depthwise convolution and a point wise convolution, originally introduced in [27]. Considering M as the number of
input channels, N as the number of output channels and Dk as the spatial dimension of the kernel which is assumed
to be square, the reduction in computation is:
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4.5 ResNet50

Unlike traditional sequential network architectures such as AlexNet, OverFeat, and VGG, ResNet is instead a form
of “exotic architecture” that relies on micro-architecture modules (also called “network-in-network architectures”).
First  introduced  by  He  et  al.  in  their  2015  paper[28],  the  ResNet  architecture  has  become  a  seminal  work,
demonstrating that extremely deep networks can be trained using standard SGD (and a reasonable initialization
function) through the use of residual modules. We used ResNet50 pretrained on the ImageNet dataset for Feature
Extraction. 
Keeping the Conv layer freezed we trained the densely connected classifier on the augmented data. In order to make
the model generalize well with our dataset, we fine-tuned it. In which we unfreezed a few of the top layers of the



freezed model used for feature extraction, and jointly trained the fully connected classifier and these top layers.
Validation accuracy increased in all the models. Accuracy of the models with and without data augmentation is
shown in Table 2.
           
                                       Table 2. Test accuracy of different pre-trained (on Imagenet) models 

Model Parameters Acc. (without Aug) Acc.(with Aug.)

AlexNet 60M 82.71 89.89

VGG19 144M 93.2 94.9

Inception V3 5M 66.26 74.18

ResNet50 25.6M 89.58 90.26

MobileNets V1.0 4.2M 69.6 70.8

5. Further Improvements
To further enhance the accuracy and speed up the training process, we implemented various techniques that have
demonstrated significant improvements than the conventional techniques.
     Finding the optimal learning rate region is utmost important as it drastically affects the performance and speed of
the network.  We used the technique developed by Leslie  N.  Smith [29],  where we simply keep increasing the
learning rate from a very small value, until the loss stops decreasing. We then choose an optimal learning rate by
estimating “reasonable  bounds”.  Further  also varying the  learning rate  cyclically between reasonable boundary
values helps in achieving improved classification accuracy and often in fewer iterations. This can be understood by
keeping in mind the intuition that as we get closer to the optimal weights, we might want to take smaller steps.To get
a more accurate and stable model, we must find weight space that is robust to small changes to the weight and in
turn generalise well to the unseen data. And to prevent from getting stuck in a ‘spikey’ region of weight space, the
cyclic restarts of learning rate can help to jump to a different weight landscape and avoid getting stuck in a region
which will not generalise well.
The initial layers of the pre-trained models can be thought of learning more general-purpose features [30]. So, while
fine-tuning our models, we would be expecting the initial layers to go through less changes in order to accomodate
our dataset. Keeping this in mind we will use different learning rates for different layers: increasing the learning rate
with the depth of the network.

We have differentiated our models into three blocks; and then accordingly we chose a learning rate for each block.
It is referred to as differential learning rates(DLR)[31].While data augmentation during training time significantly
improves the performance of the model, we can also use it during inference. Instead of making prediction on a single
image, we will be making predictions on a number of augmented versions of the original image and taking the
average prediction as the final answer.

All the networks ran for a total of 10 epochs when training only the fully connected layers and 15 epochs when
training all the layers 



 Table 3. Test accuracy using these techniques

Model Acc(training  FC
layers only)

Acc(training  all
layers  with
DLR annealing)

Precision Recall F-beta
Score

Acc(Using  test  time
augmentation)

VGG16 90.97%
(10 epochs)

93.81%
(15 epochs)

0.907 0.886 0.891 94.84%

VGG19 90.46%
(10 epochs)

95.36%
(15 epochs)

0.922 0.908 0.914 95.87%

Resnet34 90.20%
(10 epochs)

93.29%
(15 epochs)

0.857 0.830 0.837 93.88%

Resnet50 91.75%
(10 epochs)

96.13%
(15 epochs)

0.928 0.922 0.922 96.39%

                      

                        VGG16                                                          Resnet34

                          Resnet50                                                      VGG19

Figure 2: Training and validation loss plots of various model



The confusion matrix of Resnet34 in figure 3 shows that it predicted the classes correctly to large extent.
Some of the misclassification are merely due to large inter-class similarity between the classes such as head-lamp
broken, tail-lamp broken and glass-shatter because all three involve broken glasses.The uncertainty in tail lamp
broken  is also because of the small percentage of images in this category. Moreover, smashed cars contains dents,
so some of the images which belong to bumper dent were misclassified as smashed. Zoomed viewpoints of images
involving dents may also have led to misclassification of bumper dent as door dent. Out of the 388 testing images 27
images are misclassified and 361 images are classified correctly.

Figure 3: Confusion matrix For Resnet34 

6. Class Activation Mapping:
CAM (Class Activation Mapping) technique developed in the 2015[32] allows one to visualize which pixels of the
original image are responsible for predicting the corresponding class, highlighting the discriminative object parts
detected by the CNN.Moreover,We can be more certain that the CNN is working properly and gain some intuitions
where the CNNs are failing as it localizes the main object in the image.It enables classification-trained CNN models
to learn to perform object localization, without using any bounding box annotations.

                  Figure 4: Examples of CAMs, few images of Damaged Cars , and their class activation maps
                   with them. We observe that the damaged regions of the images are often highlighted. 

                   Apart from this, similar observations are recorded in other samples.



We generated class activation maps (CAM)[ ] using global average pooling (GAP) in CNNs . A class activation map
for a particular category indicates the discriminative image regions used by the CNN to identify that category.

7. Damage Detection Using YOLOv3
Yolov3 consists of a 106 layer architecture [8]. It improves on version 2 by using residual connections and

upsampling. .[YOLOv3: An Incremental Improvement]. It uses the darkNet architecture. Darknet-53 performs on
par with state-of-the-art classifiers but with fewer floating point operations and more speed. Darknet is 1.5X faster
than Resnet-101 and 2X faster than Resnet-152 while achieving comparable performance.

We first tested the object detection capabilities of Yolov3 by only labelling damaged areas of the image.
After achieving satisfactory results(table 6), we split the data into 6 categories : (1)Bumper Dent (BD) , (2)Car
Scratches (CR), (3)Door Dent (DD), (4)Glass Shatter (GS), (5)Lamp Broken (LB), (6)Smashed (SM). As observed,
the Average Precision of the “Car scratches” and “Lamp Broken” classes is comparatively lower because of fewer
images in the training dataset.

Results of Yolov3 were validated across a set consisting of images of 416 * 416 Resolution. The Mean
Average Precision score obtained was 74.23 %. When tested across a set of 608 * 608 images, the precision was
improved by 3.5 percent to 77.78 % which shows that the model accuracy can be improved during inference by
passing a higher resolution image through the network trained on relatively lower resolution; this increases the
precision and makes it possible to detect small objects.

                                        Table 4. Results on YOLOv3 (416x416)            Map score: 0.7423 

Threshold Precision Recall F1-score Avg. IOU

0.00 0.59 0.81 0.68 43.22%

0.25 0.82 0.73 0.77 61.25%

0.40 0.84 0.71 0.77 62.99%

0.50 0.86 0.70 0.77            64.18% .18%           

0.70 0.88 0.69 0.77 65.70%

                           
                  

                                     Table 5. Result on YOLOv3 (608x608)               Map score 0.7778

Threshold Precision Recall F1-score Avg. IOU

0.40 0.70 0.80 0.74 50.21%

              
     

AP scores:      BD: 77.16%   CR: 59.21%  DD: 88.21%   GS: 71.07%   LB: 64.56%   SM: 85.19%



Figure 5: Sample Images of Damage Detection via YOLOv3 

                 Table 6. Results on damage detection         Map score:  0.663

Threshold Precision Recall F1-score Avg. IOU

0.00 0.65 0.80 0.72 45.76%

0.25 0.81 0.78 0.80 57.20%

0.40 0.82 0.77 0.79 57.66%

0.50 0.82 0.77 0.79 57.66%

0.70 0.84 0.75 0.79 59.53%

              

8. Pipeline for Insurance Claim Process
Keeping in mind the importance of accuracy and hassle free results for the users of our model, we  have proposed  a
two-step process to combine object detection and classification. The basic strategy is to use YOLOv3 framework to
detect the damaged region and then classifying that region using a CNN model trained on the damage dataset.

Initially, the Customer will upload an image to the server using an insurance claim app. Then the image will
be passed through an object detector; in our case it is YOLOv3. The detector will be able to detect the region of the
vehicle which is damaged. After localizing the damaged region, the proposed region will go through a CNN trained
on damaged dataset  to  classify the  type  of  damage.  Furthermore,  images  aggregated  overtime can  be  used  to
increase the size of dataset and in turn increase the accuracy of the system by training on a more diverse dataset.



The current  accuracy on  detecting damages  using YOLOv3 on our  dataset  is  depicted  in  Table  6  .  Taking in
consideration the relatively small size of our dataset, the results are very encouraging, and are able to learn features
that are common in all the different type of damages. We believe only increasing the size of the dataset would be
enough to increase the accuracy further. So as we keep storing images uploaded by customers and then training our
system on them,it would improve the durability of the pipeline in detecting regions of damage as it will lead to a
large dataset which eventually allow the network to learn more significant features which generalise well to inter-
class variations.

  Figure 6: Pipeline Overview

9.  Conclusion
Stating the two most prudent quotes of our time by  Andrew Ng , “AI is the new electricity”, and Clive Humby
“Data is the new oil”,  based on this motivation we here amalgamate both data and AI to provide a novel approach
for automating the vehicle damage insurance claims.  In this paper, we demonstrate a mechanism  to classify/detect
damage in vehicles. For this, we manually collected versatile dataset from the internet through running web crawler
on various search engines like google and bing,  and used deep learning models for the damage classification task.
Combining transfer learning with cyclic learning rates for training neural networks we were able to outperform the
current state-of-the-art in vehicle damage classification by a significant margin. We are also successful in detecting
the damaged part of the vehicle using YOLO framework. Even though our dataset is comparatively small  by the
standard of other deep learning datasets but several quantitative evaluations show the power and potential of the
proposed approach. We have also proposed a practical system application which can fully automate the insurance
claim process and can profit many car insurance companies. We believe a larger dataset would improve the results
and make this system ready for much more dynamic real-life scenarios.
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