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Abstract  

Energy consumption of the built environment worldwide is increasing at a faster rate than the population. With 
building energy consumption, the amount of greenhouse gas released into the atmosphere also increases, 
further enhancing global warming. In this context, lighting is seen as one of the most critical issues associated 
with energy consumption. Despite many studies related to the evaluation of daylighting in specific buildings, few 
studies examine daylighting in the urban context. Therefore, daylighting in dense urban areas should be analyzed 
and predicted for optimization. The predictions using surrogate models based on machine learning approaches 
have the potential to predict daylighting results and reduce the environmental impact of the buildings. This 
research aims to enhance the applications of machine learning approaches in daylighting predictions in the urban 
context. As a case study, a small urban area in Turkey, Ankara, is simulated, and different machine learning 
models (i.e., Multiple Linear Regression, Artificial Neural Network, Random Forest) are presented. Performances 
of prediction models will be compared.  
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1.Introduction  
Today, every building constructed is a serious sustainability problem from energy consumption which causes 
climate change. In Europe and the other developed countries, almost 40% of total energy is used for buildings 
energy consumption (Allouhi et al., 2015; USDOE, 2019). One of the most crucial factors in the energy 
consumption of buildings is lighting, which is one of the most used areas of electrical energy. Lighting accounts 
for approximately %15 of the total electric energy consumption (Ryckaert et al., 2010). At this point, usage of 
daylighting in buildings saves energy and costs significantly. The integration of daylighting with buildings does 
not only affect electricity usage, but also it reduces the internal heat gain by reducing lighting equipment (Pan et 
al., 2007). Moreover, it reduces the air conditioning requirements by reducing internal heat gain. Efficient indoor 
daylight can drastically reduce the need for artificial lighting, thereby reducing building energy use. 
Moreover, appropriate daylighting in buildings increases the well-being, visual comfort, and productivity of 
building occupants. It is essential to understand and analyze daylighting metrics and design parameters affecting 
daylighting usage in buildings. In addition to that, people who live in urban areas and buildings in urban increased 
with an uncontrollable speed by causing enormous energy demands in urban areas. However, increasing urban 
density leads to a conflict between space-use efficiency and daylight access (Dogan & Park, 2019). Today, the 
distribution of daylighting to the inside of the building is challenging because of context buildings in dense urban 
areas. The effectiveness of daylighting can be reduced in dense urban settings, as the surrounding buildings act 
as context shading and reduce the reach of direct solar illumination to the indoor spaces. This study aims to 
create a prediction model with different data-driven models for daylighting performance metrics in the urban 
context. 
 

2.Literature Review 
The most common methods to analyze daylighting metrics are analytical formulas, computer simulations, and 
machine learning techniques. Analytical formulas are traditional ones to estimate mostly illuminance in buildings 
(Kazanasmaz et al., 2009). Metrics such as daylight factor, sky component, internally and externally reflected 
components could be calculated by using formulas. For manual calculation, the Lumen Method was introduced 
by Frühling to approximate DF by mathematical formulas (Ayoub, 2019), Treganza proposed modification of split-
flux formula for daylight factor and internal reflected component with large external obstructions (Treganza, 
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1989), and formulas were modified in years for different kind of spaces. Another method to evaluate daylighting 
metrics is a computer simulation. Various computer simulation programs have been used to calculate daylight, 
such as DIVA (Jakubiec & Reinhart, 2011), RADIANCE (Ward, 1994), DAYSIM (Reinhart & Walkenhorst, 2001), 
Energy Plus (Crawley et al., 2000). Although these tools allow detailed analysis in daylight assessment, only 
experienced users can obtain accurate results. Moreover, as the simulation model and inputs expand, it can take 
hours to get detailed results, limiting designers' use of the tool in the early design phase. Machine learning 
applications are the most up-to-date method, fast and detailed tool in daylight evaluation. 

Recently, machine learning approaches in daylight studies have increased considerably in the literature and 
many researched studies evaluated daylighting metrics and parameters: Lee et al. (2019) tried to analyze and 
predict the impact of building design parameters on daylighting metrics using statistical learning techniques. 
Ngarambe et al. (2020) predicted indoor daylight illuminances by comparing different machine learning 
techniques. Maltais & Gosselin (2017) tried to evaluate buildings' performance based on daylighting using 
sensitivity analysis, metamodel, and Pareto Front methods. Kazanasmaz & Günaydın studied a prediction model 
developed to determine daylight illuminance for office buildings using artificial neural networks (Kazanasmaz et 
al., 2009). Although there are many studies related to machine learning techniques to calculate daylighting 
metrics, just a few consider the urban context that affects daylighting. However, the urban environment 
influences daylighting results to such an extent that they cannot be neglected. Surrounding building heights, 
their material characteristics, and urban canyon characteristics contribute to the amount of direct sunlight and 
diffuse daylight that a building facade and adjacent street receive (Saratsis et al., 2017). There are a few 
comprehensive studies that comprehend the urban environment. Reinhart et al. (2013) studied an urban 
modeling interface to calculate annual daylight availability for each building.  
For the decision of evaluation metrics, their pros and cons are evaluated. Daylight Factor indicates the ratio of 
the light level inside a structure to the light level outside the building. However, it does not consider different 
sky conditions and building locations. As a climate-based metric, Daylight Autonomy indicates how often the 
minimum illuminance threshold is met or exceeded during occupancy hours (Dogan & Park, 2019). Maximum 
Daylight Autonomy indicates the percentage of the annual occupied timesteps when the illuminance level 
exceeds ten times a predefined threshold (Rogers & Goldman, 2006).  
 
 

 
 

Figure 1. Design parameters affect the UDI 
 
 

Useful Daylight Illuminance (UDI) measures the percentage of occupancy hours during which illuminances fall 
within a range of 100 lx and 3000 lx (UDI combined) (Dogan & Park, 2019). Compared to Daylight Autonomy 
metrics, UDI offers more information to assess visual and thermal discomfort (Ayoub, 2019). Moreover, as a 
dynamic and climate-based metric, Useful Daylight Illuminance (UDI) provides knowledge for different 
conditions by dividing the annual illuminance distribution into three bins (Nabil & Mardaljevic, 2006). By 
indicating lower and upper thresholds, it shows the percentage of occupancy hours in which oversupply of 
daylight happens and insufficient daylight that occur (Yu & Su, 2015). It gives an idea about excessive heat gain, 
visual and thermal discomfort of occupants. There are also glare indices metrics that can help to evaluate visual 
comfort; however, calculating these metrics takes a long time and long-term studies. Therefore, in the scope of 
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this study, only UDI is determined as a performance metric for prediction models. Figure 1 shows the design 
parameters that affect the UDI value. 

 

 3.Methodology 

 
Figure 2. The flow of the process 

 
 

 3.1.Creation of 3D Model and dataset 
In this research, as Bahçelievler reflects one of the densest urban areas in Ankara, a small urban context in 
Bahçelievler was studied. The 3D model was created in Rhino. The studied building has four floors, and each 
floor was divided into four units. To be able to discuss needed daylighting for different spaces, each unit was 
divided into three: one is a living room, and the other two are bedrooms. While there is one glazing in 
bedrooms, the living room has two glazing faces in the east and south direction. As an urban context, exterior 
buildings were represented as surfaces instead of 3D modeling to reduce computational cost. Surfaces that 
only affect the amount of light falling on the studied building are modeled as surfaces. Trees were detected 
according to Google Maps and modeled in an abstract way. They were raised 3m to reflect the shadow of trees 
in a proper way. However, after trying different shape scenarios, it was observed that tree shapes did not 
affect the results so much, and they were represented as a decagon.  Figure 3 shows the 3D model and studied 
area’s location, and Figure 4 shows the division of each unit. 
 

 

            
 

Figure 3. 3D Model and studied area’s location 
 

 
 



International Symposium of Architecture, Technology and Innovation ATI2021 
 D E S I G N I N G   F O R   U N C H A R T E D   T E R R I T O R I E S  

September 22 – 24, 2021 | Yaşar University, Izmir, Turkey 

 
 

 
 

Figure 4. The division of each unit 
 

 
3.1.1.Database Generation 
In this study, Honeybee and Ladybug plugins were used to simulate the model. According to the literature view, 
UDI was selected as a performance metric, and inputs were investigated, affecting the UDI value. Initially, nine 
design parameters were selected as input: x1: glazing width, x2: glazing height, x3: transmittance value, x4:  
interior wall reflectance, x5: interior floor reflectance, x6: interior ceiling reflectance, x7: tree reflectance, x8: 
exterior ground reflectance, and x9: context building reflectance. Weather data was obtained, and the model 
was simulated. The modeled area was divided into five grids, and the average UDI value falling on these five 
points was calculated. 

At first, nine inputs were given to the model with only the maximum and minimum extreme values of 0.1 and 
0.9 to make feature selection with the parameters that affect the results the most. The results showed that 
glazing width, glazing height, transmittance value, and context building reflectance are the most significant 
parameters that affect the average UDI. Figure 5. shows the correlation matrix between inputs and the average 
UDI value. 
 

 
Figure 5. Correlation matrix between inputs and UDI value 

 
After selecting needed inputs, fixed values were entered in other inputs by scanning the literature. Table 1 
shows the design parameters and references for fixed values. Four inputs with values between 0.1 and 0.9 
were given as input to the model with random values and simulated.  
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Design Parameters Values 

X1: glazing width 0.1<    <0.9 
X2: glazing height 0.1<    <0.9 

X3: transmittance value 0.1<    <0.9 
X4: Interior wall reflectance (fixed) 0.5 (IESNA Handbook (2011)) 
X5: Interior floor reflectance (fixed) 0.2 (IESNA Handbook (2011)) 

X6: Interior ceiling reflectance (fixed) 0.8 (IESNA Handbook (2011)) 
X7: tree reflectance (fixed) 0.2 (Sielachowska et al., 2020) 

X8: exterior ground reflectance (fixed) 0.3 (Page & Lebens, 1986) 
X9: context building reflectance  0.1<    <0.9 

 
Table 1. Design parameters and references for fixed values 

 

 

3.2.Methods 
3.2.1.Multiple Linear Regression 
Multiple Linear Regression represents the relationship between the dependent variable and n number of 
explanatory variables (Grégoire, 2015).  
 
 

𝑌 =  𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 + … … … +  𝛽𝑛𝑋𝑛 +  Ɛ (1) 
 
 
Given equation (1) shows the relationship between the dependent variable (𝑌) and independent variables 
(𝑋1, 𝑋2, … … 𝑋𝑛). 𝛽0 is the constant term,  𝛽1 … … … 𝛽𝑛 represents the coefficient factor of independent 
variables, and Ɛ represents the notation for the model deviations. 
Multiple linear regression models were used to predict daylighting performance metrics and design parameters 
in various studies (Kim et al., 2007; Turan et al.,2020). 
 
3.2.2.Random Forest 
Random Forest (RF) is a supervised learning algorithm that consists of decision trees and can be used for both 
regression and classification tasks (Breiman, 2001). The predictions are based on average results of decision 
tree classifiers on various sub-samples on data.  
RF is one of the most used supervised learning algorithms in building energy consumption predictions and 
daylighting problems due to its prediction based on average results of an ensemble of decision trees that 
increase the accuracy of prediction results (Ahmad et al., 2017; Ayoub, 2020).  
 
3.2.3.Neural Network for Regression 
Neural Networks (NN) are algorithms that are inspired by information on how the human brain learns and its 
process (Wang, 2003). Basically, NN is composed of three main layers: input layer, hidden layer, and output 
layer, and each input has different weights that affect the prediction results. NNs are trained to make 
predictions by applying training sets, and its result is verified by using testing sets. NNs adjust themselves based 
on the error.  
Neural Network algorithms have been widely used in building energy forecasting models, energy consumption 
predictions, retrofit scenarios, and daylighting forecasts in recent years (Robinson et al., 2017; Wang et al., 
2019).  
 
The Performance Evaluation 
To be able to compare performances of different learning algorithms, four main performance evaluation metric 
was calculated in this study: Mean Absolute Error (MAE) (2), Mean Squared Error (MSE) (3), Root Mean 
Squared Error (RMSE) (4) and Coefficient of Determination (R2) (5). 
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where �̂� is predicted value of 𝑦 and �̅� is the mean value of 𝑦. 

 
4.Results  
4.1.Results of Multiple Linear Regression  
Results for multiple linear regression were tested with different sizes of training sets. Table 2 shows the results 
of performance evaluation metrics with different sizes of the dataset. 
 

Table 2. The evaluation of Multi-Linear Regression results with different sizes of testing data 
 

Y MAE MSE RMSE R2 Testing Data Size 

Average UDI 1.829 5.122 2.263 0.932 10% 

Average UDI 1.832 5.281 2.298 0.931 20% 

Average UDI 1.841 5.272 2.296 0.926 30% 

 
Among the algorithms used in the study, it was the fastest algorithm with the least computational cost. Since it 
is known that the relationship between the input parameters and the output is linear, it is predicted that the R2 
value of the model will be high, and the results of the study have proven this. As the R2 value increases, model 
predictions get closer to real results, the accuracy of the model increases. With the lowest error rate and 
highest R2 value, the regression model that made the closest estimation to reality was the model in which 10% 
of the test data was used. 

 
4.2.Results of Random Forest 
Results for Random Forest were tested with different sizes of training sets. Table 3 shows the results of 
performance evaluation metrics with different sizes of the dataset. 

 
Table 3. The evaluation of Random Forest results with different sizes of testing data 

 

Y MAE MSE RMSE R2 Testing Data Size 

Average UDI 0.518 0.501 0.708 0.992 10% 

Average UDI 0.534 0.536 0.732 0.992 20% 

Average UDI 0.662 0.784 0.885 0.991 30% 

 
Random Forest algorithm was successful at prediction with the highest R2 value compared with other 
algorithms. The number of testing data sizes did not affect the R2 results dramatically, but when testing data 
size increased, MAE, MSE, and RMSE values were also increased, which means the model deviated from 
accuracy.   

 
4.3.Results of Neural Network for Regression 
Results for Neural Network for Regression were tested with different sizes of training sets. Table 4 shows the 
results of performance evaluation metrics with different sizes of the dataset. 

(3) 

(4) 

(5) 

(2) 
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Table 4. The evaluation of ANN results with different sizes of testing data 
 

Y MAE MSE RMSE R2 Testing Data Size 

Average UDI 0.084 0.011 0.105 0.987 10% 

Average UDI 0.075 0.009 0.095 0.991 20% 

Average UDI 0.09 0.013 0.115 0.986 30% 

 
Neural Network algorithm showed the best performance with a high R2 value and low MAE, MSE, and RMSE 
values. Changing the size of test data did not affect the results much, but the model showed the best 
performance with a 20% testing size.  
In Neural Network, Hyperparameter tuning was used to train the model. Different batch size and epoch size 
alternatives were tested with manual grid search, and the model was retrained with the values that increased 
the accuracy of the model the most. The computational cost was higher compared to other algorithms due to 
the Hyperparameter tuning stage. 
  

5.Discussion 

In this research, performances of three different prediction algorithms which have been using in daylighting 
were evaluated. The building in Bahçelievler is divided into three rooms, two of which are simulated as a 
bedroom and the other as a living room. At the same time, the building was divided into grids, and UDI values 
on five points formed because of partitioning were calculated. Much lighter fell on the living room unit, which 
has openings in two different directions. The east-facing bedroom receives much more light compared to the 
south-facing bedroom because there is a surrounding building blocking the light next to the south-facing 
bedroom. The dataset used was limited as it only contained four inputs. It can be enlarged in future studies to 
enhance algorithms’ performances and develop prediction models. Also, only one daylighting metric (UDI) was 
estimated against four inputs given to the models. More daylighting performance metrics should be added, 
such as daylight glare probability, annual sunlight exposure, and spatial daylight autonomy, to create a 
comprehensive urban daylighting model. Future studies aim to analyze the effect of the urban environment on 
glare and use prediction models in which glare metrics are included. The striking point in the study is that the 
four parameters found to be the most effective on daylighting sometimes show incorrect results in the extreme 
values they can take. Still, NN for regression and Random Forest were successful at prediction models with high 
R2 scores, and NN for regression showed the best result based on MAE, MSE, and RMSE. 
 

6.Conclusion 

In this study, the relationship between building design parameters and daylighting metric (UDI) was analyzed, 
and prediction models were created based on three different algorithms: multiple linear regression, random 
forest, and ANN for regression. At first, the model was simulated with nine different design parameters. Then to 
reduce the computational cost, it has been re-simulated with four parameters that affect the UDI value the most. 
It has been observed that the surrounding buildings greatly affect the daylight falling on the building. The aim of 
this research was to show and compare the performance results of different algorithms which have been using 
in daylighting. To evaluate performances of algorithms, each algorithm was trained with different sizes of training 
sets. According to the results, random forest and NN showed better results in terms of R2 score. In more detail, 
NN showed better performance with less MAE, MSE, RMSE values. In building base and including urban context, 
these predictive models help the designer better understand the relationship between daylighting in building 
and its urban context. However, more design parameters and more metrics can be added to predictive models 
to increase data and algorithm prediction accuracy. 
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