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Abstract—Fault diagnosis is of great significance for timely 
detection of safety hazards of machinery and ensures the normal 
operation of production. To address the problems of low 
accuracy and poor robustness of mechanical fault diagnosis 
methods in general, the paper proposes a cloud-edge 
collaborative intelligent fault diagnosis method based on the 
LSTM-VAE hybrid model. The method trains the LSTM-VAE 
hybrid model in the cloud by using the vibration signals of 
mechanical components at the early stage of operation, and then 
reconstructs the real-time vibration signals in the edge by using 
the trained LSTM-VAE, calculates the difference degree 
between the original signal and the reconstructed signal, 
compares them with the adaptive threshold, and combines the 
"3/5" strategy to achieve fault warning. The experimental 
results show that, compared with other fault diagnosis methods, 
the proposed method can accurately diagnose the fault of rolling 
bearings with different degradation modes, and significantly 
improve the fault warning time in slow degradation modes, with 
high timeliness and strong adaptability. 

Keywords—Cloud-Edge Collaborative, Long Short-Term 
Memory, Variational Auto-Encoder, Intelligent Fault Diagnosis, 
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I. INTRODUCTION  

In recent years, the rapid development of information 
technology has promoted more and more technologies to 
become intelligent and networked [1], and machinery is made 
more and more complex. Once a minor failure occurs in the 
key components inside the machinery, it may lead to safety 
hazards in the whole machinery and then a safety accident. 
Therefore, it is of great practical significance to monitor and 
diagnose the operation status of key components of machinery 
in real-time. 

Currently, mechanical fault diagnosis methods can be 
summarized into three categories: model-based methods, 
empirical knowledge-based methods, and data-driven 
methods [2]. The model-based diagnosis method explores the 
degradation process of machinery by constructing a 
mathematical model based on the failure mechanism of 
mechanical components [3]. For example, a model-based state 
estimation method for fault monitoring and identification of 
switching power converters was used by Poon [4] et al. 
However, the difficulty to fully understand the failure 

mechanism of damaged components makes it difficult to 
establish an accurate mathematical physical model, which 
limits the application of this method. The empirical 
knowledge-based fault diagnosis method transforms a large 
amount of expert experience and theory into a knowledge base 
for fault analysis by various reasoning means. Typical 
applications are in the form of expert systems and fuzzy logic. 
However, these methods often encounter bottlenecks in 
acquiring domain knowledge and converting it into rules, such 
as the knowledge base is easily limited by the expert's 
empirical knowledge; the rules of fuzzy logic are not easy to 
set, etc. In this case, it is recommended to adopt a data-driven 
fault diagnosis method. It uses signal processing technology 
and machine learning algorithms [5] or deep learning 
algorithms to deeply mine potential process information from 
the historical operation process data of key components of 
machinery, to perform fault diagnosis on machinery. Such as 
Dhamande [6] et al. extracted time-frequency features from 
vibration signals by Continuous Wavelet Transform and 
Discrete Wavelet Transform and accurately classified faults 
by combining artificial neural networks. 

Since the dimensions of raw signals collected from 
machinery are generally large, and traditional machine 
learning algorithms have very limited ability to represent the 
data, it is difficult to learn effective features directly from the 
raw signals. As a branch in the field of machine learning, deep 
learning can create a multilayer network structure by 
continuously stacking neural networks to achieve deeper 
feature extraction, which solves the problem that traditional 
machine learning algorithms have insufficient ability to 
express features. Jia [7] et al. built a multilayer network based 
on DBN to mine features from spectral data and verified the 
effectiveness of the method in rolling bearing and gearbox 
datasets. Pan [8] et al. proposed an end-to-end fault diagnosis 
model CNN-LSTM for fault classification of bearings and the 
method achieved 99% accuracy in the test set. 

However, most of the abovementioned data-driven 
algorithm models require high computational performance 
and usually require edge devices with high parallel processing 
capability as well as memory throughput, which hinders the 
application of algorithm models in edge devices. With the 
development of big data [9], artificial intelligence [10], 



blockchain [11], edge computing [12], and cloud computing 
[13,14], the application of data-driven fault diagnosis methods 
to edge devices using a collaborative cloud-edge manner is 
being promoted by an increasing amount of researchers. For 
example, Zhang [15] et al. proposed an improved 
convolutional neural network model that is applied to detect 
high impedance faults in distribution networks using a 
migratory learning ground approach to the cloud-edge 
cooperative framework. Gai [16] et al. collaborated on mobile 
edge computing, cloud computing, and reinforcement learning 
to propose an intelligent model, SRL-RA, for resource 
allocation problems in a complicated networking environment. 

Despite the remarkable achievements of data-driven fault 
diagnosis methods, the following problems still exist: most 
data-driven methods are supervised learning and rely on large-
scale labeled datasets, which are, however, more difficult to 
obtain in real industrial scenarios [17]; the use of signal 
processing techniques to extract features relies on the 
expertise and may lose useful information in the original 
signal; the algorithmic models have low diagnostic accuracy 
and cannot detect potential failures of machinery in slow 
degradation mode promptly; the robustness of algorithmic 
models is poor in strong noise backgrounds. 

To solve the above problems, this paper proposes a new 
fault diagnosis method. The main contributions are as follows: 

 This paper proposes a new cloud-edge collaborative 
intelligent fault diagnosis method based on the hybrid 
model LSTM-VAE, which can work with only a small 
amount of monitoring data at the beginning of 
machinery operation without annotation the data set. 
Combined with the proposed adaptive threshold 
method and the "3/5" strategy, the proposed method 
can accurately detect potential failures of machinery 
with two general degradation modes and prevent 
further expansion of mechanical faults. 

 The proposed method can learn deeper abstract 
features directly from the vibration signals collected by 
the machinery without relying on the expert's empirical 
knowledge, avoiding manual feature selection. 

 The LSTM-VAE hybrid model is enhanced using the 
Dropout method, which improves the robustness of the 
model in a strong noise environment and prevents 
model overfitting, providing the possibility of its 
application to real industrial environments, which has 
important engineering applications. 

The rest of the paper is organized as follows. Section II 
describes the proposed method. Section III introduces the 
experiments and analysis of their results. Finally, we 
summarize this paper and identify the future directions in 
Section IV. 

II. PROPOSED METHOD 

A. LSTM-VAE hybrid model 

Long Short-Term Memory (LSTM) is a variant of 
Recurrent Neural Network (RNN) proposed by Hochreiter 
and Schmidhuber [18] et al. Compared to the general RNN, 
LSTM effectively solves the long-term dependency problem 
of RNN by introducing various gate units within the recurrent 
neurons. Fig. 1 illustrates a standard LSTM memory cell, 
which is well suited for processing medium to long time 
sequence data due to its unique design structure. 
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Fig. 1. LSTM memory cell 

Variational Auto-Encoder (VAE) is an important 
generative model proposed by Kingma and Welling [19] et al. 
It is one of the most promising machine learning algorithms in 
unsupervised learning, which can self-learn the statistical 
distribution obeyed by the data and generate similar data. The 
VAE model consists of an encoder and a decoder, which can 
be implemented by various neural network models, such as 
Artificial Neural Network, Convolutional Neural Networks 
(CNN), RNN, etc. The structure principle of the VAE model 
is shown in Fig. 2, from which we can find that the data 𝑥 is 
generated by the hidden variable 𝑧. 𝑧 → �̃� is the generative 
model 𝑝ఏ(𝑥 ∣ 𝑧), i.e., decoder, while 𝑥 → 𝑧 is the inferred 
model 𝑞థ(𝑧 ∣ 𝑥), i.e., encoder. VAE uses the inferred model 
𝑞థ(𝑧 ∣ 𝑥)  to approximate the true posterior probability 
distribution 𝑝ఏ(𝑥 ∣ 𝑧) and uses KL scatter to measure the 
similarity of the two distributions, and ϕ  and θ  are the 
parameters of the encoder and decoder, respectively. 

 
Fig. 2. VAE model structure principle 

In the field of mechanical fault diagnosis, the vibration 
signals are often used as the main object of research on 
machinery fault diagnosis methods because they contain rich 
condition information of machinery [20]. The vibration signal 
belongs to a kind of time-series data, and there is a temporal 
correlation between its samples. And under the complex 
working conditions, the vibration signal contains more noise 
and presents the characteristics of nonlinear, nonperiodic, and 
nonstationary. Given the advantages of the LSTM model's 
excellent expressiveness to time series data and the VAE 
model's robustness to noise, this paper proposes a new data-
driven hybrid model LSTM-VAE for fault diagnosis. 

The LSTM-VAE hybrid model combined the advantages 
of both LSTM and VAE models. On the one hand, by 
introducing LSTM to establish time-series dependence on 
vibration signals, the long and short-term time-series features 
of vibration signals are extracted. On the other hand, it 
combines VAE to model the time series and map the vibration 
signal and the correlation between dimensions into the hidden 
space to achieve deeper feature extraction. Meanwhile, VAE 
learns the distribution of the vibration signal of the mechanical 
health state by modeling the vibration signal of the mechanical 
health state through variational inference. Because the  
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Fig. 3. LSTM-VAE hybrid model structure 

probability distributions learned in the hidden space are 
continuous, VAE is robust to noise caused by operating 
conditions, equipment differences, and other factors. 

The structure of the LSTM-VAE hybrid model is shown 
in Fig. 3, which mainly consists of an input layer, an encoder, 
a hidden layer, a decoder, and an output layer. Among them, 
the input layer is responsible for the segmentation of the 
received signal. The encoder is composed of multiple LSTM 
cells and takes a 3D sequence as input. Like all encoders in 
the VAE architecture, it outputs a 2D sequence for 
approximating the mean μ and standard deviation σ of the 
potential distribution. The hidden layer is responsible for 
sampling from the 2D potential distribution and outputting the 
sampled compressed features to the decoder. The decoder 
decodes the compressed features to generate a 3D sequence. 
Finally, the output layer concatenates the generated sequence 
back to reconstruct the original time series. 

B. Adaptive threshold method and "3/5" strategy 

LSTM-VAE is still essentially a codec, which encodes and 
decodes the input data, and then outputs the reconstructed 
result. In this paper, Mean Square Error (MSE) is used as a 
measure of the difference between the input data and the 
reconstructed output results, and its calculation formula is as 
follows. When the MSE is greater than the warning threshold, 
the machinery can be considered to be malfunctioning and an 
alarm is triggered. 

MSE (𝑌, 𝑌) =
1

𝑚
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At present, the warning thresholds for most fault diagnosis 
methods are pre-set into the system by the operator. However, 
in the actual industrial environment, even for the same type of 
machinery, the warning thresholds may vary depending on the 
operating conditions, materials, manufacturing, or processing 
technology level, so an empirically given warning threshold 
cannot be applied to all machines. Given the excellent 
generative capability of the LSTM-VAE hybrid model, the 
warning thresholds can be self-learning by partial normal state 
data of the machinery as well as newly generated normal state 
data. More data means that the learned warning thresholds are 
more accurate and reliable, which enables the system to alarm 
at the early stage of fault occurrence with strong self-
adaptability. The calculation process of the early warning 
threshold is shown in Fig. 4. Firstly, the trained LSTM-VAE 
is used to generate more healthy state data X. The new data X 
is then input to the LSTM-VAE, and the reconstructed data X' 
is obtained after LSTM-VAE encoding and decoding. The 
MSE between X and X' is calculated and noted as loss2. 
Finally, the mean μ and standard deviation σ are calculated 
after the combination of loss1 and loss2, where loss1 is the 
MSE generated by the trained LSTM. According to the 3σ 
criterion, since the probability of a normal distribution taking 
values outside (μ − 3σ, μ + 3σ] is less than 0.3%, which is  
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Fig. 4. Calculation of warning threshold 

a small probability event, the warning threshold can be set to 
μ + 3σ. 

Real industrial systems are not ideal models. They are 
susceptible to strong noise or variable operating conditions. 
And there is a high probability that a disturbance will cause 
the vibration signal to jitter violently and return to smoothness 
quickly, resulting in false alarms in normal systems. To reduce 
the occurrence of such false alarms, this paper proposes a 
"3/5" strategy based on the idea of sliding windows. The 
specific idea of the "3/5" strategy is to set up a sliding window 
of size 5, and the system will store the results of each diagnosis 
in the window and check the situation in the window. If there 
are 3 faults in the 5 diagnostic results in the window, the 
machinery is considered to be truly faulty and an alarm is 
triggered immediately. Otherwise, remove the diagnostic 
result in the first window and store the next diagnostic result 
in the last window. 

C. Dropout method 

The LSTM-VAE hybrid model is robust to noise though. 
However, when the model has more parameters, insufficient 
training data, and more noise, the model is prone to overfitting. 
In this paper, the Dropout method proposed by Hinton [21] et 
al. was introduced to augment the LSTM-VAE to prevent 
overfitting of the model during the training process. The 
Dropout method is based on the principle that a certain 
percentage of neurons are randomly deactivated in each 
training batch, thus reducing the interaction between neurons 
in each layer and enhancing the generalization of the model. 

D. Cloud-Edge collaborative intelligent fault diagnosis 
method 

The specific implementation of the cloud-edge 
collaborative intelligent fault diagnosis method is: firstly, the 
sensing data of the machinery is monitored at the edge and 
uploaded to the cloud for storage and analysis, and then the AI 
fault diagnosis model is trained in the cloud and downlinked 
to the edge for machinery fault diagnosis, thus realizing the 
collaboration between the cloud and the edge. In this paper, 
the proposed LSTM-VAE hybrid model is the AI fault 
diagnosis model. 

As shown in Fig. 5, the overall architecture of proposed 
method is divided into two phases: offline training and online 
testing. The offline training phase is conducted in the cloud, 
mainly to train the LSTM-VAE hybrid model and calculate 
the warning threshold. And then migrate the trained LSTM-
VAE and warning threshold to the edge devices. The online 
testing phase is performed at the edge, and its main task is to 
use the trained LSTM-VAE hybrid model to encode and 
decode the monitored real-time vibration signals, output the 
reconstructed vibration signals, calculate the losses of the 
original vibration signals and the reconstructed vibration 
signals, compare them with the warning thresholds, and  
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Fig. 5. Overall framework of the proposed method 

combine them with the "3/5" strategy to achieve an online 
diagnosis of machinery. 

1) Offline Training Phase (Cloud)  

Throughout the life cycle of machinery, without a fault 
diagnosis system, we do not know when it is potentially failing, 
but it is considered normal for some time after it has started to 
be used. And for some reason, it fails later in its use. Therefore, 
in general, we can obtain some of the normal state data at the 
start of the machine operation. 

First, we do some pre-processing on these normal state 
data. For example, the number of training samples is increased 
by data augmentation. The convergence speed and accuracy 
of the model are improved by normalizing the data, and the 
gradient explosion can be prevented to some extent. The pre-
processed data are then fed into the LSTM-VAE hybrid model 
so that the LSTM-VAE can learn the probability distribution 
of potential features of these normal state data. When training 
the LSTM-VAE, the LSTM-VAE will reconstruct the original 
normal state data. And through calculation, we can get the loss 
between the reconstructed and the original data. And this loss 
is recorded as loss1. After that, the warning threshold is 
calculated by combining the abovementioned adaptive 
thresholding method. Finally, the trained LSTM-VAE and the 
warning threshold are downlinked to the edge side for fault 
diagnosis of the monitored machinery. 

2) Online Testing Phase (Edge)  

In the online testing phase, use Algorithm 1 to determine 
whether the current mechanical component is faulty. The 
vibration signal monitored in real-time is fed into the trained 
LSTM-VAE hybrid model. LSTM-VAE will reconstruct this 
vibration signal and calculate the reconstructed loss value. If 
this loss is less than or equal to the warning threshold, the 
machinery is not faulty and does not need any treatment and 
continues to monitor the machinery; if this loss is greater than 
the warning threshold, the point may be a potential failure 
point. Combine this with the abovementioned "3/5" strategy. 
If the "3/5" strategy is not met, it means that the machinery is 
not faulty. At this point, the system continues to monitor the 
machinery and no additional processing is required. If the 
"3/5" strategy is met, the machinery does fail, and the system 
immediately issues a control command to stop the equipment 
and notify maintenance personnel of the failure. Since the 
time-consuming process of training the LSTM-VAE hybrid 
model is already done in the cloud, the online diagnosis of 
Algorithm 1 at the edge is efficient and can meet the real-time 
performance. 

TABLE I.  ALGORITHMS 1 

Determining whether the current mechanical component is faulty 
1: Input: real-time vibration signals of mechanical components {𝑥ଵ , 

𝑥ଶ,. . . , 𝑥୬} 

2: Output: true or false 

3: calculate the loss of vibration signals {𝑥ଵ, 𝑥ଶ,. . . , 𝑥୬} by the trained 

LSTM-VAE hybrid model 

4: if the loss is greater than the warning threshold: 

5:     if meet the "3/5" strategy: 

6:         return true 

7:     end if 

8: end if 

9: return false 

III. EXPERIMENT 

A. Data Description 

The experimental data come from the publicly available 
PRONOSTIA [22] platform, which takes only a few hours to 
complete the bearing degradation. During the test, the bearing 
speed was set to 1800 r/min. And a radial force of 4kN was 
applied to the test bearing to accelerate the bearing 
degradation. The sampling frequency is 25.6 kHz, and each 
sample contains 2560 data points, i.e., 0.1 s, and the sampling 
is repeated every 10 s. And the test was stopped when the 
vibration amplitude of the bearing exceeded 20g. 

B. Data Preprocessing 

To have more samples for training and testing algorithmic 
models, when dealing with vibration signals, they are often 
sliced into small segments of the same length, and then the 
newly sliced segments are used as the training and testing sets 
for the model. The process of slicing the vibration signal into 
multiple segments is shown in Fig. 6. As the sampling 
frequency of the bearings is 25.6kHZ, a small segment is cut 
into 256 sizes to facilitate the processing of the data, i.e. one 
sample contains 256 data points. 

length=256

Segment 1 Segment 2 …… Segment n  
Fig. 6. Signal segmentation 

C. Selection of training set and test set 

The degradation process of rolling bearings varies even 
under the same operating conditions, but most of them follow 
a slow degradation mode and a fast degradation mode [23]. 
Two bearings were randomly selected from the total data set 
for the analysis and their vibration signals throughout their life 
cycle are shown in Fig. 7. The root mean squared (RMS) 
values were extracted from the vibration signals and are 
shown in Fig. 8. RMS will increase with the degree of bearing 
failure and can reflect the overall bearing degradation trend 
[17]. As can be seen from Fig. 8, the RMS of bearing 1 is 
gradually increasing, which indicates that it is a slow 
degradation mode. For machinery in the slow degradation 
mode, most fault diagnosis methods suffer from untimely 
warnings, which will lead to a slow increase in the degree of 
failure, thus rendering the machinery inoperable. In contrast, 
the RMS of bearing 2 is rapidly increasing towards the end of 
the bearing life, which indicates a rapid degradation mode. For  



 
Fig. 7. Vibration signal of bearing 

 
Fig. 8. RMS of bearing 

machines in the rapid degradation model, accurate and timely 
warning must be required, otherwise, the machinery will not 
work properly in the lightest case, or even a safety accident 
will occur. 

Training LSTM-VAE requires some bearing data in a 
normal state, and the RMS of bearing 1 and bearing 2 did not 
increase at the beginning of the run, which indicates that they 
were in a healthy state for a while when they started to be used. 
For safety reasons, the experiment selected a small number of 
data sets with smoother RMS from bearing 1 and bearing 2 as 
the training set, and the rest as the test set. The results of the 
delineation are shown in TABLE II.  

TABLE II.  TRAINING SET AND TEST SET DIVISION 

          Dataset 
Bearings 

Total 
dataset 

Training 
set 

Testing set 

Bearing 1 0~27550s 0~10000s 10001~27550s 

Bearing 2 0~8710s 0~5000s 5001~8710s 

D. Build LSTM-VAE hybrid model 

The structure of the LSTM-VAE hybrid model has been 
explained in detail in Fig. 3. The input data of the model has 
three dimensions. The first dimension is the number of 
training samples n; the second dimension is the time step, i.e., 
the size of the segment of the cut, which is 256 from above; 
the third dimension is the default value, because only the 
vibration signal is used as a feature, and a vibration signal is a 
one-dimensional form of temporal data, so the size of the third 
dimension is 1. Therefore, the dimension of the input data is n 
× 256 × 1. The encoder of LSTM-VAE is an LSTM network 
with 32 LSTM memory units, its input size is n × 256 × 1, and 
its output size is n × 32. The hidden layer part of LSTM-VAE 
is a neural network with 16 ordinary neurons, its input size is 
fixed at n × 2, and its output size is n × 16. The hidden layer 
decodes the data by sampling randomly from the sampling 
layer and feeding the sampled data back to the decoder of 
LSTM-VAE. The decoder of LSTM-VAE is also an LSTM 
network with 32 LSTM memory units, its input size is n × 16, 
and its output size is n × 256 × 1. The proposed model is 
developed based on Python and implemented in the open 
repository Keras, and the ReLU function is used as the 
activation function. RMSProp algorithm (Root Mean Square 
Prop, RMSProp) is used as the optimizer. TABLE III. shows 
all the parameter settings of the LSTM-VAE hybrid model. 
Besides, All experiments were executed on a computer 
equipped with a 4 GB GPU (GTX 1050Ti). 

TABLE III.  ALL PARAMETERS OF THE LSTM-VAE HYBRID MODEL 

Number Name 
Parameters of 
each layer 

Other Parameters 

1 Input layer shape=[n,256,1] epoch=50 

2 Encoder lstm cell=32 activation=‘ReLU’ 

3 Hidden layers latent_dim=16 optimizer=‘RMSProp’ 

4 Decoders lstm cell=32 batch_size=64 

5 Output layer shape=[n,256,1] dropout=0.2 

E. Experimental comparison 

With the above analysis, the fault diagnosis was performed 
on bearing 1 and bearing 2 using the method proposed in this 
paper, and the results are marked with red dashed lines in Fig. 
9. For comparison, another fault diagnosis method proposed 
by Ginart [24] et al. was also experimented on bearing 1 and 
bearing 2, and the results are marked with green dashed lines 
in Fig. 9. The experimental results showed that for bearing 2 
in the fast degradation mode, both methods found its potential 
failure point at the 8280ths. For bearing 1 in the slow 
degradation mode, it is difficult to identify its potential failure 
point. Because the performance of bearing 1 is slowly 
decaying and the health index of the bearing oscillates 
between normal and abnormal. But this problem is solved in 
the proposed method. Because of the "3/5" strategy, the 
potential failure point of bearing 1 is identified at 14150s, 
while the comparison method is at 17330s, so the proposed 
method significantly advances the warning time of the 
machinery, effectively preventing further expansion of the 
failure and providing more reliable protection for the 
machinery. 

 
Fig. 9. Bearing fault diagnosis results 

 
Fig. 10. RMS near the potential failure point of bearing 



From Fig. 7, it is easy to find that the vibration signal of 
bearing 1 has occasional jitter at the beginning of the operation, 
and the vibration signal of bearing 2 is even more unstable and 
contains a lot of noise. The experimental results prove that the 
proposed method has good anti-interference capability and the 
"3/5" strategy improves the diagnostic accuracy to a certain 
extent. Fig. 10 shows some details of the MSE near the 
potential failure points of bearing 1 and bearing 2, where the 
vertical red dashed line identifies the location of the potential 
failure point and the horizontal red dashed line is the adaptive 
warning threshold. It can be found that the 5 diagnoses within 
the blue dashed box satisfy the "3/5" strategy. However, the 
previous diagnoses did not satisfy the "3/5" strategy due to 
thepresence of random noise in the vibration signal, so they 
were not identified as potential faults. 

IV. CONCLUSIONS 

In this paper, a cloud-edge collaborative intelligent fault 
diagnosis method based on the LSTM-VAE hybrid model is 
proposed for machinery, and the effectiveness of the method 
is proved through experiments. The use of this method can 
timely and accurately detect the abnormal state of the key 
components of the machinery when they are working so that 
the machinery can be produced safely within the controllable 
range. This is of great significance to ensure the safe and stable 
operation of the system and improve the production efficiency 
of the enterprise. However, in the actual industrial 
environment, there are still many limitations in mechanical 
fault diagnosis. For example, under the limited and 
dynamically changing network resources, computing 
resources, and storage resources, how to perform fault 
diagnosis on machinery to ensure the reliability and timeliness 
of diagnosis needs further research. 
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