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Sepsis is a major health issue causing mortality, morbidity and health care financial crisis to people
around the globe. To resolve this issue, many researchers and clinical practitioners have worked hard
to predict the onset of sepsis using various parameters of patients. The proposed work is an attempt of
authors to analyse the various parameters (8 vital parameters, 26 laboratory or clinical parameters, and 6
demographic parameters regarding hospital stay) given in Physionet Challenge dataset so as to devise the
best features for early and efficient prediction of sepsis. Authors have also addressed another important
issue of missing values of some parameters of some patients by applying Gaussian Mixture Model
to estimate the missing value in pre-processing steps. The pre-processed data is then fed to Extreme
Gradient Boosting algorithm(XGBoost), which is a state of the art performer algorithm for prediction
purposes in data analysis field. The experimental results show that by real time monitoring of data from
cloud, sepsis can be predicted 6 hours prior to the onset of sepsis with an accuracy score of 0.994 and
AUC score of 0.867. It is also observed that demographic parameters play a vital role in sepsis prediction.
The Since the parameters used for early prediction can be easily acquired with the help of sensors, the
proposed approach proves its potential for development of mobile and website applications for patient

monitoring, real-time prediction of sepsis and generation of appropriate alert system.
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1. INTRODUCTION

Sepsis is a medical state that occurs when body’s response to
infections causes tissue damage, organ failure, or death [1]. It
is a major health issue around the globe causing mortality and
morbidity along with financial burden [2] [3]. In U.S.A alone
approximately 750,000 patients suffer from severe sepsis and
mortality rate corresponds to approximately 33 percent of this
amount [4]. The cost incurred in sepsis treatment is exorbitant,
an average cost of US5$20.3 billion annually, or US$55.6 million
per day in US hospitals is estimated [5, 6]. Additionally, there is
a 13 percent increase in average severe sepsis indices [7]. Early
and unerring treatment of sepsis can reduce effects by substan-
tial amounts whereas, delayed treatment results in an increase
of mortality rate approximately by 4-8 % with each passing hour

[8] [9] [10]. Machine learning methods have helped in the detec-
tion and prediction of sepsis to a large extent utilizing laboratory
parameters and other vital indications but, real-time and precise
early detection of sepsis before the critical state is reached is still
an issue. Representing sepsis by using clinical parameters is
also highly complex and contrastive as sepsis depends on dif-
ferent biased parameters such as genetic variation and immune
response state. Additionally, there is a variation in the origin of
the infection.

For clinical monitoring of patients derived approaches like
Systemic inflammatory response syndrome (SIRS) criteria [11] or
sequential organ failure assessment (SOFA) scores [12] are being
studied for decades. However, their application is limited due
to the heterogeneous nature of sepsis and simplicity trade-off.
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Machine learning approaches like Random Forest Classifier, De-
cision Tree, Gradient Boosting or sequential learning approach
like Long Short-Term Memory have helped in solving the issue
of early detection of sepsis to a larger extent [13] [14]. A major
portion of work on sepsis was done for early detection of sepsis
using systematic inflammatory response syndrome (SIRs) crite-
ria using a model named InSight [15]. Some of the researchers
focused only on a specific group of patients for example Jin car-
ried out a major work focusing on trauma sepsis patients [16].
Nemati et. al.[17] in their work illustrated a machine learning
model for onset prediction of sepsis 4-12 hours before the clinical
treatment diagnosis . Similar work was done by Kumar et. al.
[18] by proposing a model for prediction of sepsis 4 hours before
the onset of sepsis.

The various researchers in the field of sepsis prediction
have worked independently by acquiring their own dataset
and their own features. Keeping in mind the fact, recently
a dataset was released for Physionet Challenge [19]. The
researchers have explored the dataset for sepsis prediction by
using various algorithms such as signature based model [20],
applying Long Short Term Memory (LSTM) on aggregated
representations [21], applying autoencoders [22], using random
forest classifiers [23], using hybrid features [24] etc. Another
important experimentation has been done by [25] by providing a
comparison of LSTM and XGBoost for early prediction of sepsis.
Almost all the above researchers have worked to increase the
prediction time using all the features but the analysis regarding
contribution of various features individually for early prediction
is missing in the literature. To find the contribution of features
towards early prediction of sepsis, authors have analyzed
the features of three different categories: vital parameters,
laboratory or clinical parameters, and parameters regarding
hospital stay. The best AUC score achieved using the proposed
approach is 0.867 for 6 hour prior prediction of sepsis. The
contribution of the proposed work is 3-fold:

1. The proposed approach analyze the features so as to
find which features among vital, laboratory and demographic
parameters play vital role for sepsis prediction.

2. There are missing values in the given database. To handle
this problem, authors propose to use GMM and catagorical
analysis to estimate the missing values.

3. The prediction time achieved using the proposed approach
is 6 hours prior to the onset of sepsis with an AUC score of
0.867.

4. The proposed approach is implemented using cloud based
servers thus proving its potential for real time monitoring of
data for sepsis prediction before its onset. So, it provides an
impetus towards web based real time health monitoring for
sepsis prediction.

The outline of the proposed work is shown in figure 1. The
various parameters of the patients given with the database are
first preprocessed to fill the missing values. The preprocessed
data is used to train the XGBoost algorithm for early prediction
of sepsis. The rest of the paper is organized as follows: section
2 describes the preprocessing step. XGBoost algorithm is de-
scribed in detail in section 3. The database used to evaluate the
proposed approach is pesented in section 4. Experimental set-
tings and results to analyze the various parameters is explained

in section 5. Finally, conclusion and future scope is mentioned
in section 6.
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Fig. 1. Workflow of the proposed approach.

2. DATA SET DESCRIPTION

The presented work has been evaluated to analyze the training
set of the 2019 PhysioNet/Computing in Cardiology Challenge
[19]. The data was accumulated over a decade from over 40,336
patients from 2 distinct hospitals. The longest ICU stay recorded
was for 336 hours. The shortest ICU stay accounted for 8 hours.
In most of the cases, ICU stay ranged between 20-35 hours.
The rate of sepsis increases by 12.5 percent after 60 hours of
prolonged ICU stay. The sepsis definition also changes from
hospital-acquired to ICU-acquired sepsis. Thus, these values
were removed. Sepsis data for patients having label 1 with
less than 6 hours of ICU stay were also removed. The dataset
contains 40 distinct parameters which are further categorized as
8 vital parameters, 26 laboratory or clinical parameters, and 6
hospital stay parameters as shown in table 1. Thus, we infer that
sepsis depends a lot on ICU admission time and other hospital
parameters along with, vital parameters like heart rate, breath
rate, etc. There were a lot of missing values in the dataset to
make the challenge more robust. To overcome this issue of
missing values and other erroneous values feature engineering
was applied.

3. PRE-PROCESSING

Pre-processing is the primary step for any data analysis problem.
There are a number of preprocessing steps listed in the literature
such as normalization, excluding the outliers etc. The database
used in the proposed work poses a different problem of miss-
ing values of some parameters for some patients to check the
robustness of the proposed algorithm. To deal with this issue,
authors have used Gaussian Mixture model for imputation since
the given dataset fits well in a Gaussian distribution. The GMM
a soft clustering technique proposed by [26] and used by many
researchers for missing value imputation in IoT field [27].
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Table 1. Various parameters of PhysioNet Challenge 2019 Dataset
Vital Signs Laboratory Values
Heart rate Measure of Serum glucose
HR BaseExcess Glucose
(beats per minute) excess bicarbonate (mmol/L) (mg/dL)
Pulse Bicarbonate Lactic
0O2Sat HCO3 Lactate
oximetry (%) (mmol/L) acid (mg/dL)
Temperature . Fraction .
Temp FiO2 Magnesium (mmol/dL)
(Deg C) of inspired oxygen (%)
Systolic
SBP pH N/A Phosphate (mg/dL)
BP (mm Hg)
Mean Partial
MAP PaCO2 Potassium (mmol/L)
arterial pressure (mm Hg) pressure of carbon dioxide from arterial blood (mm Hg)
Diastolic Oxygen . Total
DBP Sa02 Bilirubin;otal
BP (mm Hg) saturation from arterial blood (%) bilirubin (mg/dL)
Respiration Aspartate . Troponin
Resp AST Troponinl
rate (breaths per minute) transaminase (IU/L) 1 (ng/mL)
End Blood Hematocrit
EtCO2 BUN Hct
tidal carbon dioxide (mm Hg) urea nitrogen (mg/dL) (%)
Demographics Alkalinephos Alkaline Hgb Hemoglobin
Years (100 for partial
Age phosphatase IU/L) | (mg/dL) (g/dL)
patients 90 or above) thromboplastin time (seconds)
Female Leukocyte
Gender Chloride (mmol/L) WBC
(0) or Male (1) count (count*10% /L)
Administrative
Unitl Creatinine (mg/dL) Fibrinogen (mg/dL)
identifier for ICU unit (MICU)
Administrative 3 Bilirubin 3
Unit2 Bilirubingirect Platelets (count*10° /L)
identifier for ICU unit (SICU) direct (mg/dL)
Hours
HospAdmTime
between hospital admit and ICU admit
ICU
ICULOS
length-of-stay (hours since ICU admit)

A Gaussian Mixture Model is a combination of ¢ Gaussians
where g ranges between {1- - - G}. Here G is the maximum num-
ber of clusters in a given data set. Each Gaussian g is comprises
of the following parameters:

® Mean p which defines the center of the Gaussian.
e Co-variance ¢, which defines the width of the Gaussian.

* Mixing probability 7r which defines the height of the Gaus-
sian.

These mixing probabilities must fulfill the probability criteria
that is:

G
Y me=1 ()]
g=1

The Gaussian Density function is given as:

1 -1 _
K(x|p,0) = thl/z exp(T(x—y)DU Hx— i) @

The above equation maybe rewritten as:

In(x|p,o) = —glnzn— %lnaf %(x — WP Y x—pu) ©

where x represents a data point, T represents the dimensions
of each data point, y and ¢ represent mean and co-variance

respectively. This is called the "Maximum Likelihood” algorithm
and the solution of this equation helps to define the optimal
values of the Gaussian parameters(ji, 0, 77) called the Maximum
Likelihood Estimates (MLE).

The percentage of missing values was computed for each
column to analysis the missing value data and represented in
figure 2. For the final model, all the columns having more than
90% missing values were dropped. To apply GMM to the given
data, each column was divided into two halves, thus making 2
clusters. The missing value in these columns was then replaced
by the mean y of the best fitted Gaussian. The distribution plot
of various parameters is shown in figure 3 to prove the efficacy
of the GMM on the given data. Since ensemble techniques work
best on categorical data, the values of the given parameters were
then converted into categories.

The correlation plot of various parameters play a vital role in
presenting the dependency of parameters with each other. The
correlation plot with and without missing values is shown in
the figures 4 and 5 to prove the obliteration of some parameters
from the given data. Parameters which have been categorized
are not included in the correlation plot as shown in figure 5 as
the correlation of categorical values holds no relevance.

4. XGBOOST ALGORITHM

XGBoost is a type of ensemble Machine Learning algorithm
being popularly used in data analysis community for various
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Fig. 2. Percentage of missing values for each parameter.

prediction purposes. XGBoost is based on the sequential struc-
ture of decision trees and makes use of the properties of gradient
boosting. XGBoost has proven to be useful in many classifica-
tion and regression problems, hence covering a wide range of
applications. As mentioned in the introduction section XGBoost
performs even better than LSTM and deep networks. Being
inspired from the promising results, XGBoost have been imple-
mented for sepsis prediction in the proposed approach.

XGboost was first proposed by [28] and it has been a favorite
of the research community since then. The success of XGBoost is
credited to its scalability in all scenarios. Gradient boosting algo-
rithms have also been proposed in previous studies presented by
[29] and [30], but XGBoost surpasses all these algorithms and is
de facto the best machine learning algorithm for larger datasets,
simply because it is a scalable algorithm for tree boosting.

It is a machine learning algorithm, which has an inverted tree
like structure, where each internal node represents a feature and
each leaf node represents a class. It mimics the functioning of a
flowchart in classification and regression problems. Applying
bootstrap aggregating or bagging on decision trees results in the
formation of Random Forest which is a combination of a large
number of uncorrelated independent models. Bagging is a type
of machine learning ensemble meta-algorithm which is designed
to improve the stability and accuracy of various other machine
learning algorithms for classification and regression problems.
Boosting refers to the process in which the result of the model is
based on the learning from the previous predictions. Gradient
boosting is a special boosting technique in which one tree is built
at a time and each new tree works to reduce the errors made by
the previous trained trees. This led to the formation of another
algorithm called Extreme Gradient Boosting or XGBoost.

The loss function of the XGBoost Algorithm is defined as:

n
J = Y i 9"V 4 () + 6(F) @
i=1
where y; is the Label from the training data set and yAZ(m_D +

fm(x;) can be observed as f(a + Aa) where a can be observed as
L (m—1)

' XGBoost utilizes the Taylor Approximation to transform the
original loss function into a Euclidean Domain function, so that
traditional optimization techniques can be applied on it.

After applying the second order Taylor approximation, the
modified loss function is given as follows:

n

L0 = Y lsifnlx) + qrfae)] +0fw) O

i=1

where, s; and r; are the first and second gradient statistics of
the loss function.

Since in XGBoost, every newly build tree helps to improve
the errors of the previous trained trees, a next learner needs to be
built.

For this purpose, we need to find the optimal next learner,
which can be obtained using the quality scoring function which
is defined as:

M 2
sm) oy —1 g (i € Lsi)
L' (g) 5 k; T +yM 6

This quality scoring function or ‘q” function returns the mini-
mum value of the loss for the given learner.

1. Start with the root.

2. Traverse all the features and their values and evaluate loss
for each split as: gain = loss(farther instances) — (loss(left
branch) + loss(right branch))

3. The gain for the best split must be positive otherwise we
must stop growing the branch.

This algorithm is called ‘Exact Greedy Algorithm’. It's complexity
is given by O(x*y) where x is the number of training samples
and y is the dimensions of the features.

5. RESULTS AND DISCUSSIONS

Data streaming pipeline was developed and the proposed model
was uploaded to the cloud. We evaluated the model for sepsis
detection 6 hours prior to the onset of sepsis. An accuracy score
of 0.994 was achieved. Since accuracy score is not a sole parame-
ter for judging the performance of a model, ROC curve and AUC
score were calculated. The AUC score after pre-processing and
applying Gaussian mixture model is 0.867 whereas the AUC
score before pre-processing and applying Gaussian mixture
model is 0.743. This shows that pre-processing and replacing
missing values with Gaussian values have a profound effect on
the performance of the model. The ROC curve for model trained
on data without pre-processing and pre-processed data is shown
in the figures 7 and 8 respectively. A sharp elbow in the ROC
curve shows that the model is working exceedingly well and is
following ideal conditions for ROC curve.

By studying various parameters and their effect on the per-
formance of the model, we find that hospital stay parameters or
demographic data determine the onset of sepsis to a great extent.
An AUC score of 0.942 was achieved with demographic param-
eters which shows that onset of sepsis is largely dependent on
demographic parameters and these parameters can be used for
earliest detection of sepsis. For another model trained on vital
parameters gives an AUC score of 0.674 and an AUC score of
0.634 was achieved for clinical or laboratory parameters which
show that onset is least dependent on these parameters. We also
analysed joint effect of different parameters. When demographic
parameters are combined with vital parameters, an AUC score
of 0.707 is achieved. Similarly, an AUC score of 0.678 is achieved
by combining demographic parameters with laboratory param-
eters. An AUC score of 0.639 is achieved by combining vital
parameters and laboratory parameters. The ROC curves for
various analysis has been shown in the figure 9.

On comparing different machine learning algorithms like XG
boost, ADA boost and Random forest classifier, maximum AUC
score was achieved with XG boost algorithm, thus, justifying its
use for the presented approach. A comparison table of different
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Fig. 3. Density plots of selected parameters.
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machine learning algorithm is also given in the table 2. Compar-
ing the performance of our model with some of the pre-existing
works as shown in table 3 show the rightness of our model.
Therefore, the proposed model is efficient, accurate, fast and
robust in detecting sepsis 6 hours before the onset. Since the
model is deployed on the cloud and works with real-time data,
streamlined through special apache beam pipelines, it can be
deployed in a clinical setting to detect sepsis automatically. As

Receiver Operating Characteristic (ROC) Curve
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Fig. 7. ROC curve for model trained on raw data.
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Fig. 8. ROC curve for model trained on pre-processed data.

the model is trained on multiple parameters and diverse patients
from different hospitals, it would work fine with distinct patients.
In the future, a larger and more diverse dataset can be used for
training of the model and overall accuracy can be improved
further.

6. CONCLUSION

Real-time and precise prediction of sepsis prior to the onset was
a major problem. We proposed a solution to this issue with
our work. Our model is accurate, fast and precise to a greater
extent and predicts sepsis way before the onset of the deadly
disease. Our model is deployed on google cloud platform for
real-time analysis and apache beam, an open-source software
for creating data streaming pipelines, is used for transferring
real-time data. Since pre-processing is of great importance when
dealing with clinical data, we used GMM to get best fit for
filling the missing values. As a future scope of this project, we
propose the development of mobile and web-based applications
and systems for real-time monitoring of the patients. These
applications can also be useful in collecting data and sending
alert messages to the concerned authorities thus, completely
automating the process of sepsis detection. The model accuracy
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Fig. 9. Receiver operating characteristics of various features alone and in combination with each other.

AUC Score
1 | Vital Parameters 0.67
2 | Laboratory Parameters 0.63
3 | Demographic Parameters 0.94
4 | Vital and Laboratory 0.64
5 | Laboratory and Demographics 0.68
6 | Demogaphics and Vital 0.71
7 | All (without GMM) using XG Boost 0.74
8 | All (with GMM) using XG Boost 0.867
9 | All (with GMM) using ADA Boost 0.67
10 | All (with GMM) using Random Forest | 0.50

Table 2. AUC Score using various features alone and in combi-
nation with each other

and precision can be further increased by using more data sets
and extensive training. Also, several deep learning models for
sequential learning can be applied to make the model more
robust.
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