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Abstract 

Biodegradable implant metals and its alloys such as iron (Fe), magnesium (Mg), and Zinc (Zn) have 

attracted extensive interest in biomedical applications. Low mechanical strength of Zn, significant 

slower degradation of Fe and rapid degradation Mg impede their clinic application. Further research is 

going on the development of biodegradable metal matrix composite owing to best suited for 

biomedical applications. This article delivers a review of biodegradable metal matrix composites 

based on corrosion resistance, biodegradable behavior, biocompatibility, and mechanical properties as 

favorable implant materials for orthopedic applications. 
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1. Introduction 

Numerous orthopedic clinic applications for example knee, hip, shoulder joint substitutes, bone plates, 

screws, etc as implants have been used different biomaterials which are the area of interest of 

researchers to improve performance for orthopedic implant applications. For those purposes 

requirement of good corrosion resistance, admirable mechanical property with equitable 

biocompatibility, and biodegradable implant materials. Different metallic materials as an implant for 

example stainless steels [1–4], titanium (Ti) and its alloys [5–12], and cobalt-chromium-molybdenum 

(Co-Cr-Mo) alloys [10, 13–15] have been suited for the purposes but these are non-biodegradable, 

need again surgery for removal. However, the other disadvantages of these materials are allergenicity, 

poor wear resistance, released ions toxicity nature, and deprived bending ductility in the biological 

environment [16–20]. Also, the stress shielding effect is caused owing to their greater elastic modulus 

as associated to that of natural bone [11, 12, 21]. Metals, alloys, and composites of the metal matrix 

are different types of biodegradable implant materials. Biodegradable implant metals and its alloys for 

example Zinc (Zn), iron (Fe) ), and magnesium (Mg) have favorable properties that have received 

increasing attention of researchers. In spite of admirable processability and higher corrosion 

resistance, pure Zn exhibits low mechanical strength compared to Mg. It impedes Zn as a 

biodegradable implant material [22]. Whereas, compared to Mg, Fe and its alloy exhibit greater 

mechanical properties, however,they show a considerably gentler degradation and affect their 
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compatibility owing to the ferromagnetic characteristics in vivo [23, 24]. Mg and some of its alloys 

exhibit low elastic modulus (40-45 GPa) nearer to that of natural bone (10–30 GPa). However, 

damage to their mechanical honor earlier than enough bone restoration owing to the quick degradation 

of Mg alloys. It impedes their orthopedic application. To further improve the properties of 

biodegradable materials for orthopedic implant applications, research is going on the development of 

biodegradable metal matrix composites. This paper reviews biodegradable metal matrix composites as 

implant materials for orthopedic applications.  

2. Biodegradable metal matrix composite development 

Improvements in the properties of biodegradable materials for biomedical applications, metal matrix 

composites have been developed from the last two decay. The performance of metal and its alloys 

such as Fe, Zn, and Mg for applications in orthopedic implants can be improved by a feasible 

approach such as metal matrix composites (MMCs) with choosing the appropriate reinforcements. 

Further proper selecting of the constituents, the type, and concentration of the reinforcements can be 

used to optimize the properties of MMCs with interaction surrounding tissues. Yang et al.[25] were 

prepared pure Zn matrix composites with reinforcement of hydroxyapatite (HAp) by spark plasma 

sintering (SPS) for orthopedic implant applications. Bioceramic hydroxyapatite (HAp) is bioactive 

that supports bone ingrowth, osseointegration cell, and proliferation [26, 27]. It was observed that 

crystallographic and chemical structures of HAp like to the natural bone [28]. It was found that Zn-

HAp composites showed enhanced biocompatibility and adaptable degradation rates together in vivo 

and in vitro. Iron-based metal matrix composites (MMCs) are used as biomaterials for enhanced 

degradation speeds as compared to iron and stainless steel. Ulum et al. [29] established a sequence of 

biomaterials as composites using reinforcements such as b-tricalcium phosphate (TCP), 

hydroxyapatite (HAp) or TCP-HAp mixes into a matrix such as pure iron. The presences of these 

bioceramics were enhanced degradation rate. In another article, Ulum et al. [30]  also established that 

bioactivity of MMCs was improved as compared with pure iron and iron alloys in vivo. Wang et 

al.[31] were fabricated composites of iron-matrix with bioceramic reinforcement such as calcium 

silicate (CS). It suggested that iron-matrix composites biodegradable bone implants could an effective 

approach to improved biomedical performance. The reinforcement such as calcium silicate (CS) 

bioceramic has already established its greater bioactivity and biodegradability as associated with 

bioceramics such as calcium phosphate, counting TCP and HAp in the number of studies [32–34]. 

Immersion tests in simulated body fluid (SBF) were used to evaluate in vitro surface bioactivity of the 

composite materials. Cytotoxicity was assessed in vitro over uninterrupted interaction with human 

bone marrow stromal cells (hBMSCs). Although fewer researches in the field of iron-matrix 

composites biodegradable bone implants have reported. There is the possibility of enhancing the 

bioactivity and degradation rate of iron base composites through bioceramic reinforcements. Needed 
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more research efforts to optimize further operational enhancements in bioactivity and degradation rate 

of iron base composites. In vivo Mg degrades and liquefies entirely upon satisfying the tissue 

recuperation with no insert remainders. However, Mg degrades hastily in a bodily atmosphere within 

the body earlier than sufficient recovery of tissues. These materials also influence the load-bearing 

performance of orthopedic implants owing to rapid degradation. Mg matrix composites strengthened 

with diverse nanoscale particles might also improve the corrosion resistance. It leads to their precise 

degradation. The mechanical properties of biodegradable composites of Mg matrix can improve when 

the addition of numerous types of nano-particles in Mg matrices via synergistic strengthening 

mechanisms as shown table1. 

                Table1 (Shahin et al.,[35]) 

Reinforcements Mechanical properties 

Al2O3 Excellent hardness and wear resistance 

ZrO2 High mechanical strength and toughness 

Y2O3 Better compressive strength 

GNPs Higher strengthening ability 

CPC Outstanding elastic modulus  

Si3N4 Improves capability of load bearing  

SiC Increases ductility and compressive strength 

HAp Improve hardness, toughness, and yield strength  

FAp Increase the compressive strength 

TCP Increase hardness 

The capacity of  MMCs as new substances for biomedical programs intensive efforts have been made. 

In spite of the promising features of MMCs, protection and toxicity concerns obstruct their implant 

applications. Therefore, the biological residences of these composites including cytotoxicity, 

biocompatibility, and biocorrosion are essential to further explore. The corrosion rate was reduced 

when using FAp reinforcement particles used in MMCs [36]. Uniform degradation of Mg matrices 

was caused in the case of the homogeneous dispersion of nanoparticles [37, 38]. Razavi et al. [39, 40] 

explored composite of AZ91 Mg matrix with  several weight fractions (10, 20, and 30 wt%) of FAp. 

FAp nano-particles with 20 wt% concentration revealed an excellent promising with the properties of 

natural bone basis on their load-bearing capabilities such as hardness, yield strength, and degradability 

of implant. The adding of reinforcements such as FAp and HAp in Mg matrix, the corrosion 

resistance enhanced in physiological environments [36, 37, 41]. Enhancement of corrosion resistance 

of Mg matrices reported owing to the low solubility of HAp in a physiological environment [42]. 

However, the formation of large clusters or agglomeration was found in case of the higher 

concentrations of HAp in the metal matrices ensuring in the choppy degradation system, therefore less 

than 10 wt% of HAp is proposed to use [43–45]. 20 wt% HAp nano-particles used in AZ91 Mg 
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matrix led to the porous surface structure of the composite, which unfavorably distressed the ductility 

and strength of Mg alloys [46]. 5, 10, and 15 wt% concentration of HAp in Mg matrices have used to 

manufactured composites and found that 15 wt% HAp in the composite revealed uneven distribution 

of HAp, foremost to irregular erosion in the composite [47]. b-TCP nano-particles used in MMCs 

revealed higher corrosion resistance [48–51]. As compare to HAp, TCP has a high dissolution rate 

that could assist to accomplish the whole degradation of insert composite after remedial of cracked 

bone [45]. CPC helps the creation of fresh bone tissues as it reacts with body fluid, foremost to the 

quick development of bone and the degradation can be molded to a certain speed both in vivo and in 

vitro [45]. Feng et al. [52] found that  ZK60A matrix composites having lower concentrations of CPC 

reinforcements (2.5–5 wt%) showed minimum defects, caused in enhanced corrosion resistance; 

whereas the composites having CPC with 7.5, and 10 wt% exhibited cracks and holes on stacking. 

Normally, artificial body fluids are not simply degraded to GNPs; nevertheless, their whole 

degradation can be achieved through humanoid enzymes [53]. Biomedical applications of MMCs 

greatly depend on their biocompatibility in bodily surroundings. Commonly, the biocompatibility of 

MMCs is influenced by their contacts through several biological structures consisting of proteins, 

cells, and other intricate biomolecules. Biocompatibility and application of reinforcements used in 

MMCs as shown in table2. 

Table2 (Shahin et al.,[35] 

 

3. The different method used for manufacturing MMCs 

Numerous processing methods are used for manufacturing MMCs such as powder metallurgy [54], 

semi-solid casting [54] , stir casting [54], disintegrated melt deposition [54], friction stir processing 

Reinforcements Biocompatibility Application

Al2O3  Cell adhesion,proliferation,and Improves protein adsorption Knee prosthesis,Bone plate,Bone screws

ZrO2
Greater bone stability,improves cell viability, and nontoxic and bio-inert  to blood 

cells and fibroblast  

Bone screw,Femoral head,Artificial knee 

Y2O3 Cell viability Improves  Implant in dental

GNPs  Nontoxic to cells, no tissue reaction,and biocompatible even in blood contact Endovascular  materials,Bone 

plates,Bone screw 

CPC Nontoxic to tissues  and higher protein adsorption , bioinert and do not cause 

inflammation,Induce osteoblastic differentiation in progenitor cells

Dental implant, Joint replacements and 

bone tissue

Si3N4
Bone-cell adhesion and Promotes bone fusion in spinal surgery Spinal fusion devices,Prosthetic hip,Knee 

joints 

SiC Durable coating for bone prosthetics,slightly toxic Bone plate,Bone screw,Hip replacement

HAp The release of Mg ion reduces,Nontoxic and bioactive,osteoblastic differentiation, 

and excellent cell proliferation 

Bone screw and pins,Bone joint

FAp Osteoconductivity and Enhance cell viability Bone plate,Bone pins,Bone screw

TCP  Bone growth and enhance bone adhesion Bone screw,Bone pin
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[54], ultrasound-assisted particle dispersion method [55], vacuum cold spraying [56], sol-gel method 

[57], accumulative roll bonding [54]. A common, cheap, and fairly simple method of producing 

MMCs is stir-casting where the reinforcement particles are added into the molten matrix metal. A 

mechanical stirrer like impeller is placed in the molten metal and rotated to get a uniform distribution 

of the reinforcement with the molten metal. Friction stir processing (FSP), as a derivative from 

friction stir welding, is broadly used in the field of research to integrate nano-particles within a 

metallic matrix. It produces bulk or surface nanocomposites. Disintegrated melt deposition is used to 

produce Mg base nano-composite and this process is derived from the stir casting process. 

4. Conclusion 

Compared to existing titanium (Ti), Zn, Fe, Mg and its alloys, and cobalt-chromium-molybdenum 

(Co-Cr-Mo) alloys, MMCs possess the fabulous perspective for orthopedic implant applications. The 

adding of particular nano-particles as reinforcements to metal matrices improves the possessions of 

composites. The corrosion resistance, mechanical properties, biodegradability, and biocompatibility of 

MMCs are improved and optimize for implant biomaterials. Although current development in the area 

of metal matrix composites for orthopedic implant materials is promising, further broad and efficient 

researches are stagnant essential with the purpose of recognizing their long-standing clinic 

application. 
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