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Abstract—Fuzzy time series analysis is the most successful
method in enrollment prediction, stock index forecasting, and
temperature prediction. It often suffers from high time complex-
ity and low prediction accuracy due to equidistant partition and
formulation of fuzzy relationships. In this paper, we propose
a concise method called dynamic fuzzy membership degree
prediction (DUMP) with four steps for stock time series. First, a
number of fuzzy membership degree time series are constructed
from the original one. Second, respective prediction models are
built with these time series. Third, dynamic fuzzy membership
degrees are predicted using these models. Fourth, the final
prediction is obtained through the fuzzification of the degree
of membership. Comparison study is conducted on 196 stock
price time series across one year in comparison with two state-
of-the-art approaches. Results show that our approach generally
outperforms existing ones in terms of MSE, MAE and MAPE.

Index Terms—dynamic membership function; defuzzification
rule; stock price prediction; upper and lower limits.

I. INTRODUCTION

The prediction of stock market trends is very complex due
to the inherent noisy environment and high volatility related
to the daily market trends [1]. And stock price movement is
nonlinear, complicated, nonparametric and chaotic [2]. Thus,
predicting stock price and its trend is one of the most chal-
lenging applications of time series analysis. Many investors
and professional analysts have made significant contributions
to this issue.

Over the past few years, a large body of methods for predict-
ing stock price have been developed. These methods contains
many traditional analysis methods, namely logistic regression
[3], ARMA model, ARIMA model, and autoregressive moving
average with exogenous [4], and many artificial intelligence
approaches, namaly artificial neural networks (ANN) [5, 6],
support vector machine (SVM) [7–9], and k-nearest neighbors
(KNN)[9].

Recently, fuzzy time series method can produce accurate
forecasting results due to the handling capability of linguistic
value datasets [10, 11]. Song and Chissom presented the
concept and model of the fuzzy time series[12, 13]. Then,
fuzzy time series model has been improved the from three
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categories according to the technique used to partition fuzzy
intervals. The first category takes equidistant partition. The
minimum and maximum values of the sample data were
rounded upward and downward to determine the universe
classification [12–15]. Then, they took an integer as the length
of the interval to uniformly divide the universe based on the
size of the universe. The second category considers sample dis-
tribution. They adjust the length of linguistic intervals, define
a new distance formula and divide intervals, and determine the
number of intervals according to the density of the samples, the
distance distribution between samples, and the statistical peak
of the samples [16, 17]. The third category adopts machine
learning algorithms. Optimization algorithms [18, 19] and
clustering algorithms [20] are used to find the partition method
of the optimal fuzzy subset. In addition, prediction accuracy
improvement techniques include weight adjusting [21], hybrid
models [22–28], etc. However, the prediction accuracy rates
of these methods still exist low prediction accuracy, complex
calculation problems.

In this paper, we propose a dynamic fuzzy membership
degree prediction (DUMP) with four steps for stock time
series. First, six groups of fuzzy membership degree time
series are constructed from the original one. We choose the Γ
distribution function as membership function, introduce fuzzy
technology to define the fuzzy set. Dynamic fuzzy membership
degree time series are established. Compared with the tradi-
tional fuzzy time series method, there is no need to establish
a fuzzy logical relation matrix, which greatly simplifies the
calculation process. Second, respective prediction models are
built with these time series. Time series analysis can analyze
the correlation degree between the sequence data more effec-
tively. We design a fuzzy time series analysis approach based
DUMP and TSA. To analyze dynamic fuzzy membership
degree properties, we establish time series analysis model to
predict the trend of the next moment. Third, dynamic fuzzy
membership degrees are predicted using these models. We can
predict the membership values for the next four days using the
optimal model. Finally, the final prediction is obtained through
the fuzzification of the degree of membership. We determine
the group number according to prediction results based on time
series analysis, revise the membership degree.



Experiments were performed with 196 datasets to quantify
the performance of the DUMP method and compare it with
existing methods. We use 192 datasets as training sets, and
the rest are as test sets to verify the model. Comparing with
two state-of-the-art approaches: ARIMA and Yu’s model [17],
the maximum MSE, MAE, MAPE of the DUMP method are
0.1923, 0.3098, 0.768%, respectively, which are all less than
those of ARIMA and Yu’s model. The results show that the
DUMP method is more likely to be more accurate than the
existing ones in terms of MSE, MAE and MAPE.

This paper is organized as follows. In section II, we briefly
provides a overview of the theoretical literature. In Section III,
the related definitions and modeling steps of proposed method
are described. In Section IV, we extend this model to solve the
forecasting problems of stock price. In Section 5, according to
the prediction results analysis of various methods, the model
is evaluated reasonably. In section 6, it makes a brief summary
of the research content.

II. PRELIMINARIES

In this section the necessary concepts of time series analysis,
fuzzy time series and K-means method are presented. The
first part of this section is about time series analysis approach
while the next two sections are fuzzy time series and K-means
method respectively.

A. Time series analysis

In 1970, Box and Jenkins published a book called� Time
Series Analysis Forecasting and Control �, which
systematically expounded the principles and methods of identi-
fying, estimating, testing and predicting of ARIMA [29]. This
section briefly introduces the concepts of difference operation,
ARMA (p,q) and ARIMA (p,d,q).

Definition 1: Let X = {x1, . . . , xn} be a time series and
1 ≤ t ≤ n. The first order difference between xt an xt−1 is

∇xt = xt − xt−1, (1)

the p oerfer difference of X is

∇pxt = ∇p−1xt −∇p−1xt−1, (2)

and the k step difference is

∇k = xt − xt−k. (3)

Definition 2: A non-centralized ARMA(p, q) model is

xt = µ+
Θ(B)

Φ(B)
εt. (4)

where εt ∼WN (0, σ2
ε), Φ(B) = 1- Φ1B - Φ2B

2 - . . . - ΦpB
p,

it is called the p order autoregressive coefficient polynomial;
Θ(B) =1- θ1B - θ2B2 - . . . - θqBq is called the q order moving
average coefficient polynomial. B is known as delay operator,
which is designed to make the model simple.

The idea of the ARIMA model is to transform the non-
stationary sequence into a stationary sequence by the differ-
ence operation. If the differential sequence is white noise

sequence, then the ARIMA model is establishded for the
differential sequence.

The ARIMA(p, d, q) model is

∇dxt = µi +
Θ(B)

Φ(B)
εt. (5)

where ∇d = (1 − B)d; µi(i = 1, 2, . . . , n) is the mean
of the sequence, is the number of sequences; Φ(B) = 1-
Φ1B - Φ2B

2 - . . . - ΦpB
p and Θ(B) =1- θ1B - θ2B

2

- . . . - θqB
q are respectively the autoregressive coefficient

polynomial and moving average coefficient polynomial of a
stationary invertible ARMA(p, q) model.

B. Definitions of fuzzy time series

Few concepts of fuzzy time series were first proposed by
Song and Chissom [12]. Song and Chissom [12, 13] also
proposed fuzzy time series forecasting methods. In addition,
a fuzzy time series takes its values in fuzzy sets [30].

Definition 3: Let U = {u1, u2, . . . , un}, is regarded as the
universe of discourse. A fuzzy set can be defined as

A =
fA(u1)

u1
+
fA(u2)

u2
+· · ·+fA(un)

un
=

n∑
i=1

fA(ui)

ui
(1 ≤ i ≤ n).

(6)
where fA is the membership function of the fuzzy set A,
fA : U → [0, 1], and fA(ui) represents the grade of the
membership of in the fuzzy set A.

Definition 4: Let Y (t)(t = . . . ,−2,−1, 0, 1, 2, . . . ), a sub-
set of R1, be the universe of discourse on which fuzzy sets
fi(t)(t = 1, 2, . . . ) are defined and F (t) is a collection
of f1(t), f2(t), . . . . Then F (t) is called a fuzzy time series
defined on Y (t).

Definition 5: If F (t − 1) = Ai and F (t) = Aj , where
Ai and Aj are fuzzy sets, then the fuzzy logical relationship
between F (t−1) and F (t) is represented by Ai → Aj , where
Ai is called the left-hand side (LHS) and Aj is called the right-
hand side (RHS) of the fuzzy logical relationship.

III. THE PROPOSED METHOD

In this section we present the novel forecasting method,
fuzzy time series method based on dynamic membership
degree, to predict, its major Related definitions and steps will
be discussed in the following subsections.

A. The related definitions of the proposed method

Definition 6: Let Y (t)(t = . . . , 0, 1, 2, . . . ) be a subset of
R1, µi(t)(t = 1, 2, . . . , n) is finite continuous nonempty sub-
sets in Y (t). The existence of membership functions f , the
f [µi(t)] was established. Then

Y (t)
f [µi(t)]−−−−−→ Y ∗

i (t) (7)

Y ∗(t) is a collection of Y ∗
1 (t), Y ∗

2 (t), . . . , Y ∗
k (t). Y ∗(t) is

called the dynamic membership sequence under f [µ(t)] action.
Definition 7: Let any fixed dynamic membership sequence

Y ∗(t)(t = 1, 2, . . . , n) be a subset of R1, fi(t) is defined as a
fuzzy set in Y ∗(t), and F (t) is a collection of f1(t), f2(t), . . . .
Then F (t) is called a fuzzy time series defined on Y ∗(t).



B. Algorithm
In this section, Algorithm 1 describes the framework of

DUMP method construction process. Fig.1 is the frame di-
agram of the model, where the red region is the difference
between the proposed method and the other fuzzy time series
[25], and the modeling steps of the proposed method are
described in detail below.

Algorithm 1 The framework of DUMP method
Input: Time series X = {x1, . . . , xn}.
Output: The defuzzification results.
Method: DUMP method.

1: U ; // Define the universe of discourse;
2: Partition U into subintervals U = {µ1, µ2, . . . , µn}, define
fuzzy sets Ai on U and fuzzy the observed data;
3: {Y ∗

1 (t), Y ∗
2 (t), Y ∗

3 (t), . . . , Y ∗
i (t), . . . , Y ∗

k (t)} // DUMP se-
quence;
4: Set up time series analysis model;
5:Establish defuzzification rules;
(1) Determine the group number;
(2) Revise the membership degree.

Fig. 1: The structure of the model

Step 1: Define the universe of discourse U .
The U is defined as U = [Dmin − ξ1, Dmax + ξ2],

where Dmin and Dmax are respectively the minimum and
the maximum of difference sequence, which is obtained by
the smooth processing of the original stock price data, and
ξ1 and ξ2 are two proper positive real values, respectively, to
cover the noise of the testing data.

Step 2: Divide the interval, define fuzzy sets and fuzzy the
observed data.

The U is divided into k class according to the k-
means clustering method, the k clusrer center is sort-
ed from samll to large. Assuming their cluster center is
ν1, ν2, ν3, . . . , νi, . . . , νk, respectively, and the midpoint bi
of two adjacent cluster centers νi and νi+1 is taken as the
boundary of the sub-domain µi(1 ≤ i ≤ k). Then µ1(t) =

[Dmin−ξ1, ν(1)+ν(2)2 ], µ2(t) = [ ν(1)+ν(2)2 , ν(2)+ν(3)2 ], µ3(t) =

[ν(2)+ν(3)2 , ν(3)+ν(3)2 ], . . . , µi(t) = [ν(i−1)+ν(i)
2 , ν(i)+ν(i+1)

2 ],
. . . , µk(t) = [ν(k−1)+ν(k)

2 , Dmax + ξ2].

Where b1 = ν(1)+ν(2)
2 , b2 = ν(2)+ν(3)

2 , b3 = ν(3)+ν(4)
2 , . . . ,

bi = ν(i)+ν(i+1)
2 , . . . , bk−1 = ν(k−1)+ν(k)

2 .
According to the actual situation and people understand

the ambiguity of the problem, the intervals are interpreted
semantically A1, A2, . . . , Ai, . . . , Ak, in a way that natural
language can understand, among them, Ai corresponds to the
ith fuzzy concepts, that is, fuzzy sets.

Step 3: Establish dynamic fuzzy membership degree se-
quence.

Existence of membership function f that each sub interval
µi(t) can establish the corresponding membership functions
under the f action. Shortly, different sub- intervals can corre-
spond to the different membership function and membership
function of each sub-interval µi(t) is defined as:

µ1(t)
f−→f [µ1(t)] (8a)

... (8b)

µi(t)
f−→f [µi(t)] (8c)

... (8d)

µk(t)
f−→f [µk(t)] (8e)

With the change of time t, Y (t) = {x(t1), x(t2), x(t3), . . . ,
x(tj), . . . , x(tn)} is taken into the membership function
of each sub-interval defined above, the corresponding new
time series Y ∗

1 (t), Y ∗
2 (t), Y ∗

3 (t), . . . , Y ∗
i (t), . . . , Y ∗

k (t) are ob-
tained, which are defined as new time series:

Y (t)
f [µ1(t)]−−−−−→Y ∗

1 (t) (9a)
... (9b)

Y (t)
f [µi(t)]−−−−−→Y ∗

i (t) (9c)
... (9d)

Y (t)
f [µk(t)]−−−−−→Y ∗

k (t) (9e)

As previously known, the original time series is Y (t), then
according to the above definition, that is

Y ∗
1 (t) = {x1(t1), x1(t2),x1(t3), . . . , x1(tj), . . . , x1(tn)}

(10a)
... (10b)

Y ∗
i (t) = {xi(t1), xi(t2),xi(t3), . . . , xi(tj), . . . , xi(tn)}

(10c)
... (10d)

Y ∗
k (t) = {xk(t1), xk(t2),xk(t3), . . . , xk(tj), . . . , xk(tn)}

(10e)

And Y ∗(t) = {Y ∗
1 (t), Y ∗

2 (t), Y ∗
3 (t), . . . , Y ∗

i (t), . . . , Y ∗
k (t)},

then Y ∗
i (t) is called the sub-dynamic membership sequence

under f [µi(t)] action, and Y ∗t) is called the dynamic
membership sequence under f [µ(t)] action.



In this paper, we choose the sharp Γ distribution as the
membership function, then the membership function of sub-
domain is designed as

f [µi(t)] =

{
ep(x−νi) x ≤ νi;
e−p(x−νi) x > νi.

(11)

where p > 0. It can be seen that when the data is closer
to the center point, the membership degree is larger, on the
contrary, the membership degree is smaller. It meets the basic
requirements of clustering, we can determine whether the
data belongs to the sub-domain according to the degree of
membership of sub-domain.

Step 4: Set up time series analysis model.
Next, we do time series analysis for each sub-domain, and

the structure of the time series is in Algorithm 2. We finally
get the prediction of fuzzy sets based on the analysis and
verification steps.

Algorithm 2 Framework of time series analysis
Input: Membership degree sequence.
Output: Predicted value.
Method: Time series analysis.

1: The sequence of stationary test and white noise inspection;
2: The order recognition of model;
3: Parameter estimation of model;
4: The parameter test and residual test of model;
5: Using the established model to predict the next value.

Step 5: Establish defuzzification rules.
We can predict the membership of each sub-domain in

turn by time series modeling. x∗0(t1), x∗0(t2), . . . , x∗0(ts);
x∗1(t1), x∗1(t2), . . . , x∗1(ts); . . . ; x∗k(t1), x∗k(t2), . . . , x∗k(ts);
x∗k+1(t1), x∗k+1(t2), . . . , x∗k+1(ts), s is the number of
test sets. Next,we convert the membership degree
of the prediction into the form of fuzzy set,which
is called the membership degree vector. Its form is
x∗0(t1), x∗1(t1), . . . , x∗k+1(t1); x∗0(t2), x∗1(t2), . . . , x∗k+1(t2);
. . . ; x∗0(ts), x

∗
1(ts), . . . ,x

∗
k+1(ts), we can determine whether

the data belongs to a group through the analysis and judgment
of the data.

(1) Determine the group number
The p of the membership function is relatively small in

this research, when the membership degree is generally in
the 0.8 to 1, we can determine the data that belongs to a
group number. As a matter of fact, the membership degree
is generally not between 0.8 and 1. Thereby, we should sort
for the membership degree vector, the maximum membership
degree is defined as the membership of the group number to
which the data belongs. x∗2(t1), x∗3(t1), x∗1(t1), x∗4(t1) is taken
as a typical example, it indicates that the difference data is in
second sub-domain, and is close to the third sub-domain.

(2) Revise the membership degree
When the class of the data is determined, we re-

vise the single digit value to 9 of the maximum mem-

bership degree according to the proportion of the maxi-
mum membership degree of each group in the member-
ship sequence, which is more in line with the actual sit-
uation. Then x∗2(t1), x∗3(t1), x∗1(t1), x∗4(t1) is modified to
newx∗2(t1), x∗3(t1), x∗1(t1), x∗4(t1). We introduce two kinds of
defuzzification rules, and the final results are shown in the
form of intervals.

The first, we put newx∗2(t1), x∗3(t1), x∗1(t1), x∗4(t1) into Eq.
(12a, 12b) to get the difference sequence Y .

y∗newi(tj) = − log x∗i (tj)

p
+ νi (12a)

y∗newi(tj) =
log x∗i (tj)

p
+ νi(1 ≤ j ≤ s) (12b)

After n steps, there are y1 = xn+1 − x1, y2 = xn+2 − x2,
. . . , then the predicted values of the stock price are xit+1 =
yit+1−n + xit+1−n , . . . , xit+1+n = yit+1 + xit+1, and the
difference data of smoothing is an interval, the interval of the
maximum membership degree is the predicted interval of the
stock price.

The second, it is proved that the difference data between
the two cluster centers can determine the branch of the
membership function according to the membership vector
x∗0(tj), x

∗
1(tj), . . . , x

∗
k+1(tj). For instance, x∗0(tj), x

∗
k+1(tj)

can determine that the difference data is between the left and
right branches of the sub-domain 1 and the left and right
branches of the sub-domain k. When a difference data is
between νi and νj , where i < j, and put it into Eq. (13a, 13b)
to get the difference data. Finally, removing the difference to
get stock prices.

ynewi(ti) = − log x∗i (ti)

p
+ νi (13a)

ynewj(tj) =
log x∗j (tj)

p
+ νj (13b)

IV. EMPIRICAL APPLICATIONS

In this section, we apply the proposed method to predict
the future stock price of Ping An in China. The data are those
of China Ping An from 1/2/2014 to 10/4/2014. As shown in
the second column of Table 1. Stock price data covering the
period from 1/2/2014 to 9/28/2014 are used as the training data
set, which illustrate the research procedures in this section,
to estimate, and the period from 9/29/2014 to 10/4/2014 is
forecast and test the accuracy of the better model for future
data. This section focuses on the application of the proposed
method in the prediction of stock price.

A. The proposed method

Firstly, Fig.2 is the sequence chart of the original stock
price, we can initially determine that the sequence is a non-
stationary series. Next, we do the difference processing of the
original sequence by the Software programming. The first-
order difference is the white noise sequence, which is not
of significance. But the second-order difference is non-white
noise sequence, so we study the second-order differential
sequence.



Fig. 2: The original data stock price chart

TABLE I: Fuzzy sets for China Ping An stock price.

Date Stock price Fuzzy set Difference sequences(2) Fuzzy set
. . .

1/20/2014 41.00 A4 -0.35 A2

1/23/2014 40.53 A4 -1.28 A1

1/24/2014 39.00 A3 -2.00 A1

1/25/2014 39.16 A3 -1.37 A1

1/26/2014 39.28 A3 0.28 A3

. . .
6/15/2014 39.70 A3 -0.04 A2

6/16/2014 38.87 A3 -0.55 A2

6/17/2014 39.34 A3 -0.36 A2

6/18/2014 39.28 A3 0.41 A3

6/19/2014 39.44 A3 0.10 A3

. . .
9/28/2014 41.42 A5 0.15 A3

9/29/2014 41.14 A4 0.18 A3

10/2/2014 41.07 A4 -0.35 A2

10/3/2014 40.11 A4 -1.03 A1

10/4/2014 40.71 A4 -0.36 A2

B. Define U and Establish the sub-domain of difference se-
quence

We find Dmin = -2 and Dmax = 2.39 in two step difference
sequence, define U = [−2.01, 2.4]. The two step difference
sequence is clustered into four classes ,and the final clustering
centers are v1 = −1.19, v2 = −0.31, v3 = 0.35, v4 = 1.33
using k-means clustering method that takes into account
the distribution and nonuniform problem of the data. Next,
b1 = −0.75, b2 = 0.02, b3 = 0.84, the sub-domains are
u1 = [−2.01,−0.75], u2 = [−0.75, 0.02], u3 = [0.02, 0.84],
u4 = [0.84, 2.4]. Fuzzy set are listed in the last column of
Table 1 as an example. The value of difference sequences
for 1/20/2014 was -0.35; fuzzify(-0.35) = A2. The value of
difference sequences for 6/19/2014 was 0.10; fuzzify(0.10)=
A3.

C. Establish dynamic membership degree sequence

Establish the membership function for the minimum and
maximum values of the two step difference sequence and the
cluster centers. The commonly used membership function-
s include triangle membership function, ladder membership
function and Gauss membership function. In this paper, the
sharp Γ distribution function is selected as the membership
function, the membership function of each sub-domain is
defined as in Eq. (14a - 14f).

In particular, when the data belonging to the sub-domain 1
and sub-domain 4, f [u0(t)] and f [u5(t)] can determine that the
membership function of f [u1(t)] and f [u4(t)] should select
which branch. Using Software programming and combining
the relevant theories in the front and Eq. (14a - 14f), dynamic
membership sequence of two step differential sequence are

Y ∗
1 , Y ∗

2 , Y ∗
3 , Y ∗

4 . 0.9 ∼ 1 is the range of membership degree.
The number of the third and fourth rows in Table 2 represent
the number of belonging to each sub-domain and membership
degree 0.9 ∼ 1 in the dynamic membership sequence. Take
sub-domain 1 as an example, 26 of the 190 data belong to
the sub-domain 1, and the number of membership degree in
is only about 14 in Y ∗

1 . After that, we will revise the stock
predicted results according to Step 5 in 3.2.

TABLE II: Belonging to the number of 0.9 ∼ 1.0
in Y ∗

1 , Y ∗
2 , Y ∗

3 , and Y ∗
4 .

Sub-domain Sum21 2 3 4
Sum1 26 71 71 22 190

0.9 ∼ 1.0 14 45 47 9

f [µ0(t)] =

{
e0.5(x+2) x ≤ −2;

e−p(x+2) x > −2.
(14a)

f [µ1(t)] =

{
e0.5(x+1.19) x ≤ −1.19;

e−0.5(x+1.19) x > −1.19.
(14b)

f [µ2(t)] =

{
e0.5(x+0.31) x ≤ −0.31;

e−0.5(x+0.31) x > −0.31.
(14c)

f [µ3(t)] =

{
e0.5(x−0.35) x ≤ 0.35;

e−0.5(x−0.35) x > 0.35.
(14d)

f [µ4(t)] =

{
e0.5(x−1.33) x ≤ 1.33;

e−0.5(x−1.33) x > 1.33.
(14e)

f [µ5(t)] =

{
e0.5(x−2.39) x ≤ 2.39;

e−0.5(x−2.39) x > 2.39.
(14f)

D. Set up time series model

We carry out the time series model of each sub-domain
membership sequence using Software programming and com-
bining the modeling process of Algorithm 2, and the sequence
diagram of each sub-domain Y ∗

0 , Y
∗
1 , Y

∗
2 , Y

∗
3 , Y

∗
4 , Y

∗
5 are pre-

sented in Fig. 3, The blue line represents the original mem-
bership degree of each sub-domain. where Y ∗

0 , Y
∗
5 represents

the membership sequence of the minimum and maximum
values of the domain, the sequence always fluctuates between
0 and 1. From these aspects including the sequence diagram,
autocorrelation and white noise test, it can be concluded that
various membership sequences are stationary and non-white
noise sequence, so they have the significance of the research.

We continue to follow the steps in Algorithm 2, the optimal
model of each sub-domain is shown in Eqs. (15 - 20), and we
map the predicted results of each sub-domain Y ∗

0 , Y ∗
1 , Y ∗

2 ,
Y ∗
3 , Y ∗

4 , Y ∗
5 in Fig. 3. The red line represents the predicted

values of membership degree of each sub-domain.The red line
is divided into two parts with the dotted line, one part is
used as the training set to fit the original membership degree,



the other part is used as the test set to predict the degree of
membership at the next moment.

Y ∗
0 = 0.32488 + (1 + 0.67746B1)εt. (15)

Y ∗
1 =0.571163 + εt/(1− 0.68837B1 + 0.63257B2 − 0.55063B3

+ 0.30301B4 − 0.2467B5 + 0.22106B6).
(16)

Y ∗
2 = 0.755073 + (1 + 0.24884B1 + 0.14563B2)εt. (17)

Y ∗
3 = (1 + 0.37312B1 − 0.98504B2 − 0.38808B4)εt. (18)

Y ∗
4 = 0.53497 +

εt
1− 0.51086B1 + 0.34033B2 − 0.23784B3

.

(19)

Y ∗
5 = 0.392705 + (1 + 0.78809B1)εt. (20)

Fig. 3: The forecast result of sub-domain Y ∗
0 , Y ∗

1 , Y ∗
2 , Y ∗

3 ,
Y ∗
4 , Y ∗

5

TABLE III: Membership degree of four predicted values in
each sub-domain.

Sub-domain The First The Second The Third The Fourth
Minimum value 0.317919 0.420993 0.415362 0.383467
Sub-domain 1 0.465385 0.608501 0.597549 0.547529
Sub-domain 2 0.778540 0.755023 0.755073 0.755073
Sub-domain 3 0.804314 0.743512 0.736361 0.743222
Sub-domain 4 0.572506 0.530994 0.524769 0.540039

Maximum value 0.355785 0.324880 0.324880 0.324880

The transverse values in Table 3 are the membership
degree of the four prediction points belonging to the same
sub-domain. For instance, 0.465385 represents that the first
prediction point belongs to sub-domain 1 and the membership

degree is 0.465385. The longitudinal values are the member-
ship degree of the same prediction point belonging to the
different sub-domain. For example, the membership degree of
the first prediction point in different sub-domains is 0.465385,
0.778540, 0.804314 and 0.572506.

The degree of membership is more greater, then the prob-
ability that the prediction point belongs to the sub-domain
is more greater. Therefore, we can judge that the first point
belongs to sub-domain 3 and the left branch, the following
three points belong to sub-domain 2 and the right branch, and
the predicted values of Minimum and Maximum are relatively
small, so the four prediction point do not belong to the left
branch of sub-domain 1 and the right branch of sub-domain
4.

E. Defuzzification according to debarring rules

In Table 4, we revise membership degree of four predicted
values in each sub-domain, which has been marked in Table 4
and the predicted results is done the defuzzification operation
to obtain the stock price. More specifically, according to the
two kinds methods of defuzzification rules, we can get the
predicted results of sub-domain, which is expressed in the form
of interval.

TABLE IV: Modified results of predicted membership degree

fuzzy sets The First The Second The Third The Fourth
A1 0.465385 0.608501 0.597549 0.547529
A2 0.778540 0.955023 0.955073 0.955073
A3 0.904314 0.743512 0.736361 0.743222
A4 0.572506 0.530994 0.524769 0.540039

First, according to the Eqs. (12a, 12b) and Software pro-
gramming. Table 5 is obtained by the first method of defuzzi-
fication rules. Table 5 is divided into two parts, values of the
last two lines are the predicted results of defuzzification rule
1, the rest are the predicted results of sub-domain. Through
the preceding analysis and Tables 4 and 5, it can be deduced
that the first prediction point belongs to the sub-domain 3,
the prediction interval is [41.10884, 41.51116], however, the
middle gap is relatively large, each sub-domain has a similar
value, thereby, we can predict that the result of the first
prediction point is [41.10884, 41.15067]. In addition, the
second, the third, and the fourth prediction points belong to the
sub-domain 2. The results obtained by using defuzzification
rule 1 are shown in the last two lines of Table 5. In the
same way, according to the Eqs. (13a, 13b) and Software
programming. Table 6 represents the predicted results obtained
by using defuzzification rule 2.

V. MODEL EVALUATION

This section evaluates the model from two aspects: predicted
results and errors. It is described in detail below:

A. Comparison of the results of various methods

The stock price from 9/29/2014 to 10/4/2014 are used for
forecasting. The predicted results are summarized in Table
7. The original stock price, the forecasts from Yu’s model,



TABLE V: The prediction results of stock sub-domain and
defuzzification rule 1.

Date 9/29/2014 10/2/2014 10/3/2014 10/4/2014
The original data 41.14000 41.07000 40.11000 40.71000

Sub-domain 1 Lower bound 38.24022 39.23649 36.02038 36.84181
Upper bound 41.29978 41.22351 41.13962 41.23819

Sub-domain 2 Lower bound 40.14933 41.01796 39.74740 40.61603
Upper bound 41.15067 41.20204 40.93260 40.98397

Sub-domain 3 Lower bound 41.10884 41.17726 40.84677 40.93347
Upper bound 41.51116 42.36274 42.47323 43.30626

Sub-domain 4 Lower bound 41.17454 41.48399 41.21494 41.58176
Upper bound 43.40546 44.01601 46.02506 46.57824

The prediction Lower bound 41.10884 41.01796 39.74740 40.61603
Results of stock Upper bound 41.15067 41.20204 40.93260 40.98397

TABLE VI: The prediction results of stock sub-domain and
defuzzification rule 2.

Date 9/29/2014 10/2/2014 10/3/2014 10/4/2014
The original data 41.14000 41.07000 40.11000 40.71000

The prediction Lower bound 41.10884 41.17726 40.84677 40.93347
Results of stock Upper bound 41.15067 41.20204 40.93260 40.98397

that is fuzzy time series, the forecasts from ARIMA method
and the forecasts using the proposed method are compared
in Figs. 4 and 5. In Fig. 4, the prediction of 9/29/2014’s
is taken as an example. From left to right, the bar chart
represents respectively the predicted result of ARIMA, the
predicted result of the lower bound, the original stock price,
the predicted result of the upper bound and the predicted
result of Yu’s model. Fig. 5 is similar. Figs. 4 and 5 illustrate
intuitively that the proposed method is obviously superior to
ARIMA and Yu’s model.

Fig. 4: Comparison of results of the defuzzification rule 1and
other methods

Fig. 5: Comparison of results of the defuzzification rule 2and
other methods

B. Comparison of prediction error of various methods

The performance evaluation is assessed by comparing the
measuring forecast error criteria via the mean squared error
(MSE), mean absolute error (MAE) and the mean absolute
percent error (MAPE), and Eqs. (21 - 23) define the MSE,
MAE and MAPE.

MeanSquaredError(MSE):

MSE =

∑m
i=1(forecast(i)− actual(i))2

m
(21)

MeanAbsoluteError(MAE):

MAE =

∑m
i=1 |(forecast(i)− actual(i))|

m
(22)

MeanAbsolutePercentError(MAPE):

MAPE = 100% ∗
∑m
i=1 |(forecast(i)− actual(i))/actual(i)|

m
(23)

where actual(i) and forecast(i) respectively denotes the
actual value and the predicted value at time i, m denotes the
number of testing period in Eqs. (21 - 23).

The error evaluation results are summarized in Table 7.
The performance measures such as mean squared error MSE,
mean absolute error MAE and the mean absolute percent
error MAPE are considered for evaluating the performance
of the proposed method over other prediction methods. In the
Table 7, the MSE of the ARIMA and Yu’s model prediction
respectively are 0.4341 and 0.2349, the MSE of the lower
bound and upper bound of the proposed method one are
0.0360 and 0.1923 respectively. Similarly, the MSE of the
lower bound and upper bound of the method two are less
than that of time series analysis and Yu’s model. The MAE
and MAPE, of which methods proposed are less than those
of the time series analysis and Yu’s model. Therefore, the
experimental results show that the proposed method is more
representative, reliability, scientific, rationality than ARIMA
and Yu’s model.

TABLE VII: The predicted results and error evaluation of
various methods.The original data (Tod), Lower bound of
method one (Lbo), Upper bound of method one (Ubo), Lower
bound of method two (Lbt), Upper bound of method two (Ubt)

.
Method Date Forecast error criteria via

9/29/2014 10/2/2014 10/3/2014 10/4/2014 MSE MAE MAPE
Tod 41.14000 41.07000 40.11000 40.71000

ARIMA 41.32000 41.27000 41.23000 41.35000 0.4341 0.5350 1.322%
Yu’s model 41.75000 40.45000 40.45000 40.45000 0.2349 0.4575 1.120%

Lbo 41.10884 41.01796 39.74740 40.61603 0.0360 0.1349 0.334%
Ubo 41.15067 41.20204 40.93260 40.98397 0.1923 0.3098 0.768%
Lbt 41.10884 41.17726 40.84677 40.93347 0.1513 0.2747 0.681%
Ubt 41.15067 41.20204 40.93260 40.98397 0.1923 0.3098 0.768%

VI. CONCLUSIONS

In this paper, we have proposed DUMP approach to forecast
the stock price of China Ping An. Firstly, the proposed method
uses the K -means clustering algorithm to get the cluster
center of each cluster and to get the optimal partition of the
intervals in the universe of discourse, which can solve the



problem of uneven distribution of data, and the midpoint of
two adjacent cluster centers is taken as the boundary of the
sub-domain. Secondly, we choose the Γ distribution function
as the membership function, the membership function of each
sub-domain is established to obtain the corresponding dynamic
membership sequence, the time series analysis is used to get
the predicted value of each sub-domain membership degree.
Thirdly, the membership degree of prediction is revised, and
then, according to two kinds of the defuzzification rules,
we obtain the predicted interval of stock price. From the
experimental results shown in Table 7, we can see that the
proposed fuzzy forecasting method outperforms the time series
method and Yu’s model for forecasting the stock price of China
Ping An.
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