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Abstract 

This work represents the selection of alternatives for the realization of high speed 
milling in aluminum alloy material, obtained by applying the Ideal Method. The 
analysis carried out taking into account the uncertainty values, determined that of the 
selected criteria, the deformation of the part is the one with the greatest influence. By 
modeling with the FRIM method, it was possible to determine the parameters of cutting 
speed (Vc= 200-400 m/min) and main cutting force (Fz = 0.20 N) allowing us to 
perform the milling operation guaranteeing to minimize the deformation of the thin-
structured part. 
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Introduction 

In industrial processes, quality is defined as an extension in which the product is built 
according to the design specifications and the application of the manufacturing 
requirements according to the functionality of the components that conform it. In high-
speed machining processes, the most prominent sectors in which high standards of part 
quality prevail are automotive and aeronautics. With in-line production models, the 
main difficulty that appears is the quality evaluation process outside the process, 
causing losses due to defects that appear in the final part. Because of this, it is necessary 
to incorporate automated and learning methods as a predictive solution to improve the 
finish, taking into account machining parameters.  

At present, there is a diverse literature where ways and methods are sought to improve 
quality levels in high speed processes. Researches have approached this problem from 
different points of view and use different techniques. [1], demonstrates the effectiveness 
of applying two different classification methods with machine learning, Bayesian 
networks and neural networks to predict surface roughness in high speed machining. 
From the accelerated competition in the search for higher production levels but with low 
costs without affecting the environment [2], he applies grey relational analysis in 
establishing multi-objective optimization with minimum lubricant usage, milling 
parameters in improving surface quality and tool wear. Within the research on artificial 
roughness we find the use of optimal prediction methods of milling parameters, [3],[4] 
with the mathematical model Particle Swarm Optimization (PSO) validated through 
experiment and theoretical research to make clear the results and the relationship that is 
established between the parameters demonstrating the versatility and capacity that is 
achieved surface roughness in milling processes. [5] He adds edemas the action caused 
by the cutting speed on the second peripheral angle and the main diameter showing its 
influence on the surface texture; he uses for this purpose neural network back 
propagation in the prediction of the final result. In a similar proposal [6], he takes into 
account in his analysis the influence of vibrations on the tools; he predicts the final state 
of surface roughness using AI through a Gaussian regression model. Fuzzy logic has 
been found in research is used, [7] with an Adaptive Neuro-Fuzzy Inference System 
(ANFIS) model manages to estimate and predict the grade obtained in the high speed 



milling process; several runs are employed with steel material, with coated carbon 
insert. In ferrous and non-ferrous materials such as EN24 steel alloys, with the influence 
of cutting parameters with ball-shaped inserts, the behavior of Ra is studied [8], in the 
experiment the tungsten coated carbide steel tools are handled, the method used is 
through a Behnken box based on RSM method and the speed in rpm in CNC machines 
is taken into account. [9] With the infinite analysis method and from the effect of hybrid 
parameters in machining, it is possible to analyze the tool wear and surface roughness; it 
is related to the dimensions of the part, the clamping and the amplitude reached by the 
vibrations in the machining process. The tool wear is investigated under conditions of 
constant value of cutting speed during different periods of time. [10] [11] enrich in their 
studies the action of cutting forces in high speed milling processes in stainless steel 
parts with martensitic composition (1Cr13) and its optimization in order to improve the 
surface quality of the parts. With a model where the relationship between the cutting 
parameters depth of cut, feed, cutting speed and feed per tooth and with the cutting 
force to predict the surface roughness is established. The fundamental AI tools 
implemented are neural networks and radial basis functions. In his contribution [12] 
establishes how the monitoring of tool conditions is necessary in high speed milling 
processes and its evaluation establishes important criteria in the Ra values achieved in 
production. It applies AI efficiently to establish clusters that are used in the final 
diagnosis and proposals for the tool monitoring system.  

In the case of advanced optimization techniques with AI, we have the case of [13] with 
methods of developing a model to improve the surface roughness in high speed ball 
milling process in finishing operation, with the methodology based on design of 
experiment. The union of the complex function and teaching-learning based 
optimization algorithm focuses on determining optimal parameters of the cutting 
process. In the same way [14], in his tests on manganese alloys (AZ91D and AZ31) 
taking into account the dynamic actions that appear in the milling process with changes 
in cutting forces and vibrations. [15] Analyzes for this same type of tools in finishing 
operations in high speed milling with hardened steel alloys 42CrMo4. By combining the 
sustainable model of neural networks, basic radial function and multithreaded 
perceptron it is achieved to predict the state of best behavior of the cutting forces in this 
type of alloys. The relationship established between high speed and computer numerical 
control in milling conditions to a large extent the degree of quality in the surface finish 
of the parts [16] this concept in finishing operations, helical milling, cutting tools with 
their characteristics is obtained learning with control scenarios to the cutting parameters. 
The optimal conditions in the milling of AISI 1045 steel parts has in its processes costs 
in the manufacture of parts, by employing artificial intelligence mechanism allows us to 
decrease these values and also achieve that the quality of good quality surfaces in fast 
fabrications, [17] his research is done from seven parameters in two experiments. 

The multi-objective analysis related to surface roughness is found in [18], where the 
optimization of the lubricating fluid in milling processes on parts made of AISI 1045 
material is presented. It establishes a predictive mathematical model where the effects 
of minimum lubrication are observed and the machining parameters are examined to 
determine the optimum conditions with minimum surface roughness and minimum 
energy consumption. [19] carries out the multi-objective methodology, where the 
cutting parameters (Vc, Ap and f) are optimized for a turning process with martensitic 



stainless steel material (AISI 420), minimizing the surface roughness with the required 
cutting force is achieved. [21] It presents the RIM method, as an improvement of the 
MCDM TOPSIS and VIKOR tools.  

The object of research of this work is to determine the best alternative that minimizes 
the deformation in parts of thin aluminum alloy structures when performing high speed 
milling operations. For this, the novelty of the fuzzy set theory and its arithmetic is used 
in its solution, with the best solutions from the intermediate values, with the ideal 
reference method (RIM) and uncertainty analysis. 

Materials and Methods 

High-speed milling operations were performed on Quick Machining Center Jet 
AV1612, equipped with HEI-CNC-System from DENHAIN with precise machining 
control with a maximum spindle speed of 20,000 rpm and feed speed of 25 m / min. The 
workpiece selected for the experiment of an Al 5083 alloy in rectangular shape with 
dimensions of 140 mm × 70 mm × 5 mm. The chemical composition and physical 
properties of the workpiece material are collected in Table 1 and Table 2 respectively.  

Table 1. Chemical composition of aluminum alloy 5083. 
Elemento % Presente 

Si 0.4 
Fe 0.4 
Cu 0.1 
Mn 0.4-1.0 
Mg 4.0-4.9 
Zn 0.25 
Ti 0.15 
Cr 0.05-0.25 
Al Balance 

 
Table 2. Physical properties of 5083 aluminum alloy 

Propiedades Valor 
Density 2650 kg/m3 

Melting point 570 °C 
Modulus of elasticity 72 GPa 
Electrical resistivity 0.058 x 10-6 Ω-m 

Thermal conductivity 121 W/m-K 
Thermal expansion 25 x 10-6 /K 

 
Table 3. Mechanical properties of aluminum alloy 5083. 

Temper H32 0/HIII 

Proof stress 0.2 % (MPa) 240 145 
Tensile strength 330 300 

Shear strength (MPa) 185 175 
Elongation A5 (%) 17 23 
Hardness Vickers 95 75 

 

RIM algorithm with fuzzy numbers 

Based on the considerations made above, regarding the form of the calculation of the 
minimum distance to the Reference Ideal and the normalization function, it is possible 
to proceed to the application of the RIM algorithm. In this case, the algorithm to be 
followed is described: 

 



 

Step 1. Definition of the working context. 

Its purpose is to establish the conditions of the working context, where for each criterion 
Ej has to be defined; the rank Rj , the Reference Ideal IRj and the weight Wj associated 
to each criterion. 

 

Step 2. Obtaining of the decision matrix V, where the valuations issued (Vij ) represent 
triangular fuzzy numbers. 

𝑉 = �
𝑉11 𝑉12… 𝑉1𝑛
𝑉21 𝑉22… 𝑉2𝑛

⋮
𝑉𝑚1 𝑉𝑚2 … 𝑉𝑚𝑛

�                (1) 

Step 3. Normalization of the valuation matrix V as a function of the ideal solution. 

𝑁 =

⎝

⎜
⎛
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Step 4. Calculation of the weighted normalized matrix P through: 

𝑃 = 𝑁⊗ 𝑊 =

⎝

⎜
⎛
𝑛11 ∙ 𝑤1 𝑛12 ∙ 𝑤2 … 𝑛1𝑛 ∙ 𝑤𝑛
𝑛21 ∙ 𝑤1 𝑛22 ∙ 𝑤2 … 𝑛2𝑛 ∙ 𝑤𝑛

⋮ ⋮ ⋮
𝑛𝑚1 ∙ 𝑤1 𝑛𝑚2 ∙ 𝑤2 𝑛𝑚𝑛 ∙ 𝑤𝑛

⎠

⎟
⎞

(3) 

Step 5. Calculation of the variation to the ideal and non-ideal solution for each 
alternative Ai . 

𝑑𝑖+ = �∑ �𝑝𝑖𝑗 − 𝑤𝑗�
2𝑛

𝑗=1  𝑦  𝑑𝑖− = �∑ �𝑝𝑖𝑗�
2𝑛

𝑗=1              (4) 

 

Where i = 1,2,...m, j=1,2,...n and pij are the values of the matrix P. 

Step 6. Calculation of the index relative to the ideal solution of each alternative Ai, 
through the expression: 

𝑅𝑖 =  𝑑𝑖
−

𝑑𝑖
++ 𝑑𝑖

−  , donde: 0 ≤ Ri ≤ 1, i=1,2,…m              (5) 

Step 7. Ordering of the alternatives Ai in descending order from the relative index Ri . 
If the alternative has an index Ri close to the value 1, it will indicate that it is very good, 
however if this value descends approaching the value 0, we will interpret that the 
alternative should be rejected. 



Results and Discussion 

Analytical Hierarchical Process (AHP). 

(Saaty, 1987), with the Analytical Hierarchical Processes method, presents a general 
theory of scaled measurement of discrete and continuous values by equating multilevel 
values to create a hierarchical structure. 

Step 1. Development of the model for the business. 

It is defined through a hierarchical structure for the problem by matching the criteria 
and sub-criteria from the highest level to the lowest level by going through the 
alternatives.   

Step 2. Derive priorities (weights) for the criteria. 

Six sub-tasks are developed in this step: 

a) The comparison matrix is established for each hierarchical level, the comparisons are 
made in pairs with the scale of values from 1 to 9. 

b) The weights are normalized from the comparison of the criteria, the geometric mean 
is calculated for each row and the main rows are normalized in the comparison matrix. 
(A2) is the main geometric matrix. 

c) The matrices A3 and A4 are evaluated by A3 = A1 * A2 and A4 = A3/A2. 

d) Find the maximum value of landa ʎmax , calculated from the average of matrix A4. 

e) Evaluate the consistency index (CI) as shown in formula x. 

𝐶𝐼 =  (ʎmax− 𝑁)/(𝑁 − 1) 

f) The consistency ratio (CR) is calculated as the ratio of CI and Random Index (RI), 
where RI is the random ratio obtained by different orders of the matrix pairwise 
comparison. Generally, a consistency ratio of 0.1 or less value is considered good 
enough, reflecting an unbiased judgment of the decision maker. 

Step 3. Consistency check (Correct assignment or not of weights). 

Now, compare the matrix of alternatives in pairs with respect to how best they satisfy 
each of the criteria considered. 

Step 4. Obtain the overall priorities (Final synthesis model).  

Depending on the overall performance values obtained, the best and worst preferred 
values for the problem are given. The normalized relative weight (w) of each criterion 
with respect to the corresponding normalized weight is obtained by summing all the 
criteria of the alternative. 

AHP method for weight evaluation. 

After establishing the business model, Figure 1, we proceed to calculate the weights 
using the AHP method. 

 



Figure 1. Hierarchical model for calculation of the weights 

 

The value of the weights are calculated as WRa-Fd = 0.10473, WRa-Td = 0.25828 and 
WTWD = 0.63699, their graphical representation is observed in Figure 2. The value of 
ʎmax = 3.03851. The coefficient Ratio CR = 0.03702989, the same takes a value less 
than the permissible CR < 0.1. 

Figure 2. Graphical representation of the weights. 

 

 

Fuzzy-RIM 

 
 Ra-Fd(µm) Ra-Td(µm) TWD 

A (4.260,4.864,4.495) (3.844,3.854,3.918) (0.051,0.052,0.056) 
B (6.056,5.833,6.538) (5.432,6.264,5.394) (0.106,0.105,0.105) 
C (4.263,5.436,6,056) (3.938,4.681,5.432) (0.049,0.067,0.105) 
D (4.147,5.416,6.540) (3.851, 4.842,5.394) (0.041,0.076,0.106) 
X (4.132,4.432,4.243) (3.422,3.422,3.304) (0.021,0.031,0.033) 
Y (4.231,4.232,4.222) (4.242,3.222,3.312) (0.102,0.102,0.101) 

Table 1. Decision matrix 
 
 
 
 
 



 
 Ra-Fd(µm) Ra-Td(µm) TWD 

A1 0,7352 0,2648 0,7352 
A2 0,0311 0,9689 0,0311 
A3 0,3963 0,6037 0,3963 
A4 0,7080 0,2920 0,7080 
A5 0,0807 0,9193 0,0807 
A6 -0,3887 1,3887 -0,3887 
A7 0,1981 0,8019 0,1981 
A8 -0,0351 1,0351 -0,0351 

Table 2. Normalized Valuation Matrix 
 

Ra-Fd(µm) Ra-Td(µm) TWD 
0,0770 0,068 0,468 
0,0033 0,250 0,020 
0,0415 0,156 0,252 
0,0741 0,075 0,451 
0,0084 0,237 0,051 
-0,0407 0,359 -0,248 
0,0207 0,207 0,126 
-0,0037 0,267 -0,022 

Table 3. Normalized and weighted matrix. 
 

Ra-Fd(µm) Ra-Td(µm) TWD di+ 
0,0008 0,0361 0,0285 0,1687 
0,0103 0,0001 0,0004 0,0198 
0,0040 0,0105 0,1479 0,3845 
0,0009 0,0334 0,0346 0,1860 
0,0093 0,0004 0,3429 0,5856 
0,0212 0,0101 0,7825 0,8846 
0,0071 0,0026 0,2609 0,5108 
0,0118 0,0001 0,4347 0,6593 

Table 4. Variation to the positive reference ideal and calculation of di+ 
 

Ra-Fd(µm) Ra-Td(µm) TWD di- 
0,0059 0,0047 0,2193 0,4795 
0,0000 0,0626 0,0004 0,2511 
0,0017 0,0243 0,0637 0,2996 
0,0055 0,0057 0,2034 0,4632 
0,0001 0,0564 0,0026 0,2431 
0,0017 0,1287 0,0613 0,4378 
0,0004 0,0429 0,0159 0,2434 
0,0000 0,0715 0,0005 0,2683 

Table 5.Variation to the negative reference ideal and calculation of di- 
 

 A1 A2 A3 A4 A5 A6 A7 A8 
Ri 0,6524 0,7077 0,4265 0,6382 0,2905 0,3267 0,3188 0,2865 

Table 6. Calculation of the Ri index 
 
We conclude that under the criteria analyzed, the best alternatives are A2, A1 and A4, 
establishing a good approximation between them. The selection of the cutting speed 
(Vc= 200-400 m/min) and main cutting force (Fz = 0.20 N) parameters allows us to 
perform the milling operation guaranteeing to minimize the deformation of the thin-
structured part. 

 

 

 

 



Conclusions 

Within the machining processes the occurrence of uncertainty in the measurements, it is 
necessary to have tools that minimize this problem, the following work used fuzzy set 
theory and arithmetic, it is also considered that the best solutions are not always found 
in the maximum or minimum values, but can be an intermediate value. In this work 
using Fuzzy and RIM (FRIM) and multicriteria analysis this situation is solved by 
performing high speed milling process to thin structures of Al 5083 alloys, minimizing 
the deformation of the part as the most critical criterion.   
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