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Abstract  
The article describes the method of local sequencing, addressed to traveling salesman problem 

(TSP) and its restricted versions in the form of polynomial algorithms of finding satisfac-

tory exact solutions. The proposed method takes into account the features of efficiently solva-

ble generalizations of assignment problem. The considerations that are the basis for the 

development of algorithms for solving TSP by local optimal sequence building are presented. 

The algorithm for building the bypass 𝜏𝑜 is presented. The proposed algorithm is characterized 

by low complexity of building a acceptable solution to 𝜏𝑜. The time of its operation is 

estimated. The time complexity of the proposed algorithm is estimated with value 𝑂(𝑛2). In 

practice, the algorithm works faster than the "go to the nearest" heuristics. 
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1. Introduction 

The problem of routing flows of raw materials, energy resources, information is one of the most 

pressing problems of modern industry, transport, public administration. Accelerating the pace of move-

ment, increasing the density of traffic flows and transportation facilities lead to increased requirements 

for computers, software and algorithms that are responsible for automating traffic control processes. 

Problems of efficient operation of transport systems in modern conditions can be successfully solved 

by methods of mathematical modeling, the importance of which is especially growing due to the large 

number of controlled objects and the need for real-time decision-making. 

A wide range of tasks that model the processes of management and planning in transport networks, 

formally reduced to the tasks of the class of salesman, in which you need to define a cycle or chain with 

given conditions for a weighted graph [1-3]. The problem of the salesman, which is constantly supple-

mented by tasks of an applied nature, remains an active area of research aimed at the development and 

improvement of combinatorial optimization methods. It is represented by a class of NP-hard problems, 

among which the central place is occupied by the task of the salesman [4-8]. 

The task of the salesman is to find the route of a traveler-merchant who goes on a route from a 

certain city (for certainty we will consider it the first), aims to visit N cities, having visited each city 

exactly once and return to the first city. The route should have the shortest length. In the language of 

graph theory, the salesman's task is to find the shortest Hamiltonian cycle on a weighted graph. In [9] 

it was proved that the task of a salesman is NP-hard. In [10] it is shown that the Euclidean version of 

the salesman problem is also NP-hard. [11] provides an overview of the exact and approximate methods 
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of solving the problem of a salesman with an analysis of the disadvantages and advantages of the meth-

ods. The article [12] considers the problem of several salesmen, provides options for practical applica-

tion, describes the exact and heuristic methods of solving the problem [13-15]. 

The practical application of methods to solve the problem of the salesman includes not only in 

transport logistics, but also in cartographic and geographical systems [16], in robotics in the program-

ming of mobile robots [17], in biology [18], etc. [19, 20]. 

2. Local sequence method in problem of finding the route of traveling sales-
man 

Let 𝑋 = [𝑥𝑖𝑗]𝑛 – be permutation matrix 𝜋 = (𝜋[1], 𝜋[2], . . . , 𝜋[𝑛]): 𝑥𝑖𝜋[𝑖] = 1, 𝑖 = 1, 𝑛, 𝜋[𝑖] ∈

{1,2, . . . , 𝑛}; 𝑥𝑖𝑗 = 0 in all other cases. Each element 𝑖 ∈ {1,2, . . . , 𝑛} is leveled to one-one conformity 

with element 𝜋[𝑖], having defined thereby the substitution   

 

(
1 2 . . . 𝑛
𝜋[1] 𝜋[2] . . . 𝜋[𝑛]

). 
 

 

All the substitutions of 𝑛 degree will be divided into two classes. The first class includes all cyclic 

substitutions  

 

(
1 2 . . . 𝑛
𝜏[1] 𝜏[2] . . . 𝜏[𝑛]), 

 

 

they have only one length cycle in their cycle layout 𝑛, the second one includes all the rest [21]. A 

permutation that corresponds to the cyclic permutation will be denoted as (𝜏[1], 𝜏[2], . . . , 𝜏[𝑛]) and 

called as cyclic permutation.  

Let [𝑑𝑖𝑗]𝑛 – be square matrix of order 𝑛, where  

 

𝑑𝑖𝑗 = {
𝑑𝑖𝑗 , if 𝑖 ≠ 𝑗,

∞ otherwise,        
 

(1) 

 

𝑑𝑖𝑗 ∈ 𝑍0
+, 𝑍0

+ – is a set of non-negative integers. 

The diagonal 𝛱 = (𝑑1𝜋[1], 𝑑2𝜋[2], . . . , 𝑑𝑛𝜋[𝑛]) is considered in matrix [𝑑𝑖𝑗]𝑛 that corresponds to a 

random permutation 𝜋 = (𝜋[1], 𝜋[2], . . . , 𝜋[𝑛]). Since 𝜋 is a column number permutation of matrix 

[𝑑𝑖𝑗]𝑛, we will denote element 𝑑𝑖𝜋[𝑖] of the diagonal 𝛱 with 𝑑𝜋[𝑖]. 

Following matrix [𝑑𝑖𝑗]𝑛 the complete oriented multigraph 𝐺 is built with 𝑛 vertices. Here every pair 

of vertices {𝑖, 𝑗}, 𝑖 ≠ 𝑗, is connected with a pair of arcs (𝑖, 𝑗) and (𝑗, 𝑖) with weights or values 𝑑𝑖𝑗 or 𝑑𝑗𝑖.  

TSP formulation.  

It is necessary to find a contour with the smallest total of arc weights included in it within the com-

plete oriented multigraph 𝐺. It has to pass through each vertex exactly one time.  

The sequence 𝜏 = (𝜏[1], 𝜏[2], . . . , 𝜏[𝑛], 𝜏[1]), which corresponds to the cyclic permutation 

(𝜏[1], 𝜏[2], . . . , 𝜏[𝑛]), is named by us as a bypass.  

It is obvious that the bypass 𝜏 = (𝜏[1], 𝜏[2], . . . , 𝜏[𝑛], 𝜏[1]) is an acceptable solution to TSP. Within 

multigraph it determines the closed route (𝜏[1], 𝜏[2], . . . , 𝜏[𝑛], 𝜏[1]), where all the numbers 

𝜏[1], 𝜏[2], . . . , 𝜏[𝑛] of the set {1,2, . . . , 𝑛} are different. Let us determine the cost of bypass 𝜏 to 𝐺:  

 

𝐷(𝜏) = 𝑑𝜏[1]𝜏[2] + 𝑑𝜏[2]𝜏[3]+. . . +𝑑𝜏[𝑛−1]𝜏[𝑛] + 𝑑𝜏[𝑛]𝜏[1] = ∑𝑑𝜏[𝑖]

𝑛

𝑖=1

. 
 
 

 

Let us formulate TSP by analogy with assignment task formulation.  



It is necessary to find cyclic permutation of the column numbers (𝜏∗[1], 𝜏∗[2], . . . , 𝜏∗[𝑛]) with the 

minimum total weight of the corresponding bypass 𝜏∗ in matrix [𝑑𝑖𝑗]𝑛
. The matrix elements have to 

satisfy condition (1).  

 

𝐷(𝜏∗) = min
𝜏

∑𝑑𝜏[𝑖]

𝑛

𝑖=1

.  

If to restrict the values of the matrix [𝑑𝑖𝑗]𝑛 with the condition 𝑑𝑖𝑗 = 𝑑𝑗𝑖, then we will obtain a sym-

metric TSP. In this case the complete undirected graph with 𝑛 vertices, where the edge {𝑖, 𝑗}, 𝑖 ≠ 𝑗, 

𝑖, 𝑗 = 1, 𝑛, has weight 𝑑𝑖𝑗 and corresponds to matrix [𝑑𝑖𝑗]𝑛
. 

By representing the elements of matrix [𝑑𝑖𝑗]𝑛 as distances, it should be assumed that they satisfy the 

triangle inequality: 

 
𝑑𝑖𝑗 = 𝑑𝑗𝑖  for all 𝑖, 𝑗;

𝑑𝑖𝑗 + 𝑑𝑗𝑘 ≥ 𝑑𝑖𝑘  for all 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛.
 

 

(2) 

 

In this case, the TSP is said to be restricted to matrix that satisfies the triangle inequality.  

Thus, narrowing the range 𝑃 of solutions 𝜋 = (𝜋[1], 𝜋[2], . . . , 𝜋[𝑛]) to the assignment problem to 

subset 𝑃𝜏 of all cyclic permutations (𝜏[1], 𝜏[2], . . . , 𝜏[𝑛]) leads to TSP formulation as well as makes 

these problems different. It is expressed in the incomparability of complexity estimates for producing 

optimal solutions. The set where the optimal solution to assignment problem is being sought consists 

of 𝑛! permutation of 𝜋. The size of the set 𝑃𝜏 that contains the required permutation 
(𝜏∗[1], 𝜏∗[2], . . . , 𝜏∗[𝑛]) of asymmetrical TSP is equal to (𝑛 − 1)! and the size of set solutions within 

symmetrical problem is twice smaller than |𝑃𝜏|. At the same time assignment problem is known to be 

effectively solved for the period of time 𝑂(𝑛3), while TSP with or without triangle inequality is NP - 

hard in a strong sense.  

Let us outline the considerations that are the basis for the development of algorithms to be applied 

to solve TSP by the method of building local optimal sequences. 

Let us consider two strictly increasing sequences (𝑖1, 𝑖2, . . . , 𝑖𝑛1
) і (𝑗1, 𝑗2, . . . , 𝑗𝑛1

), 𝑛1 ≤ 𝑛, one of 

which contains line numbers 𝑖𝑠 ∈ {1,2, . . . , 𝑛} and another one contains column numbers 𝑗𝑡 ∈

{1,2, . . . , 𝑛} of matrix [𝑑𝑖𝑗]𝑛. If 𝑖𝑘 = 𝑗𝑘, 𝑘 = 1, 𝑛1, we will consider that all elements 𝑑𝑖𝑠𝑗𝑡 , 𝑠 = 1, 𝑛1, 

𝑡 = 1, 𝑛1, form a square sub matrix of order 𝑛1 on the main diagonal of matrix [𝑑𝑖𝑗]𝑛. Further it would 

be reasonable to consider sub matrices [𝑑𝑖𝑗]𝑛1
, where the numbers of rows and columns are represented 

by sequence  (1,2, . . . , 𝑛1). 

Let us consider sub matrix [𝑑𝑖𝑗]2 on the main diagonal of matrix [𝑑𝑖𝑗]𝑛. Sub matrix [𝑑𝑖𝑗]2 defines 

the only one cyclic permutation (2,1). The number of all permutations formed from the sub matrix 

[𝑑𝑖𝑗]3 is equal to 6. Two of them are permutation (1,2,3) and (2,3,1). They are cyclic. The listed per-

mutations form the set of all bypasses within TSP with cost matrix [𝑑𝑖𝑗]3: (1,2,3,1), (1,3,2,1).  

We correlate bipartite oriented graph (𝐼, 𝐽, 𝐸), |𝐼| = |𝐽| = 2, 𝐸 = {(1,2), (2,1)} with permutation 

(2,1). It is easy to see that both permutations (1,2,3) and (2,3,1) are possible to be obtained from per-

mutation (2,1). Permutation (1,2,3) is formed by removing arc (1,2) from graph (𝐼, 𝐽, 𝐸) and adding 

arcs (1, 𝑗), 𝑗 = 3, and (𝑖, 2), 𝑖 = 3. Permutation (2,3,1) is formed by removing arc (2,1) and adding 

arcs (2, 𝑗), 𝑗 = 3, and (𝑖, 1), 𝑖 = 3 (fig. 1). 

 



 
1 2 1 3 

1 2 3 

1 2 1 3 

1 2 3 

а) б) 
 

Figure 1: Transition to 2 permutations of dimension 3 from permutation of dimension 1 
 

This remark causes the following generalization. 

Let permutation of dimension 𝑟 + 1 

 

𝑝 = (
1 . . . 𝑙 . . . 𝑘 − 1 𝑘 𝑘 + 1 . . . 𝑠 . . . 𝑟 𝑟 + 1
𝜏[1] . . . 𝜏[𝑙] . . . 𝜏[𝑘 − 1] 𝑘 𝜏[𝑘 + 1] . . . 𝜏[𝑠] . . . 𝜏[𝑟] 𝜏[𝑟 + 1]

)  

 

contain one cycle of length 𝑟 and one cycle of length 1, i.e. it is represented by loop unrolling 𝑝 = 𝑝1𝑝2, 

where 

 

𝑝1 = (
1 . . . 𝑙 . . . 𝑘 − 1 𝑘 + 1 . . . 𝑠 . . . 𝑟 𝑟 + 1
𝜏[1] . . . 𝜏[𝑙] . . . 𝜏[𝑘 − 1] 𝜏[𝑘 + 1] . . . 𝜏[𝑠] . . . 𝜏[𝑟] 𝜏[𝑟 + 1]

),  

𝑝2 = (
𝑘
𝑘
).  

 

Then any of 𝑟 permutations of dimension 𝑟 + 1 

 

𝑝(𝑙) = (
1 … 𝑙 … 𝑘 − 1 𝑘 𝑘 + 1 … 𝑠 … 𝑟 𝑟 + 1
𝜏[1] … 𝑘 … 𝜏[𝑘 − 1] 𝜏[𝑙] 𝜏[𝑘 + 1] … 𝜏[𝑠] … 𝜏[𝑟] 𝜏[𝑟 + 1]

), 

 𝑙 < 𝑘, 
 

 

𝑝(𝑠) = (
1 … 𝑙 … 𝑘 − 1 𝑘 𝑘 + 1 … 𝑠 … 𝑟 𝑟 + 1
𝜏[1] … 𝜏[𝑙] … 𝜏[𝑘 − 1] 𝜏[𝑠] 𝜏[𝑘 + 1] … 𝑘 … 𝜏[𝑟] 𝜏[𝑟 + 1]

), 

𝑘 < 𝑠, 
 

 

consists of one cycle of length 𝑟 + 1. 

Indeed, the contour of length 𝑟 + 1 that corresponds to permutation 𝑝(𝑙), can be obtained from 𝑝 by 

the only one way, namely, by removing arc (𝑙, 𝜏[𝑙]) and adding arcs (𝑙, 𝑘) and (𝑘, 𝜏[𝑙]), 𝑙 < 𝑘, within 

the contour that corresponds to permutation 𝑝. By analogy, the contour of length 𝑟 + 1 that corresponds 

to permutation 𝑝(𝑠), is formed by removing arc (𝑠, 𝜏[𝑠]) and adding arcs (𝑠, 𝑘) and (𝑘, 𝜏[𝑠]), 𝑘 < 𝑠, 
from contour that corresponds to permutation 𝑝. 

Thus, we have a simple way to build a subset of cyclic permutations of length 𝑛 for matrix [𝑑𝑖𝑗]𝑛. 

The following steps have to be performed. We form 𝑛 − 2 sub matrices [𝑑𝑖𝑗]𝑟 on the main diagonal of 

matrix [𝑑𝑖𝑗]𝑛
 from [𝑑𝑖𝑗]𝑛

. Each sub matrix [𝑑𝑖𝑗]𝑟
 has the same sequence (1,2, . . . , 𝑟), 𝑟 = 2, 𝑛 − 1, for 

the numbers of rows and columns. Further, 𝑟 cyclic permutations of length 𝑟 + 1 are formed for each 

cyclic permutation of length 𝑟 obtained from matrix [𝑑𝑖𝑗]𝑟. It is performed by following the mentioned 

steps on removing and adding the elements of matrix [𝑑𝑖𝑗]𝑟+1
.  

Such a method of forming a set of available solutions within sub matrices [𝑑𝑖𝑗]𝑟 of the given matrix 

of costs [𝑑𝑖𝑗]𝑛, 𝑟 = 2, 𝑛 − 1, is well embedded in flowchart of building local sequences. It made pos-

sible to efficiently solve some generalizations of assignment task [22, 23]. Let us demonstrate how to 



apply the flowchart for building for polynomial time of bypass 𝜏𝑜 which is acceptable in accuracy for 

real input data. 

At the initial moment of building 𝜏𝑜 let us assume that cyclic permutation (2,1) is given. The cor-

responding to it bypass 𝜏𝑜2 = (2,1,2) has cost  𝐷(𝜏𝑜2) = 𝑑12 + 𝑑21. Let 𝑘 = 2, 𝑗1 = 2, 𝑗𝑘 = 1. We 

obtain two cyclic permutations for 𝑙 = 3 in matrix [𝑑𝑖𝑗]3
 from permutation 𝜎𝑜𝑘 = (2,1). Its row and 

column numbers are presented with sequence (1,2,3): (3, 𝑗1, 𝑗2), (𝑗1, 3, 𝑗2) (fig. 2). Let us define the 

costs of bypasses 𝜏31 = (3, 𝑗1, 𝑗2, 3), 𝜏32 = (𝑗1, 3, 𝑗2, 𝑗1): 

 

𝐷(𝜏31) = 𝐷(𝜏𝑜2) + 𝑑𝑗23 + 𝑑3𝑗1 − 𝑑𝑗2𝑗1 ,  

 

𝐷(𝜏32) = 𝐷(𝜏𝑜2) + 𝑑𝑗13 + 𝑑3𝑗2 − 𝑑𝑗1𝑗2 .  

 

Bypass 𝜏𝑜3, that gives min{𝐷(𝜏31), 𝐷(𝜏32)}, allows building bypass 𝜏𝑜4 from four arcs after repetition 

of actions similar to performed ones for 𝑙 = 3. 

 

 j2=1 

j1=2 

3 3 

j2=1 

j1=2  
Figure 2: Formation of two bypasses of dimension 3 from bypass of dimension 2 
 

The algorithm for building bypass 𝜏𝑜 is presented as following.  

S0. The algorithm for finding valid rout 𝜏𝑜 by flowchart of building local sequences; [𝑑𝑖𝑗]𝑛–  matrix 

of costs of order 𝑛 in TSP, where 𝑑𝑖𝑖 = ∞, 𝑖 = 1, 𝑛, 𝑑𝑖𝑗 ∈ 𝑍𝑜
+,𝑖 ≠ 𝑗; 𝑗1 = 2, 𝑘 = 2, 𝑗𝑘 = 1, 𝜎𝑜𝑘 =

(𝑗1, 𝑗𝑘), 𝐷(𝜏𝑜𝑘) = 𝑑𝑗1𝑗𝑘
+ 𝑑𝑗𝑘𝑗1. 

S1. 𝑙 = 𝑘 + 1; to build sequence 𝜎𝑙 = (𝑗1, 𝑗2, . . . , 𝑗𝑠, . . . , 𝑗𝑘 , 𝑙) from permutation 𝜎𝑜𝑘; to form 𝑘 cyclic 

permutations 𝜎𝑙𝑠:𝜎𝑙1 = (𝑙, 𝑗1, 𝑗2, . . . , 𝑗𝑠, . . . , 𝑗𝑘),𝜎𝑙2 = (𝑗1, 𝑙, 𝑗2, . . . , 𝑗𝑠, . . . , 𝑗𝑘),…, 𝜎𝑙𝑠 =
(𝑗1, 𝑗2, . . . , 𝑗𝑠−1, 𝑙, 𝑗𝑠, , . . . , 𝑗𝑘), …, 𝜎𝑙𝑘 = (𝑗1, 𝑗2, . . . , 𝑗𝑠, . . . , 𝑗𝑘−1, 𝑙, 𝑗𝑘) from 𝜎𝑙; to calculate costs of by-

passes that correspond to already built permutations 𝜎𝑙𝑠: 

 

𝐷(𝜏𝑙1) = 𝐷(𝜏𝑜𝑘) + 𝑑𝑗𝑘𝑙 + 𝑑𝑙𝑗1 − 𝑑𝑗𝑘𝑗1 , 

 

 

𝐷(𝜏𝑙2) = 𝐷(𝜏𝑜𝑘) + 𝑑𝑗1𝑙 + 𝑑𝑙𝑗2 − 𝑑𝑗1𝑗2 , 

 

 

… 
 

 

𝐷(𝜏𝑙𝑠) = 𝐷(𝜏𝑜𝑘) + 𝑑𝑗𝑠−1𝑙 + 𝑑𝑙𝑗𝑠 − 𝑑𝑗𝑠−1𝑗𝑠 , 2 ≤ 𝑠 ≤ 𝑘 − 1, 

 

 

𝐷(𝜏𝑙𝑘) = 𝐷(𝜏𝑜𝑘) + 𝑑𝑗𝑘−1𝑙 + 𝑑𝑙𝑗𝑘
− 𝑑𝑗𝑘−1𝑗𝑘

; 

 

 

to find such bypass 𝜏𝑙𝑗, that 

 

𝐷(𝜏𝑙𝑗) = min{𝐷(𝜏𝑙𝑠)|1 ≤ 𝑠 ≤ 𝑘};  

 



to update 𝑘 = 𝑙, 𝜏𝑜𝑘 = 𝜏𝑙𝑗; 

S2. If 𝑘 = 𝑛, then the end is 𝜏𝑜 = 𝜏𝑜𝑘, otherwise to define cyclic permutation 𝜎𝑜𝑘 that corresponds 

to bypass 𝜏𝑜𝑘 by removing the final element from it, go to step S1. 

The proposed algorithm is characterized by low complexity of building a acceptable solution to 𝜏𝑜.  

Let us estimate the time of its work. The algorithm executes 𝑛 − 2 of steps S1. Every step S1 builds 𝑘 

permutations 𝜎(𝑘+1)𝑠, 𝑠 = 1, 𝑘, 𝑘 = 2, 𝑛 − 1, as a result of inserting element 𝑙 before elements 

𝑗1, 𝑗2, . . . , 𝑗𝑘 of permutation 𝜎𝑙, 𝑙 = 𝑘 + 1. Calculating 𝑘 values 𝐷(𝜏𝑙𝑠) requires 3𝑘 operations of addi-

tion and subtraction and the search for the minimum number within unordered array of numbers 𝐷(𝜏𝑙𝑠) 

will be completed after comparison operations 𝑘 − 1 have been performed. Thus, step S1 performs 

5𝑘 − 1 of elementary operations such as insertion, addition, subtraction and comparison. The building 

of transition 𝜏𝑜 finishes after execution of  

 

∑(5𝑘 − 1)

𝑛−1

𝑘=2

= 5 ∑ 𝑘

𝑛−2

𝑘=1

= 5(𝑛 − 1)(𝑛 − 2)/2 
 

 

elementary operations. Respectively, time complexity of the proposed algorithm is estimated with value 

𝑂(𝑛2). 

Example 1. Let us build bypass 𝜏𝑜 for matrix  

 

[𝑑𝑖𝑗]6
 =

[
 
 
 
 
 
 
 
∞ 3 1 7 7 1

3 ∞ 7 7 9 9

1 10 ∞ 7 9 1

8 7 9 ∞ 6 6

9 7 8 1 ∞ 1

1 9 1 1 6 ∞ ]
 
 
 
 
 
 
 

.  

 

We update 𝑗1 = 2, 𝑘 = 2, 𝑗1 = 1. The building of 𝜏𝑜 starts with permutation 𝜎𝑜2 = (2,1). The cost 

of bypass 𝜏𝑜2 = (2,1,2) is equal to 𝐷(𝜏𝑜2) = 𝑑12 + 𝑑21 = 3 + 3 = 6. 

We update 𝑙 = 3 and build permutation 𝜎3 = (2,1,3), which produces two permutations 𝜎31 =
(3,2,1), 𝜎32 = (2,3,1) and corresponding to them bypasses 𝜏31 = (3,2,1,3), 𝜏32 = (2,3,1,2).  

We calculate 𝐷(𝜏31) = 𝐷(𝜏𝑜2) + 𝑑13 + 𝑑32 − 𝑑12 = 6 + 1 + 10 − 3 = 14, (𝜏32) = 𝐷(𝜏𝑜2) +
𝑑23 + 𝑑31 − 𝑑21 = 6 + 7 + 1 − 3 = 11. Since min{𝐷(𝜏31), 𝐷(𝜏32)} = 𝐷(𝜏32), we set 𝜏𝑜3 =
(2,3,1,2). 

We obtain cyclic permutation 𝜎𝑜3 = (2,3,1) at step S2; we go to perform step S1. 

We update 𝑙 = 4, 𝜎𝑙 = (2,3,1,4), we form permutations 𝜎41 = (4,2,3,1), 𝜎42 = (2,4,3,1), 𝜎43 =
(2,3,4,1). Let us define the cost of bypasses 𝜏41, 𝜏42, 𝜏43: 

 

𝐷(𝜏41) = 𝐷(𝜏𝑜3) + 𝑑14 + 𝑑42 − 𝑑12 = 11 + 7 + 7 − 3 = 22, 
 

 

𝐷(𝜏42) = 𝐷(𝜏𝑜3) + 𝑑24 + 𝑑43 − 𝑑23 = 11 + 7 + 9 − 7 = 20, 
 

 

𝐷(𝜏43) = 𝐷(𝜏𝑜3) + 𝑑34 + 𝑑41 − 𝑑31 = 11 + 7 + 8 − 1 = 25. 
 

 

We select bypass 𝜏42 = 𝜏𝑜4 and cyclic permutation 𝜎𝑜4 = (2,4,3,1). 

At step S1 we obtain bypass 𝜏𝑜5 = 𝜏52 = (2,5,4,3,1,2), 𝐷(𝜏𝑜5) = 23 for 𝑙 = 5. 

The algorithm completes calculations at 𝑘 = 6 by building bypass 𝜏𝑜 = 𝜏64 = (2,5,4,6,3,1,2), 

where 𝐷(𝜏64) = 9 + 1 + 6 + 1 + 1 + 3 = 21 (fig. 3). 
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Figure 3: The built bypass-solution 
 

Example 2. The proposed algorithm builds optimum solution 𝜏𝑜 = (2,4,1,3,2), 𝐷(𝜏𝑜) = 8𝑑 by us-

ing “uncomfortable” example of symmetrical TSP presented with matrix [𝑑𝑖𝑗]4 and corresponding to it 

graph (fig. 4), whereas procedure NN “go to the nearest”, which is characterized with the same perfor-

mance, finds bypass (2,3,4,1,2) with the maximum cost that equals 13𝑑. 

 

 

[𝑑𝑖𝑗]4
= [

∞ 2𝑑 2𝑑 8𝑑
2𝑑 ∞ 𝑑 2𝑑
2𝑑 𝑑 ∞ 2𝑑
8𝑑 2𝑑 2𝑑 ∞

] 
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Figure 4: Cost matrix and corresponding graph 
 

In practice, the algorithm works faster than the “go to the nearest” heuristics, since its performance 

estimation 𝑐𝑛2 has coefficient 𝑐 with less value.  

Based on the results of the computational experiment, the proposed algorithm is more precise than 

NN procedure. In any case, a large number of numerical examples of TSP has not got any where bypass 

𝜏𝑁𝑁, formed by the rule “go to the nearest” could have less cost than the cost of bypass 𝜏𝑜. 

The optimal solutions 𝜏∗ and corresponding to them values 𝐷(𝜏∗) are obtained implementing brunch 

and bound method using programming language C++ for the cases of TSP with matrices [𝑑𝑖𝑗]𝑛
 of 

limited dimension (𝑛 ≤ 40). At 𝑛 ≤ 40 bypass of 𝜏∗ minimum cost 𝐷(𝜏∗)  are built for acceptable time 

(~40-80 sec). As it was expected, with increasing 𝑛 of value 𝐷(𝜏𝑜)/𝐷(𝜏∗) demonstrates the unlimited 

growth in TSP without any additional restrictions for value 𝑑𝑖𝑗.  

It is interesting to observe the behavior of the algorithm of building 𝜏𝑜 for TSP that is restricted on 

matrix [𝑑𝑖𝑗]𝑛 which satisfies the triangle inequality (2). 

Let us note that it is possible to build a case of TSP with matrix [𝑑𝑖𝑗]𝑛. It has to satisfy restrictions 

in the form of (2) for the time 𝑂(𝑛3)
 
 following the case of TSP with randomly generated values of 

matrix [𝑑𝑖𝑗]𝑛. Matrix [𝑑𝑖𝑗]𝑛 is called the closure [𝑑𝑖𝑗]𝑛, if 𝑑𝑖𝑗 – is the length of the nearest path from 𝑖 

to 𝑗 in complete graph with 𝑛 vertices {1,2, . . . , 𝑛}, where the edge length {𝑖, 𝑗} is equal to 𝑑𝑖𝑗.  

The transformation of matrix [𝑑𝑖𝑗]𝑛
 into matrix [𝑑𝑖𝑗]𝑛

 is implemented by using a well-known Floyd-

Warshall algorithm:  

S0. Floyd-Warshall algorithm: matrix [𝑑𝑖𝑗]𝑛, where 𝑑𝑖𝑗 – is the nearest distance with the given dis-

tances [𝑑𝑖𝑗]𝑛 is for matrix [𝑑𝑖𝑗]𝑛 with integral elements. 

S1. For all 𝑖 ≠ 𝑗 to perform 𝑑𝑖𝑗 = 𝑑𝑖𝑗. 

S2. For all 𝑖 = 1,2, . . . , 𝑛 to perform 𝑑𝑖𝑖 = ∞. 

S3. For all 𝑗 = 1,2, . . . , 𝑛 to perform 

 for all 𝑖 = 1,2, . . . , 𝑛, 𝑖 ≠ 𝑗, to perform 



  for all 𝑘 = 1,2, . . . , 𝑛, 𝑘 ≠ 𝑗, to perform 

   𝑑𝑖𝑘 = min{𝑑𝑖𝑘 , 𝑑𝑖𝑗 + 𝑑𝑗𝑘}. 

The flowchart used to experimentally estimate the accuracy of algorithm building 𝜏𝑜 for the matrix 

of costs [𝑑𝑖𝑗]𝑛, that satisfies triangle inequality, is presented in fig. 5. 
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Figure 5: The flowchart of algorithm accuracy estimation 
 

The experiment, performed by following the given flowchart, demonstrates that the increase of the 

order of matrix [𝑑𝑖𝑗]𝑛 goes alongside with the increase of relative error (𝐷(𝜏𝑜) − 𝐷(𝜏∗))/𝐷(𝜏∗). The 

most promising result of the experiment is the absence of a case with the cost of bypass 𝜏𝑜. It could 

exceed the cost of optimal bypass 𝜏∗ in more than one and a half time.  

It is important to mention, that the TSP with the triangle inequality belongs to the class of NP - hard 

problems solved by using 𝜀- approximate polynomial algorithms. To put it mildly, such algorithms are 

known to have analytically expressed relative error that depends on the dimension of task input and is 

restricted with 𝜀 > 0. The highest achievement in study of TSP with triangle inequality is 1/2-approxi-

mate algorithm suggested by Christofides. Christofides algorithm is known to have the relative error 

restricted with a half of optimal solution cost and updated as a result of performing actions with such 

objects as bipartite, minimal spinning tree, Eulerian multigraph and Eulerian path. Computational op-

erations with the listed objects have high level of performance that is why, time estimation of Chris-

tofides algorithms that is equal to 𝑂(𝑛4), is relatively high. Experimentally obtained characteristics of 

the proposed algorithm open the prospect of its use in numerous applications of the TSP and at the same 

time raise a number of questions related mainly to the search for resources to reduce the relative error 

of acceptable solutions. There is one more important question. How to use the idea of converting cyclic 

permutation of length 𝑟 into cyclic permutation of length 𝑟 + 1 in order to find an error that does not 

depend on 𝑛 in TSP with triangle inequality? The proposed algorithm proves to find solution to the task 

with the same error as Christofides algorithm has, but for less time 𝑂(𝑛2) and it could become a notable 

achievement in the field of combinatorial optimization.   
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