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Abstract : In order to discuss the 1 𝑓⁄  problem, the statistics of branching processes of particles 

in a multiplicative medium are applied to generate a series of intervals of two successive 

particle-counts by a detector, which has a spectrum behaving like 1 𝑓⁄  over seven decades of 

frequency.  It is also discussed that the 1 𝑓⁄  fluctuations being familiar around us are strongly 

connected with a chain of causal relationships in a natural phenomenon, which is a new approach 

in this field. 

 

 

1. Introduction 

Since the observation of the 1 𝑓⁄  spectrum of shot noise by Johnson in 1925 [1], this kind of 

spectrum has been observed in a large number of phenomena.  The aim of the present work is to 

apply the branching process model discussed in my old works [2,3,4] for generating a series whose 

spectrum is characterized by a 1 𝑓⁄  distribution in a wide range of frequency and to point out that the 

1 𝑓⁄  phenomena are essentially connected with the observations of events on a complicated chain of 

causal relationships. 

In the stochastic process such as the Markov process, an event in the process is really influenced by 

the event happened just before.  The time series composed of these events has usually a 1 𝑓2⁄ -like 

spectrum.  In the present work, a medium, in which many particles exist and each single particle may 

branch into several particles and be absorbed, is considered, where the particle number at a moment is 

decided stochastically by that just before.  If these particles are observed by a detector in the medium, 

the observed events may show another kind of stochastic behavior.  This is the basic idea of my 

works [2,3,4] and is illustrated in Fig. 1. 

The particle numbers at time 𝑡1  and 𝑡2  in Fig. 1 are seven and eleven, respectively.  A 

particle-count may correlated with another count through the branching paths as shown by a, b and c 

in the figure.  The detection d has no correlation with a, b and c, because it is on another branching 

chain different from that of a, b and c.  The length of the path between the counts has statistical 

correlation with the physical time interval.  The time interval, for example, between a and b is 

approximately equivalent to that between b and c, but the correlation between b and c may be far 
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weaker than that between a and b, because the path between b and c is longer than that between a and 

b.  

 

2. Detection probability 

We focus only on the case that exactly two particles are produced by a branching process, and suppose 

a medium in which a particle may be subjected to absorption, branching reaction and detection with 

the rates 𝜆𝑎, 𝜆𝑚 and 𝜆𝑑, respectively.  In the previous works [2,3], only an absorption-type detector 

was considered in which a particle is absorbed by detection, however in this work, a 

non-absorption-type detector is also considered in which the particle detection has no influence on the 

particle number as shown in Fig. 1.  The statistics of the particles and particle-counts in the medium 

can be obtained in close forms, and their detailed mathematical expressions are given in my previous 

works [2,3] in case the detector is an absorption-type.  The results including the non-absorption-type 

case are shown in the following expressions obtained in a similar way to that given in my previous 

works. 

We consider the probability 𝑃𝑘(𝑚, 𝑛, 𝑡) that m counts have been recorded by a detector during the 

time interval (0, t) and n particles are found in the medium at time t > 0 after k particles exist at 𝑡 =

0 in the presence of random particle immigration with the rate S.  It is rather complicated to obtain 

this probability for individual positive values of m, but when m=0, the probability 𝑃𝑘(0, 𝑛, 𝑡) can be 

described in a close form as 

 

𝑃𝑘(0, 𝑛, 𝑡) =∑𝐾𝑘
(0,𝑛−𝑖)

∙ 𝑅0
(0,𝑖),

𝑛

𝑖=0

 (1) 

where 

Figure 1.  Chains of the branching 

processes.  The square, circle and 

black spot represent a particle 

immigrated randomly in the 

medium, absorption and detection 

of a particle, respectively.  The 

path of a particle is given by a full 

line. 



 

𝐾𝑘
(0,𝑛−𝑗)

=∑𝑝(0, 𝑙, 𝑡)𝐾𝑘−1
(0,𝑛−𝑗−𝑙)

𝑛−𝑗

𝑙=0

 

𝐾0
(0,𝑗)

= 𝛿𝑗,0, 

(2) 

and 

 

𝑝(0, 𝑙, 𝑡) =

{
 

 
𝜂0𝜉0𝑉       (𝑙 = 0)

(𝜂0−𝜉0)
2𝑒−𝜃0𝑡

(𝜂0−𝜉0𝑒
−𝜃0𝑡)

2       (𝑙 = 1)

𝑉 ∙ 𝑝(0, 𝑙 − 1, 𝑡)       (𝑙 ≥ 2)

. (3) 

Here 

 
𝑉 =

1−𝑒−𝜃0𝑡

𝜂0−𝜉0𝑒
−𝜃0𝑡

. (4) 

The parameters 𝜃0, 𝜂0 and 𝜉0 in Eqs. (3) and (4) are given differently depending on the type of a 

detector of particles.  When λc is the absorption rate of a particle in the medium except for that by a 

detector, the absorption rate 𝜆𝑎 defined before at the beginning of this section is given by 

 
𝜆𝑎 = {

𝜆𝑐 + 𝜆𝑑             (absorption type)
𝜆𝑐            (non − absorption type)

. (5) 

Defining the multiplication rate μ and the detection rate ε of a particle, respectively, as 

 
𝜇 =

𝜆𝑚

𝜆𝑎
 and 𝜀 =

𝜆𝑑

𝜆𝑎
, (6) 

which are the number of particles appearing in the medium by branching processes and the number of 

detected particles, respectively, during the mean lifetime of a particle absorbed in the medium (1 𝜆𝑎⁄ ), 

the parameters 𝜃0, 𝜂0 and 𝜉0 are expressed, respectively, as 

 
𝜃0 = {

𝜆𝑎√(1 − 𝜇)
2 + 4𝜀𝜇 (absorption − type)

𝜆𝑎√(1 + 𝜀 + 𝜇)
2 − 4𝜇 (non − absorption type)

, (7) 

 

𝜂0 =

{
 

 
1

2𝜇
(1 + 𝜇 +√(1 − μ)2 + 4εμ) (absorption − type)

1

2𝜇
(1 + 𝜀 + 𝜇 + √(1 + 𝜀 + 𝜇)2 − 4𝜇) (non − absorption type)

 (8) 

and 

 

𝜉0 =

{
 

 
1

2𝜇
(1 + 𝜇 − √(1 − μ)2 + 4εμ) (absorption − type)

1

2𝜇
(1 + 𝜀 + 𝜇 − √(1 + 𝜀 + 𝜇)2 − 4𝜇) (non − absorption type)

. (9) 

  The other factor 𝑅0
(0,𝑖)

 in Eq. (1) is given by 



 

𝑅0
(0,𝑖)

=

{
 
 

 
 exp [(𝜉0 − 1)𝑆𝑡 +

𝑆

𝜇𝜆𝑎
ln

𝜂0 − 𝜉0
𝜂0 − 𝜉0𝑒

−𝜃0𝑡
]       (𝑖 = 0)

𝑆
𝜇𝜆𝑎

+ 𝑖 − 1

𝑖
∙ 𝑉 ∙ 𝑅0

(0,𝑖−1)
                                     (𝑖 ≥ 1)

. (10) 

The probability that some counts during the time interval (0, t) are recorded, i.e., 𝑚 > 0, and n 

particles are found in the medium at 𝑡 > 0 after we had k particles at 𝑡 = 0 is given by 

 
∑ 𝑃𝑘(𝑚, 𝑛, 𝑡)

∞

𝑚=1

= 𝑃𝑘(𝑛, 𝑡) − 𝑃𝑘(0, 𝑛, 𝑡). (11) 

where 𝑃𝑘(𝑛, 𝑡) is the probability that n particles are found in the medium at time 𝑡 > 0 after we had 

k particles at 𝑡 = 0 and is given by 

 

𝑃𝑘 (𝑛, 𝑡) =∑𝐾𝑘
(𝑛−𝑖)

𝑄0
(𝑖)

𝑛

𝑖=0

. (12) 

Here 

 

𝐾𝑘
(𝑛−𝑖)

=∑𝑝(𝑙, 𝑡)𝐾𝑘−1
(𝑛−𝑖−𝑙)

𝑛−𝑖

𝑙=0

 

𝐾0
(𝑖)
= 𝛿𝑖,0. 

(13) 

Defining the parameter α as 

 α = 𝜆𝑎 − 𝜆𝑚 = (1 − 𝜇)𝜆𝑎, (14) 

the function 𝑝(𝑙, 𝑡) in Eq. (13) is described as 

 

𝑝(𝑙, 𝑡) =

{
 
 

 
 𝑊1        (𝑙 = 0)

(
1 − 𝜇

1 − 𝜇𝑒−𝛼𝑡
)
2

𝑒−𝛼𝑡        (𝑙 = 1)

𝜇𝑊1 ∙ 𝑝(𝑙 − 1, 𝑡)        (𝑙 ≥ 2)

 (15) 

in case μ ≠ 1 (subcritical case), and 

 

𝑝(𝑙, 𝑡) =

{
 
 

 
 𝑊2       (𝑙 = 0)

(
𝑊2

𝜆𝑎𝑡
)
2

      (𝑙 = 1)

𝑊2 ∙ 𝑝(𝑙 − 1, 𝑡)       (𝑙 ≥ 2)

 (16) 

in case μ=1 (critical case).  Here, the functions W1 and W2 are given, respectively, by 

 
𝑊1 =

1 − 𝑒−𝛼𝑡

1 − 𝜇𝑒−𝛼𝑡
, (17) 

and 

 
𝑊2 =

𝜆𝑎𝑡

𝜆𝑎𝑡 + 1
. (18) 



The other factor in Eq. (12) 𝑄0
(𝑖)

 is obtained as, when μ ≠ 1, 

 

𝑄0
(𝑖)
= {

exp [
𝑆

𝜇𝜆𝑎
ln

1−𝜇

1−𝜇𝑒−𝛼𝑡
]       (𝑖 = 0)

𝑆

𝜇𝜆𝑎
+𝑖−1

𝑖
𝜇𝑊1 ∙ 𝑄0

(𝑖−1)
      (𝑖 ≥ 1)

, (19) 

and, when μ=1, 

 

𝑄0
(𝑖)
= {

exp [−
𝑆

𝜆𝑎
ln (1 + 𝜆𝑎𝑡)]       (𝑖 = 0)

𝑆

𝜆𝑎
+𝑖−1

𝑖
𝑊2𝑄0

(𝑖−1)
      (𝑖 ≥ 1)

. (20) 

  When the left side in Eq. (11) is much smaller than 𝑃𝑘(0, 𝑛, 𝑡) due to a very short time interval, the 

probability recording more than two counts may be negligible and the following relation holds 

approximately. 

 𝑃𝑘(1, 𝑛, 𝑡) ≑ 𝑃𝑘(𝑛, 𝑡) − 𝑃𝑘(0, 𝑛, 𝑡). (21) 

 

3. Computer simulations 

Whether particle detection has occurred or not in a very short time interval was decided 

successively by using the Monte Carlo method with the probabilities given by Eqs. (1), (12) and (21) 

with a non-absorption-type detector, from which a series formed by the time intervals between two 

successive counts (detection series) was obtained.  In order to avoid a possibility that the particle 

number increases to infinity or dying out, the rate of random particle immigration was chosen to be 

S = 𝛼𝑁0 when the multiplication rate μ < 1 (subcritical case), considering the mean number of 

particles 𝑁0 at 𝑡 → ∞ is S/α [2], and S = 0 when 𝜇 = 1 (critical case).  If S > 0 in a critical 

system, the particle number will increase with time and diverge eventually to infinity. 

  A very large number of existing particles takes unreasonably long time to process on a computer, 

and the number of particles should be set a limit.  In the present simulations, the maximum number of 

particles was set a limit to 5000, and the mean number of particles 𝑁0 was fixed to 100 when μ < 1.  

The short time interval 𝑡 in Eq. (21) was fixed to 5 × 10−6 measured in unit of 1 𝜆𝑎⁄  (mean 

Figure 2.  The fluctuations of (a) the 

particle series in case 𝜇 = 1 and (b) the 

detection series in case 𝜇 = 1 and ε =

1. 

(a)

(b)



lifetime of an absorbed particle) in all the simulations with the branching process model in the present 

work.  The fluctuations of a part of the detection series are shown in Fig. 2 in comparison with those 

of the series for the number of particles existing in the medium (particle series) simulated with the 

probability given by Eq. (12).  The detection series has a much more intermittent property than the 

other. 

The fast Fourier transformation (FFT) results for several sizes of count series in case μ = 1 and the 

detection rate ε = 1 are shown in Fig. 3.  When the series size is 225 ≅ 3.4 × 107, the spectrum 

behaves like 1 𝑓⁄  over seven decades of frequency, here the frequency is related to particle-counts 

and not to time.  The spectrum for the series size over 226 ≅ 6.7 × 107 begins to deviate from the 

1 𝑓⁄  distribution in a low-frequency range.  This deviation becomes more striking as the series size 

is longer and the spectral behavior converges to a finite value in a low-frequency range.  In all the 

(a) (b)

(c)

Figure 3.  The spectra of the 

detection series with a 

non-absorption-type detector in 

case 𝜇 = 1 and 𝜀 = 1.  The series 

sizes are (a) 225, (b) 226 and (c) 

227, respectively.  The straight 

lines give the 1 𝑓⁄  behavior. 

Figure 4.  The spectra of the 

detection series with a 

non-absorption-type detector in 

case  𝜇 = 0.98 and 𝜀 = 1.  The 

series sizes are (a) 216 and (b) 217, 

respectively.  The straight lines 

give the 1 𝑓⁄  behavior. 

(a) (b)



cases, the spectral behavior converges to a finite value in a high-frequency range.  When ε < 1, it 

was examined by a similar way to the above that the deviation of the spectrum from the 1 𝑓⁄  

behavior in a low-frequency range starts at a shorter series size.  The FFT results in case 𝜇 = 0.98 

and 𝜀 = 1 are shown in Fig. 4 where all the conditions except for μ are the same as those in case 

μ = 1.  When the series size is 216 ≅ 6.5 × 104, the spectrum behaves like 1 𝑓⁄  for more than 

three decades of frequency, but the that at the series size of 217 ≅ 1.3 × 105 begins to deviate from 

the 1 𝑓⁄  distribution in a low-frequency range.  In this case, the frequency range where the spectrum 

behaves like 1 𝑓⁄  is much narrower than the case of μ = 1. 

The longest series sizes behaving like 1 𝑓⁄  have been obtained at various values of μ with an 

absorption-type detector as well as a non-absorption-type detector as shown in Fig. 5. The series size 

becomes sharply longer when μ > 0.98.  In cases μ = 0.90 and 0.95, the series sizes behaving like 

1 𝑓⁄  are shorter when the particles are observed with an absorption-type detector compared to those 

with a non-absorption-type detector, but there is no clear difference between the results with these two 

types of detector at μ > 0.98. 

 

4. Discussions 

From the simulations described above, it comes to light that a detection series formed by the time 

intervals between successive particle-counts in a medium where a particle may branch into two 

particles has a spectrum characterized by a 1 𝑓⁄  distribution and the frequency range behaving like 

1 𝑓⁄  depends strongly on the value of the multiplication rate μ.  While this frequency range is very 

wide when μ = 1, this range becomes sharply narrower with decreasing μ, as shown in Figs. 3,4 and 

5.  The question, then, arises as to why the series size behaving like 1 𝑓⁄  becomes so sharply shorter 

with decreasing μ, i.e., the series size changes from about 3.3 × 107 to 6.5 × 104 while the value 

of μ decreases only 0.02, from 1 to 0.98, as seen in Fig. 5. 

The spectra of particle series in cases μ = 1, 0.99, 0.98 and 0.9 are given in Fig. 6.  When μ = 1, 

the spectrum behaves like 1 𝑓2⁄  at the series size of 228 and starts to deviate from the 1 𝑓2⁄  

Figure 5.  The longest series sizes 

behaving like 1 𝑓⁄  at various values of 

μ .  The circles and crosses are the 

results for the non-absorption-type and 

absorption-type detectors, respectively. 



distribution in a low frequency range at the series size of 229.  This situation is nearly kept even when 

μ = 0.99, although the spectrum deviates slightly from the 1 𝑓2⁄  distribution at the series size of 228.  

On the other hand, when μ = 0.98, this situation is realized only at a shorter series size, and at a much 

shorter series size when μ = 0.9. 

  As can be seen in Fig. 6, the sizes of the particle series behaving like 1 𝑓2⁄  at μ = 0.98 and 0.9 

are, respectively, four times and sixteen times shorter compared with the case of μ = 0.99.  On the 

other hand, the particle series at μ = 0.99 has a similar spectral characteristic to the case of μ = 1, 

but the size of it’s detection series behaving like 1 𝑓⁄  is more than 100 times shorter compared with 

the case of μ = 1, as seen in Fig. 5. 

  Although the spectral characteristics of the particle series at μ = 0.99 and μ = 1 are quite similar 

to each other, why are their detection series sizes behaving like 1 𝑓⁄  so different?  As written before, 

the random immigration S = 0 when 𝜇 = 1, and so all the particles in the medium are bred from a 

single original particle and are on the same branching chain as can be understood in Fig. 1.  This 

means that every single particle in the medium has a correlation with all the other particles and, 

therefore, each single count has a correlation with the other counts.  On the other hand, as S ≠ 0 

when μ < 1, some detection-counts have no correlation with others like as the detection d in Fig. 1.  

The smaller the multiplication rate μ is, the more particles are immigrated in the medium randomly in 

order to avoid the possibility of the particle number dying out and the more detection-counts having no 

(a)

(b)

(c)

(d) (f)

(g)

(h)

(e)

Figure 6.  The spectra of the particle series.  The multiplication rate μ and the series size in the figure 

are, respectively, (a) μ = 1 and 228, (b) μ = 1 and 229, (c) μ = 0.99 and 228, (d) μ = 0.99 and 229, 

(e) μ = 0.98 and 226 , (f) μ = 0.98 and 227 , (g) μ = 0.9 and 224 , and (h) μ = 0.9 and 225 .  The 

straight lines give the 1 𝑓2⁄  behavior. 



correlation with others increase in number.  These considerations suggest strongly that a correlation 

between particles on a single branching chain plays an important role in the spectral characteristics of 

a detection series behaving like 1 𝑓⁄  in a wide range of frequency. 

  The effect of the correlation between particles has been examined also by another kind of 

simulations, where it was assumed that the particle number 𝑛0 at 𝑡 = 0 will change, at later time 𝑡, 

to another number 𝑛𝑡 distributing normally around 𝑛0 with a standard deviation √𝑛0 𝑁𝑓𝑖𝑥⁄ , where 

𝑁𝑓𝑖𝑥 is a parameter describing the width of the deviation.  In the simulations, the maximum number 

of particles was also set a limit to 5000 and the detection probability of an individual particle was set 

to 0.01/5000 during the time interval (0, 𝑡), which gives the maximum detection probability 0.01 

when the particle number is 5000.  In the simulations with the branching process model we have a 

definite unit of time such as the mean lifetime of a particle absorbed in the medium, but there is no 

definite unit of time now, and so, the unit of time was supposed to be the time interval (0, 𝑡).  An 

example of the simulations is given in Fig. 7 in case 𝑁𝑓𝑖𝑥 = 30. 

  In the present simulations, the particle number at a moment is really influenced just before, and the 

particle series has a spectrum characterized by a 1 𝑓2⁄  distribution.  The correlation, however, 

between the particles in this model is uncertain.  This comes out that the frequency ranges behaving 

like 1 𝑓2⁄  and 1 𝑓⁄  are not sufficiently wide in the spectra of the particle series and the detection 

series, respectively, as shown in Fig. 7. 

 

5. Conclusions 

(a) (b)

1/f1/f
2

Figure 7.  The spectra of (a) the particle series and (b) the detection series simulated with the model 

without assuming the branching processes.  The straight lines give the 1 𝑓2⁄  and 1 𝑓⁄  behavior in (a) 

and (b), respectively.  When the series size is longer than 224 in case of the particle series or 216 in case 

of the detection series, the spectrum begins to deviate from the 1 𝑓2⁄  or 1 𝑓⁄  distribution, respectively, 

in the low-frequency range. 



  The above discussions reveal that the relationship between particles is definitely important to realize 

a 1 𝑓⁄  spectrum in a wide range of frequency.  When 𝜇 = 1, all the particles in the medium are 

related with the other particles on a single branching chain and, therefore, there is no particle which is 

absolutely independent of the other particles.  This is the reason why the spectrum of a detection 

series behaves like 1 𝑓⁄  in a really wide range of frequency. 

This result obtained in the present research gives us an instructive suggestion about the 1 𝑓⁄  

fluctuations frequently observed in natural phenomena.  The global environment is affected by the 

sunlight and solar heat, the heat of the earth’s interior, rotation and revolution of the earth, and so on.  

The global condition at a moment is actually influenced by the condition just before, and therefore its 

change with time is moderate as shown in Fig. 2(a).  On the other hand, the local condition of the 

environment is so complicated, and is different from place to place.  A local event at a place is an 

all-inclusive result of innumerable tiny events being correlative with each other, and is influenced by 

many other events sometimes directly and sometimes indirectly, i.e., influenced directly by other 

events just beside and/or indirectly by other events far from this place through a complicated chain of 

causal relationships.  It is possible to explain this situation by an example of a breeze in a forest.  

This blowing is, as a whole, a stream of the air in one direction.  However, the local conditions in the 

stream are so complicated.  It blows gently somewhere, while strongly at another place, because of a 

complicated configuration of trees, a rolling ground, the inhomogeneous temperature distribution and 

the other different reasons.  A blowing at a place and a moment may be influenced, directly or 

indirectly, by the other blowing at other places and moments.  In this way, there is a complicated 

chain of causal relationships between innumerable tiny events, like as the particles on a branching 

chain as illustrated in Fig. 1.  It is usually difficult to observe the whole of the events on the chain.  

We observe only a part of the events on a chain of causal relationships and, therefore, the relation 

between the observed events is complicated and difficult to understand clearly.  These above 

considerations suggest that our usual observation of a part of the events on a chain of causal 

relationships may be one of the reason why we often find the 1 𝑓⁄  phenomena around us.  These 

situations remind us of the idea of interdependent co-arising in Buddhism. 

 

  In conclusion, the simulations with the branching process model reveal that a spectrum of a series 

formed by the time intervals between two successive particle-counts by a detector behaves like 1 𝑓⁄  

in a wide range of frequency when the particles in the medium are connected with each other on a 

single branching chain.  On the analogy of the above results, it is supposed further that the 

observation of a part of events on a chain of causal relationships composing a natural phenomenon 

may come to a 1 𝑓⁄  spectrum which is really familiar around us. 
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