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Abstract

Some educators have started to turn to Generative AI (GenAI)
to help create new course content, but little is known about
how they should do so. In this project, we investigated the first
steps for optimizing content creation for advanced mathemat-
ics. In particular, we looked at the ability of GenAI to produce
high-quality practice problems that are relevant to the course
content. We conducted two studies to: (1) explore the capabil-
ities of current versions of publicly available GenAI and (2)
develop an improved framework to address the limitations we
found. Our results showed that GenAI can create math prob-
lems at various levels of quality with minimal support, but
that providing examples and relevant content results in bet-
ter quality outputs. This research can help educators and in-
stitutions decide on the ideal way to adopt GenAI into their
workflows, so it can be leveraged to create more effective ed-
ucational experiences for students.

Introduction
With the rapid advancements in Large Language Models
(LLMs), the intersection of artificial intelligence (AI) and
educational development has emerged as an attractive global
scholarly interest [38, 46, 28]. The versatile capabilities of
LLMs have not only transformed traditional computational
fields but have also significantly impacted the educational
sector [2], upending how academic content is created, as-
sessed and delivered [46]. Researchers such as Chen et al.
(2020) [6], Denny et al. (2024) [8], and Li et al. (2024)
[22] have demonstrated the potential of LLMs to enhance
learning experiences and outcomes across various educa-
tional scenarios. In particular, recent studies have explored
AI applications including cognitive diagnostics [9], knowl-
edge tracking [36], personalized suggestions [19, 45], and
learning behavior analysis [4, 30, 31].

While tools like ChatGPT have achieved widespread
adoption with over 60% of educators experimenting with
their use in classrooms, less than 20% feel adequately pre-
pared to integrate these tools effectively into their curric-
ula [17]. This significant discrepancy highlights a clear need
for additional support to help educators fully leverage these
advanced tools. One application of LLMs that could sig-
nificantly support teachers is Question Generation (QG). A
high-quality LLM QG tool could significantly reduce the
workload of educators [7], as it would free up the time spent

on creating problem sets and answers. It could also result in
more practice problems for students, enhancing their learn-
ing experience. From a technical standpoint, QG an existing
sub-field of natural language processing (NLP), focused on
enabling the automated creation of educational content di-
rectly from reference material, such as textbooks [10].

Despite the transformative potential of AI in education, its
integration remains underutilized, especially in automated
question generation. A need-finding study by Wang et al.
(2023) [37] reveals that educators often express reservations
about adopting AI tools, citing concerns about the relevance
and quality of AI-generated content. Moreover, existing au-
tomatic QG tools are not widely used in classrooms due to
their limited range in types and difficulty levels [20, 16].
Most systems primarily produce simple recall questions,
failing to sufficiently challenge students or promote deeper
cognitive processing.

Given these limitations and the potential for AI in edu-
cation, our study aims to investigate the gap between AI
capabilities and effective educational implementation. We
also seek to answer (1) what impact increased contextual
information has on the quality and cognitive depth of AI-
generated questions and (2) how AI QG systems can be de-
signed to provide outputs of varying cognitive depth. We
hypothesize that by developing a context-aware AI frame-
work integrating established educational taxonomies [18],
we then can generate high-quality, diverse, and cognitively
appropriate questions that align closely with specific educa-
tional objectives and content. Our goal is to bridge the gap
between AI capabilities and educational needs, potentially
increasing educator confidence and the adoption of AI tools
in classrooms for improved educational outcomes.

Related-Work
Current Uses and Limitations of GenAI in Math
Education
The rapid rise of GenAI, exemplified by ChatGPT’s release
in November 2022, has significantly impacted the educa-
tional landscape [24]. Within months, it became an inte-
gral tool for millions of students worldwide, prompting ed-
ucational institutions to develop usage policies. By January
2023, it reached 100 million users [27] worldwide, making
it the fastest-growing consumer application in history.



Figure 1: The Layout of DOK model

GenAI’s potential extends beyond education, with es-
timates suggesting it could accelerate general economic
growth akin [25] to transformative technologies like elec-
tricity or the internet. In education specifically, it is projected
that 20-40% of teachers’ administrative tasks could be partly
or fully automated by AI [8], such as preparing learning ma-
terials, writing emails, and providing feedback to students
[4]. However, current GenAI models have significant limita-
tions [5, 33] in mathematics education. For example, while
effective as a search engine for mathematical theorems and
structures, ChatGPT struggles as a conversational tutor [13]
for complex or obscure math problems. Frieder et al. (2023)
also found that even with elementary-level problems, these
models can make errors [13] such as ignoring the order of
operations or making misleading conceptual statements.

Despite surface-level familiarity with mathematical top-
ics, these models often lack the rigid logical reasoning [26]
required for advanced mathematics. These limitations high-
light the need for more specialized and context-aware AI
systems in mathematics education [20], particularly in areas
like automated question generation.

Evolution of Question Generation (QG) Models
through LLMs
A variety of QG systems have been developed, often for edu-
cational purposes, e.g., assisting students in reading, vocab-
ulary learning, or the assessment of reading comprehension
[7]. Initially, QG systems primarily focused on some sim-
ple recall questions [39], which limited their utility within
the field of education. These early models utilized basic

rule-based algorithms [32] to generate problems from static
content with little advantage in terms of adaptability or
depth. With the rapid development of machine learning and
deep learning techniques, models have begun to utilize NLP
to parse and interpret educational material, allowing for a
broader range of question types beyond simple recall. For
instance, Sutskever et al. (2014) [35] developed a reader-
generator framework that enhances the adaptability of QG
systems to different educational contents, showing a 30%
improvement in question relevance compared to traditional
models. This framework enabled the encoding process to in-
tegrate not just the textual information but also the targeted
answer into its context, thereby improving the relevance of
question generation.

Recently, a data-driven QG model was developed by
Wang et al. (2018) [40] called “QG-Net.” QG-Net is specifi-
cally tailored for generating quiz questions from educational
content, leveraging a recurrent neural network (RNN) ar-
chitecture to automate this process. Our research primar-
ily started with this model for question generation, but we
soon realized that this QG-Net model greatly relied on ex-
tensive training data, a challenge exacerbated by the typi-
cally small size of benchmark datasets [16] in QG, leading to
overfitting issues and redundancy in a set of questions [15].
Specifically, it is even harder to retrieve the data since we
investigate math problem-posing, as there are more bench-
marks. For instance, while general language tasks might
have benchmarks with millions of examples, mathematics-
specific QG datasets might only contain a few thousand
carefully curated problems [44], spanning various topics and



difficulty levels.
Thus, by pursuing this direction, we not only aim to

improve the immediate quality and relevance of generated
questions but also to lay the groundwork for future adaptive
learning environments where AI can dynamically respond to
individual student progress and needs.

Purpose of Current Study
This research centers on two main objectives using a sequen-
tial study research design: 1) Explore the capabilities of cur-
rent versions of publicly available GenAI, and 2) Develop
an improved framework to address the limitations found. To
address these aims, we used an exploratory approach to in-
vestigate the quality of content by varying the parameters
of the input and manually evaluating the output, based on
certain criteria.

Study 1
For the first study of our research, we conducted an initial
exploration to test the capabilities of GenAI in creating ac-
curate and relevant mathematics questions corresponding to
different types of questions. As part of the investigation, we
varied the level of contextual information provided to the
AI, with the aim of determining the optimal amount of addi-
tional context. This initial exploration served as a foundation
for understanding the potential and limitations of GenAI in
educational content creation.

Exploring Current Capabilities of GenAI
We began by exploring how GenAI can support current
educational practices, such as Intelligent Tutoring Systems
(ITS) and regular quizzing [34]. The aim was to identify an
application that can seamlessly integrate into the workflow
of students and teachers and functions with high levels of re-
liability and context awareness. Thus, we decided to look at
whether GenAI could create comprehension questions that
are relevant to the course content, and examine the cogni-
tive depth of those comprehension questions using Bloom’s
Taxonomy [12]. This test aims to assess how varying levels
of contextual information affect the quality, relevance, and
cognitive depth of AI-generated questions.

To this day, Bloom’s Taxonomy remains one of the pri-
mary models for categorizing various levels of understand-
ing in educational contexts. The 2001 revision of Bloom’s
Taxonomy [1] presents a hierarchical structure of cognitive
processes, with each level building upon the previous ones.
The six levels, from lowest to highest, are: Remember, Un-
derstand, Apply, Analyze, Evaluate and Create. In a typi-
cal learning process, learners progress from one level to the
next, as each level is a prerequisite for the next. In mathe-
matics education, this progression is particularly relevant as
students move from memorizing formulas to applying them
in novel situations and eventually creating new mathemati-
cal proofs or models. Therefore, we chose Bloom’s Taxon-
omy here because it is widely recognized and used in edu-
cational settings, making our results more interpretable and
applicable for educators. It also provides distinct levels in a

straightforward framework and corresponds well with cog-
nitive processes involved in learning and applying mathe-
matical concepts.

The hierarchical nature of Bloom’s Taxonomy for cate-
gorizing understanding also has its critics, though. In par-
ticular, the hierarchical nature of the stages is contested. It
is said to be an oversimplification [11] of the holistic and
interconnected nature of learning. However, this criticism
can be applied to all models of mental processes. We used
Bloom’s Taxonomy really as a tool to categorize the depth
of the questions. By allowing the model to generate ques-
tions from any level of the hierarchy, we are not constricting
the user from following Bloom’s hierarchy in their learning
process.

Study Design The independent variable here is the level
of context provided to the GenAI. We tested three scenarios
that instructors could engage in, each one adding additional
context to the prior. We chose a course about Mathemati-
cal Logic, as the name implies, that requires extensive and
rigid logical reasoning, the topics cover the following top-
ics: satisfiability, compactness theorem. We then designed
prompts that applied the model to act as a teaching assis-
tant to create a set of five comprehension questions with an-
swers, that are relevant to the course content and help stu-
dents review the material, maintained the same prompts for
three scenarios. We also the Gemini 1.5 Pro model [29] for
each scenario, chosen for its large context window and abil-
ity to process substantial input text. To ensure consistency,
we maintained a low-temperature setting of 0.2 across all
scenarios [47], minimizing random variations in output. The
hypothesis here was that additional context would increase
the output quality, but we were unsure about how strong the
effects would be.
• Scenario 1 (Minimal Context): the teacher will upload

the syllabus of the class and indicate which topic they
have taught in the class in 1-2 sentences. Our model will
generate content based on its understanding of the topic,
from the initial training data educator provided in this
case.

• Scenario 2 (Moderate Context): the teacher will up-
load the syllabus and their notes for a specific class. Our
model will have some content to analyze, but will not
know the full content of everything that has been cov-
ered in the class. Still, we hypothesize that the questions
will be more relevant to the material covered in class.

• Scenario 3 (Comprehensive Context): the teacher will
upload the syllabus, their notes from a particular class,
and a reference text that covers all the material that is
covered by the class, throughout the semester. The ex-
pectation here is that our model will have a greater un-
derstanding of the context of the lesson and be able to
use the relevant terminology and reference previous top-
ics.

Evaluation Metrics The output scenario sample is shown
in Figure 2. To assess the quality of the generated questions,
we incorporated an expert review process to evaluate the cor-
rectness of the GenAI outputs. A mathematics student with



**Question:** Can a theory have arbitrarily large finite
models but no infinite model?
**Answer:** No, if a theory has arbitrarily large finite
models, the Compactness Theorem guarantees the existence
of an infinite model.

**Question:** Give an example of a theory that is
finitely satisfiable but not satisfiable.
**Answer:** There is no such theory; the Compactness
Theorem proves that finite satisfiability implies satisfiability.

Figure 2: Two of the five outputs for Scenario 2.

Context Scenario Relevance Depth Correctness

Minimal 1.00 ± 0.00 2.60 ± 1.14 0.60 ± 0.55
Moderate 1.00 ± 0.00 2.60 ± 1.82 0.80 ± 0.45

Comprehensive 0.80 ± 0.45 2.40 ± 2.07 1.00 ± 0.00

Table 1: Performances comparisons for three context scenar-
ios, the best-performing scoring implementation is in bold
for each metric. Note: Values are presented as mean ± stan-
dard deviation.

expertise in Mathematical Logic reviewed and developed a
scoring system based on three key metrics:

• Relevance: A binary score (0 or 1) indicating whether
the question was within the scope of the lesson.

• Depth: A score from 0 to 6, corresponding to the levels of
Bloom’s Taxonomy, with higher scores indicating deeper
cognitive engagement.

• Correctness: A binary score (0 or 1) assessing the accu-
racy of the provided answer.

Analysis Methods We calculated average scores for each
metric across the five questions generated in each scenario
and presented them as mean ± standard deviation. The re-
sult is shown in Table 1, which allowed us to compare the
performance of the GenAI model under different levels of
contextual information.

Findings from Initial GenAI Testing
Our initial exploration focused on testing GenAI’s capabil-
ity to generate mathematics questions with answers aligned
with Bloom’s Taxonomy under varying levels of contextual
information. In this preliminary experimentation, a few sam-
ple outputs are shown in Figure 2, we found that GenAI in-
deed can create content that is relevant and high-quality with
input support. We then evaluated the performances through
the methods that are seen before, the results are summarized
in Table 1. Results from testing were surprising in the level
of relevance because there was a declining trend in the rel-
evance level of the output as we added additional context.
However, we found the depth of the questions remained rela-
tively constant, and the correctness of the answers generated
improved as more context was provided, reaching perfect
accuracy with comprehensive context.

Advancing to the Next Stage The principal finding from
this investigation is that the additional context was able to
improve the correctness but not necessarily the relevance
of the output. Although the AI is informing itself from the
context provided, it is also extrapolating and going beyond
the bounds of what was taught in the course (i.e., creat-
ing ”hallucinations”). Given that most instructors are likely
able to calculate answers to the generated questions, we de-
cided to focus more on relevance than correctness moving
forward. We considered using a different technical architec-
ture, such as Retrieval-Augmented Generation (RAG) [21],
which could potentially resolve this issue by forcing the AI
to source its generation from a ”chunk” (or section) of the
materials provided. Additionally, the depth of the generated
questions varied, which led to an average between levels 2
and 3. However, there was no user control over what level of
question was generated. The natural next step would be to
investigate a design where GenAI creates questions aimed at
a certain level, on Bloom’s Taxonomy or some other learn-
ing framework.

DOK VS. Bloom’s Taxonomy In addressing the chal-
lenge of generating high-quality math questions, researchers
have previously explored various frameworks to categorize
cognitive demands. Bloom’s Taxonomy, widely recognized
and used across disciplines to classify educational goals and
objectives, provided a crucial starting point [41]. However,
while Bloom’s Taxonomy offers a comprehensive structure
for understanding cognitive processes, we found that it may
not fully capture the nuanced cognitive demands specific to
mathematics education.

The DOK framework, developed by Norman Webb
(2002), offered several advantages for mathematical educa-
tion. Primarily, DOK emphasizes the complexity of tasks
rather than just the type of thinking, aligning better with
mathematical problem-solving. It takes into account the con-
text in which knowledge [41] is applied, which is crucial for
mathematical applications. DOK’s four levels - recall and
reproduction, skills and concepts, strategic thinking, and ex-
tended thinking - provide a more nuanced approach to as-
sessing the depth of understanding required in mathematics.

Furthermore, DOK’s alignment with curriculum stan-
dards and its widespread use in assessment design make
it particularly relevant to our goal of creating an AI sys-
tem that can generate questions closely aligned with educa-
tional objectives. This framework allows for a more precise
mapping of question difficulty to the cognitive processes in-
volved in mathematical reasoning, from basic recall to com-
plex problem-solving.

Study 2

Building upon prior findings, we implemented an advanced
framework integrating RAG with Webb’s Depth Of Knowl-
edge [42]. This approach aims to address the limitations
identified in our initial phase and enhances the quality and
relevance of AI-generated educational content in mathemat-
ics.



Figure 3: A⃝ shows a level prompt template example, due
to space constraints; the complete template covers all four
DOK levels. B⃝ represents the user input interface, with out-
puts displayed in the ’Passage’ section.

Developing an Improved Framework
Our second research goal focuses on enhancing the utility
and applicability of LLMs for educational purposes, particu-
larly by developing a QG model that leverages DOK levels.
We explored how QG models can generate different diffi-
culty levels of questions from a given query that teachers and
students find useful in mathematics education. This phase of
our research not only outlines our rationale for this approach
but also describes the implementation of our improved sys-
tem. The results of this study aim to foster greater integra-
tion of AI in educational contexts and broader applications
in general education enhancements.

Retrieval-Augmented Generation (RAG) Framework
To address the limitations identified in our initial explo-
ration, particularly the lack of contextual relevance, we im-
plemented a Naive RAG framework [14]. This approach con-
sists of three key components: Retrieval, Augmentation, and
Generation:
• Retrieval: We created a vector database of mathematical

content, including materials, textbooks, and practice ex-
amples (see orange line in Figure 1). When a query is
input, the system searches through our database of math-
ematical content to find the most relevant information.
This step utilizes a vector embedding model of both the
query and the stored content, allowing for semantic sim-
ilarity matching rather than just keyword matching.

• Augmentation: The retrieved information is then used to
enhance the context provided to the language model. This

Recall and Reproduction
Enter your query: Intermediate Value Theorem
Enter the Depth of Knowledge (DOK) level (1-4): 1

In a math tutorial, a student was studying the Inter-
mediate Value Theorem. He came across the equation
x = e(x − 2) and was asked to find a solution in the
interval (0, 1). He also had to split this interval into two
halves (0, 1/2) and (1/2, 1) and determine which of these
two intervals has a solution to the equation. he student also
studied the equations cosx = x on (0, 1) and lnx = e−x

on (1, 2). Based on the above information, answer the
following questions:
1. What is the Intermediate Value Theorem?
2. What does it mean to find a solution in a given interval?
3. What is the purpose of splitting the interval into two
halves?
4. What does the equation cosx = x represent?
5. What does the equation lnx = e−x represent?

Figure 4: The test sample in DOK level 1

crucial step ensures that the model has access to specific,
relevant mathematical knowledge when generating ques-
tions, significantly reducing the likelihood of producing
irrelevant or incorrect content.

• Generation: The augmented context is fed into our pre-
trained large language model to generate appropriate
questions at the desired DOK level. This process allows
for the creation of questions that are not only relevant to
the specific mathematical topic but also aligned with the
intended cognitive depth (see green line in Figure 1).

Integration of DOK levels We incorporated four DOK
levels [42] into our question generation process, as illus-
trated in Figure A⃝ in Figure 3. Each level was defined and
prompted with a description, relevant contexts, practice ex-
amples, and rationale for how questions fit the level [42].
The descriptions of the four levels are:

• Recall and Reproduction (DOK Level 1): This level
involves recalling information such as facts, definitions,
terms, or simple procedures. It also includes performing
basic algorithms or applying straightforward formulas.
Key verbs associated with this level include ”identify,”
”recall,” ”recognize,” ”use,” and ”measure”.

• Skills and Concepts (DOK Level 2): At this level, stu-
dents are required to make decisions about how to ap-
proach a problem. Unlike Level 1, which involves rote
responses or following set procedures, Level 2 demands
more cognitive engagement. Key verbs include ”clas-
sify,” ”organize,” ”estimate,” and ”make observations”.

• Strategic Thinking (DOK Level 3): This level requires
students to use reasoning, planning, and evidence. It in-
volves a higher level of thinking than the previous two
levels. Activities that require students to make conjec-
tures typically fall into this category.



# COG
Relevance Depth Accuracy Appropriateness

ZS FS+DOK FS+DOK+R ZS FS+DOK FS+DOK+R ZS FW+DOK FW+DOK+R

Level 1 0.72 0.85 0.84 0.59 0.81 0.85 0.92 0.80 0.91

Level 2 0.84 0.81 0.85 0.79 0.74 0.30 0.81 0.72 0.90
Level 3 0.66 0.79 0.81 0.71 0.72 0.81 0.62 0.74 0.95
Level 4 0.57 0.68 0.80 0.60 0.69 0.82 0.68 0.70 0.82

Average 0.6975 0.7825 0.825 0.6725 0.74 0.6925 0.7575 0.74 0.895

Table 2: Performance of different structure testing

• Extended Thinking (DOK Level 4): The highest level
requires students to make multiple connections—relating
ideas within the content area or across content areas. Stu-
dents must select from various approaches to solve com-
plex problems, demonstrating the highest level of cogni-
tive demand.

Figure 4 provides an example output for a DOK Level 1
question related to the Intermediate Value Theorem in Calcu-
lus. This sample illustrates how our system generates ques-
tions that align with the recall and reproduction level, fo-
cusing on basic definitions and concepts without requiring
deeper analysis or application.

Implementation Details We implemented the core frame-
work in Python, serving the GPT-4 model for question gen-
eration with default temperature settings, accessed via the
OpenAI API. Following Figure 1, we preprocessed and em-
bedded a corpus of math content using the text-bedding-
ada-002 model from OpenAI. Documents were broken into
fixed-size chunks with sliding windows to improve seman-
tic relevance. As such, we used Pinecone, hosted on AWS,
to store vectors and facilitate advanced search functionali-
ties. The user interface of our system for now is designed
for simplicity and effectiveness. As shown B⃝ in Figure 3,
users are prompted to input two key pieces of information,
the mathematical intuition or concept they want to explore,
and the desired DOK level, ranging from one to four. Based
on the retrieval strategies, our QG-DOK system generates
tailored questions, seamlessly integrating the specified cog-
nitive depth with the relevant mathematical content.

Evaluation Metrics To assess the performance of our
QG-DOK framework, we conducted a comparative evalu-
ation involving math students. We evaluated our method
by comparing model performance on a held-out test set
[43] across three different implementations. We established
a zero-shot baseline, where the rubric was included in the
prompt without any labeled examples. Next, we imple-
mented a few-shot baseline, which provided the model with
labeled instances to illustrate how DOK functions, as de-
picted in Figure 3. Our final baseline incorporated both few-
shot learning and the RAG framework. As table 2 illustrated,
the incremental baselines were as follows: Zero-Shot (ZS),
Few-Shot with DOK (FS+DOK), and Few-Shot with DOK

and RAG (FS+DOK+R).
To compare implementations, we selected metrics simi-

lar to those used in our initial test for creating high-quality
math questions. We conducted evaluations with GPT-4 us-
ing G-Eval [23], designed to align closely with human judg-
ment. According to instructions of G-Eval, the evaluation
was designed to focus on three binary metrics, each scored
on a scale from zero to one. The metrics chosen were 1)
relevance score which indicates whether the generated ques-
tion was related to the initial query, 2) DOK alignment with
cognitive levels, contributing to the quality of the math ques-
tion and 3) appropriateness whether the question is suitable
for students at their current level, considering the context of
the query. Importantly, we decided not to prompt or evaluate
answers to the questions given the poor results in the previ-
ous stage and the likelihood that instructors could determine
suitable answers themselves.

Findings from Improved Work Overall, our evaluation
of the QG-DOK framework demonstrates promising results
across key metrics, indicating significant improvements in
question generation for math education. As shown in Table
4, relevance scores show a clear upward trend as we move
from the ZS baseline to our full FS+DOK+R model. The
average relevance increased from 0.6975 in ZS to 0.7825 in
FS+DOK, and further to 0.825 in FS+DOK+R. This 18.3%
improvement from ZS to FS+DOK+R indicates that our
framework significantly enhances the contextual alignment
of generated questions with the initial query. Notably, the
relevance scores for higher DOK levels 3 and 4 saw the
most substantial improvements, with level 4 questions in-
creasing from 0.57 in ZS to 0.80 in FS+DOK+R, a 40.4%
boost. Depth Accuracy results present a more nuanced pic-
ture. While the overall average improved from 0.6725 in
ZS to 0.74 in FS+DOK, it slightly decreased to 0.6925 in
FS+DOK+R. This unexpected result warrants further inves-
tigation and refinement, particularly for level 2 questions
where accuracy dropped significantly from 0.74 in FS+DOK
to 0.30 in FS+DOK+R. However, levels 3 and 4 saw con-
siderable improvements in the FS+DOK+R model. Appro-
priateness shows the most consistent improvement across
all levels. The average score increased from 0.7575 in ZS
to 0.895 in FS+DOK+R, with an 18.2% improvement. This
metric saw enhancements across all DOK levels, with partic-



ularly notable gains in Levels 3 and 4. For instance, Level 3
questions improved from 0.62 in ZS to 0.95 in FS+DOK+R,
a 53.2% increase.

Our analysis of the output quality revealed some persis-
tent challenges, particularly in the accuracy of the represen-
tation of mathematical equations. A notable example is evi-
dent in Figure 4, where the equation x = e(x−2) appears in-
stead of the correct form x = e(x−2). This error stems from
a limitation in our data preprocessing: the source PDF doc-
ument lacked the crucial exponential symbol - ˆ, leading to
its omission during the RAG process. This error highlights
a critical consideration for future implementations. LaTeX
formatting, which is widely used in mathematical typeset-
ting, appears to be more suitable for LLMs in question gen-
eration tasks. We found LaTeX’s explicit markup of mathe-
matical symbols and structures could prevent such misinter-
pretations, ensuring that complex equations are accurately
represented and retrieved.

Otherwise, the FS+DOK+R model consistently outper-
formed other implementations in relevance and appropri-
ateness, demonstrating the value of integrating both DOK
frameworks and RAG techniques. However, the mixed re-
sults in depth accuracy, particularly at Level 2, indicate an
area for further refinement in our model. Despite this, the
overall performance suggests that our QG-DOK framework
represents a significant advancement in automated ques-
tion generation for mathematical education, particularly for
higher-order thinking skills.

Future Research Pathways We introduced the QG-DOK
framework integrating Webb’s DOK prompting with the
RAG technique and demonstrated significant improvements
over our initial exploration. The framework addressed key
limitations identified in Study 1, notably enhancing ques-
tion relevance (18.3% improvement), cognitive depth align-
ment (particularly for higher DOK levels), and pedagogi-
cal appropriateness (18.2% increase). These advancements
indicate substantial progress in generating mathematically
relevant, cognitively appropriate, and educationally suitable
questions, particularly for promoting deeper cognitive pro-
cessing.

Despite these achievements, areas for further refinement
are still required. The unexpected decrease in depth accu-
racy for Level 2 questions and the slight overall decline
in depth accuracy when implementing RAG highlight the
need for better consistency across DOK levels. Additionally,
while the framework shows an interesting pattern in reduc-
ing hallucinations and improving contextual awareness, fur-
ther work is needed to enhance the evaluation of mathemat-
ical content quality and to assess the framework’s scalabil-
ity across various mathematical topics. In summary, Study 2
represents a significant step forward in AI-assisted question
generation for mathematics education, while also illuminat-
ing paths for future research and development.

Discussion
Our research, which was conducted through two intercon-
nected studies, provides significant insights into the poten-
tial and challenges of using GenAI for mathematics educa-

tion, particularly in question generation. Study 1 explored
the capabilities of GenAI in creating mathematics questions
and answers aligned with Bloom’s Taxonomy under vary-
ing levels of contextual information. This initial exploration
revealed that while GenAI showed promise in generating
relevant questions, it struggled with consistently producing
questions at higher cognitive levels.

Overall, the clarity and quality of the GenAI comprehen-
sion questions were very encouraging. Regardless of the
context provided, though, the LLMs struggled to consis-
tently ask cognitively advanced questions, which led to in-
stabilities in the depth of the questions generated. In Table
1, we observed that as more context was provided in the
comprehensive scenario, the model increasingly generated
plausible yet incorrect information, indicating that LLMs are
prone to creating hallucinations.

Building on these findings, Study 2 introduced the QG-
DOK framework, integrating Webb’s DOK levels with a
RAG approach. We found that by leveraging resources that
educators are already familiar with, both the quality and
depth of the generated questions can be improved [3]. Ad-
ditionally, our findings support earlier studies suggesting
that AI can effectively generate educational content but re-
quires careful design to ensure cognitive depth and relevance
[8, 22]. The improvements seen in Study 2 address limita-
tions identified in previous research, particularly in generat-
ing deeper thinking questions.

Limitations and Future Work Although our results
demonstrated the potential of GenAI in educational con-
tent creation, a few limitations occurred that must be ad-
dressed. First, the hierarchical nature of Bloom’s Taxon-
omy for categorizing understanding has its critics, specifi-
cally concerning the oversimplification of the holistic and
interconnected nature of learning [11], which mirrored our
concerns. Switching to DOK to inform the AI for question
generation helped alleviate this to a degree to meet our ex-
ploratory goals, but it is still possible that simply providing
a description of each level is not enough instruction for the
AI to create an appropriate question. An interesting avenue
for future research could be to investigate problem design
in greater depth. In particular, one could break down what
makes a good problem by studying how teachers go about
designing problem sets. Then, one could chart out a step-by-
step process for the AI to follow when generating problems.

Finally, we acknowledge the constraints of our data in-
put and evaluation methods. Specifically, we used a singular
reference text for each study, with streamlined human and
AI evaluations. Given the exploratory nature of this study, it
was important to limit the parameters to best explain vari-
ations in the quality. Moving forward, researchers can test
and evaluate the output more systematically, given that our
findings have highlighted the capabilities (and limitations)
of current genAI. As such, our work serves as an important
preliminary step in advancing question generation through
AI for advanced mathematics.
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