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Abstract. This article describes the quadruped robot gait generator algorithm based on the cen-

tral pattern generator (CPG). The proposed architecture uses CPG as a phase signal generator for 

each leg, and a mapping function that builds the desired trajectory for the robot feet. The algo-

rithm is able to change smoothly and online the gait type, movement direction, frequency, height 

and length of the stride. In order to test the performance of the algorithm, experiments were 

carried out both in the simulation and on the real robot. The results show the efficiency of the 

algorithm and its ease of implementation. 
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1 Introduction 

Walking robots are increasingly being used in various fields of human activity, as they 

have a greater cross-country ability, unlike wheeled vehicles. Over the past forty years 

there has been tremendous progress in this area. But still, the complexity of algorithms 

for controlling stable locomotion on various surfaces is still a serious problem. 

To implement a stable static gait, the method of maintaining the center of mass point 

inside the reference polygon is used [1]. An extended version of this algorithm is the 

search for zero moment point (ZMP) [2, 3]. Its essence is to keep ZMP of the robot in 

the center of the support polygon. This algorithm is well suited for six-legged robots 

[4] or slow four-legged ones [5]. This is due to the fact that the supported polygon is 

not presented during movement with gaits such as trot or gallop. 

Another algorithm is CPG (Central Pattern Generator) inspired by research on mam-

malian locomotion. Neuroscientists have found that for the formation of rhythmic 

movements in the process of purposeful locomotion of animals, central pattern genera-

tors located in the spinal cord are used [6-7]. A large number of implementations of this 

approach for mobile robots have been produced [8-11]. When applied to walking ro-

bots, usually each CPG neuron generates the desired joint angle [12-14]. The disad-

vantage of this method is that, in reality, joint trajectories are much more complicated 

than generated by CPG, and tedious manual adjustment of the parameters of each neu-

ron is required for stable movement. 

There is a large group of control algorithms based on dynamics of a robot mechanics: 

SLIP (Spring Loaded Inverted Pendulum), VMC (Virtual Model Control), MPC 

(Model Predictive Control). The SLIP method was first proposed in [16] and is based 

on the “virtual leg” concept [15]. Many works have been done [17–20], including 
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Boston Dynamics’ BigDog [19]. VMC has been successfully applied to HyQ [21] and 

StarlETH robots [22]. MPC is used in a series of robots Cheetah [23-27], ANYmal [28] 

and HyQReal [29]. As it can be seen, these methods are widely used for solving loco-

motion control problem. However, they require significant prior knowledge of the tar-

get robotic platform and the task [30], a very accurate dynamic robot model that is often 

difficult to obtain [31], and the need to manually adjust the parameters of the algorithms 

[32]. Moreover, separate controllers for each movement mode are used, which have a 

different architecture, and are designed and configured separately [35]. 

Recently, model-free reinforcement learning (RL) algorithms have been widely ad-

vanced that can avoid the disadvantages described above. Although these algorithms 

have a large number of parameters, nevertheless, their configuration can be automated. 

However, there are two serious problems: a long training time and the difficulty of 

migration from simulation to hardware called the reality gap. 

Solving the first problem, one can use parallel training of several thousand agents, 

which reduces the training time to several minutes [36]. Predefined gait generators are 

also used, and the task of the agent is to optimize their trajectories [37]. The problem 

of the first implementation is that the robot could not change its speed of movement, 

and in the second case, the robot moved only along the lateral plane and could not do 

gait transition online. 

The solution to the second problem is combining accurate mathematical model of 

servo drives, the randomization of mechanical parameters and proprioceptive sensor 

data during training, as well as the imitation of external force disturbances acting on 

the robot [35, 38]. This algorithm provided stable and dynamic locomotion on such 

robots as Minitaur [30, 31, 33, 34, 37, 38], Unitree A1 [32] and ANYmal [35,36]. 

Based on the information above, the most interesting and promising approach is RL. 

The proposed scheme of the algorithm is shown in fig. 1. It is based on the architecture 

obtained in [37] but it uses more efficient CPG as a gait generator. The CPG-based gait 

generator allows to smoothly change the gait pattern, stride frequency, length and 

height, as well as additionally perform sidewalk and turning online. The task of the 

trained agent is to set the input parameters for the CPG block and optimize its output 

trajectories of robot feet. GG State, Control Input and Robot Feedback signals form the 

agent observation vector. Thanks to a predefined gait generator, the training time of the 

agent should be greatly reduced, and its CPG implementation with sidewalk and turning 

operations will also allow the agent to perform these actions. 

 

Fig. 1. Proposed robot locomotion control algorithm architecture 
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In this paper, we focus on the CPG-based Gait Generator block. It must have the fol-

lowing properties: 

• The network of CPG neurons must provide periodic clock signals for movement of 

a robot and smooth gaits transition by adjusting only one parameter. The frequency 

of the signals should also vary smoothly based on a single parameter; 

• Foot trajectories are calculated based on the rhythmic signals obtained by the CPG 

network; 

• Trajectories must take into account both changes in stride height and stride length, 

as well as changes in direction of movement. 

The algorithm will be tested on a quadruped robot developed by Voltbro and MSU 

Institute of Mechanics. 

2 Gait Generator 

The formation of the foot trajectories during locomotion is usually carried out using 

generators based on inverse kinematics [39]. The disadvantage of this method is that it 

does not allow both to do gait transition and to change stride frequency smoothly. The 

most attractive way is to use CPG, which is capable to generate trajectories of the foot 

positions [40, 41]. These publications describe development of such generators, but 

only to move forward. In this paper, we create a generator capable of form locomotion 

trajectories in all directions. 

 

Fig. 2. Structure of the Gait Generator 

2.1 Design Architecture 

Fig. 2 shows the general block diagram of the gait generator. The CPG Network block 

consists of four oscillators, each of which is responsible for formation of a phase tra-

jectory of each leg. Stride frequency ωsw and the vector Φ describing the gait type are 

taken as input. The output contains four phase signals ϕi, which are fed to the Mapping 

Function. The task of this block is to form stride cycles based on ϕi. The input parame-

ters are: SL - stride length, SH - stride height, D – linear direction, r – turning radius and 
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d - for turning direction (-1 - clockwise, 0 - straight, 1 - counterclockwise). The output 

parameters are desired foot position vectors Pxi, Pyi, Pzi. The Inverse Kinematics Solver 

block solves the inverse kinematics problem and, based on the desired positions, gives 

the desired joint angles, which are fed to the low-level part of the robot that controls 

the servos. This block is implemented by widely used matrix method [43-45]. 

2.2 CPG Network 

CPG network consists of four symmetrically connected neurons, each of them is an 

oscillator that modulates the phase signal for a particular leg. There are several types of 

oscillators [42]. We choose the Hopf oscillator because it is the least computationally 

demanding, moreover it is able to provide fast switching between different gaits. The 

oscillator equations look like this: 

�̇�𝑖 = 𝛼(𝜇 − 𝑟𝑖
2)𝑥𝑖 − 𝜔𝑖𝑦𝑖 + 𝜂 ∑ (𝑥𝑗cos 𝜆𝑗𝑖 − 𝑦𝑗 sin 𝜆𝑗𝑖)

4
𝑗=1  (1) 

�̇�𝑖 = 𝛼(𝜇 − 𝑟𝑖
2)𝑦𝑖 + 𝜔𝑖𝑥𝑖 + 𝜂 ∑ (𝑥𝑗sin 𝜆𝑗𝑖 − 𝑦𝑗 cos 𝜆𝑗𝑖)

4
𝑗=1  (2) 

𝑟𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2  (3) 

𝜔𝑖 = (
𝛽

(𝑒−𝑎𝑦𝑖+1)
+

1

𝑒𝑎𝑦𝑖+1
) 𝜔𝑠𝑤 (4) 

𝜙𝑖 = 𝑎𝑡𝑎𝑛2(𝑦𝑖 , 𝑥𝑖), (5) 

where 𝛼 – convergence rate, √𝜇 – amplitude, i – oscillator number, 𝜔𝑖 – stride fre-

quency, 𝛽 – duty factor, 𝜔𝑠𝑤 – swing phase frequency, a – alternation rate coefficient 

between swing and stance phases, 𝜆𝑗𝑖 = 𝜑𝑖 − 𝜑𝑗 – phase difference between legs i and 

j, 𝜑𝑖 ∈ [0; 2𝜋], 𝑥𝑖 , 𝑦𝑖  – internal oscillator state, 𝜂 – coupling coefficient, 𝜙𝑖 – current 

phase of the oscillator, that is considered as a synchronization signal for the formation 

of the foot trajectories, 𝜙𝑖 ∈ [−𝜋; 0) − stance phase, 𝜙𝑖 ∈ [0; 𝜋] − swing phase.  

The phase differences φi for four different gaits are shown in Table 1. By setting 

these parameters for λji, one can obtain different locomotion rhythms. The output values 

of the oscillators ϕi for gait patterns Φ from Table. 1 are shown in fig. 3. On the above 

graphs, one can observe a slight curvature of the lines. This is due to the value of β: the 

larger it is, the smaller the slope ϕi in the stance phase and the greater in the swing 

phase. By changing the parameters Φ, β and ωsw, it is possible to perform a smooth 

change of ϕi. An example of a transition from walk to a more dynamic trot gait is shown 

in Fig. 4. Note, that gait transition occurs a little more than just one second.  

Table 1. Phase relationship for different gait patterns. 

Gait RF φ1 LF φ2 RH φ3 LH φ4 

Walk π 0 0.5 π 1.5 π 

Trot π 0 0 π 

Pace π 0 π 0 

Gallop 0 0 π π 
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Fig. 3. CPG output curves 𝜙𝑖 for different gait patterns 

 

Fig. 4. Walk to trot transition. Dashed lines show the beginning and the end of the transition 

2.3 Mapping Function 

The task of the Mapping Function block is to form the desired trajectory of the robot 

feet based on the clock signal φi. Also, this block must take into account the desired 

stride height and stride length, and at the same time carry out turning and sidewalk. The 

algorithms used for the mapping function [40, 41] assume only forward movement. To 

implement other types of movement, the algorithm was refined; its block diagram is 

shown in Fig. 5. At the input, it takes the values of the clock signal ϕi, the stride length 

SL, the stride height SH, the two-dimensional velocity vector in the XY plane 𝐷 =

[𝜐𝑥  𝜐𝑦]
𝑇
 and the turning radius r. Next, the desired foot positions are calculated. After 

that, the lateral deflection is sequentially calculated by the values sidewalk vector D, 

turning radius r and turning direction d. At the very end, the obtained trajectory is trans-

lated into the coordinate system of the robot foot relative to the center of mass of the 

body and the desired foot position 𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧 is calculated. 

 

Fig. 5. Block diagram of Mapping Function algorithm 

The basic calculation of the foot trajectory is carried out using the following equa-

tions: 
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𝐼𝑓 𝜙𝑖 ∈ [−𝜋; 0): 

𝑃𝑥0 = − (
1

𝜋
𝑆𝐿𝜙 +

𝑆𝐿

2
) (6) 

𝑃𝑧0 = 0 (7) 

𝑃𝑦0 = 0 (8) 

𝐼𝑓 𝜙𝑖 ∈ [0; 𝜋]: 

𝑃𝑥0 = −
1

2𝜋
𝑆𝐿 sin(4𝜙) +

1

𝜋
𝑆𝐿𝜙 +

𝑆𝐿

2
 (9) 

𝑃𝑧0 = {
−

1

2𝜋
𝑆𝐻 sin(4𝜙) +

2

𝜋
𝑆𝐻𝜙,            𝜙 ∈ [0;

𝜋

2
]

1

2𝜋
𝑆𝐻 sin(4𝜙) −

2

𝜋
𝑆𝐻𝜙 + 2𝑆𝐻 ,   𝜙 ∈ [

𝜋

2
; 𝜋]

 (10) 

𝑃𝑦0 = 0, (11) 

where 𝑃𝑥0, 𝑃𝑦0, 𝑃𝑧0 – foot position, 𝑆𝐻 , 𝑆𝐿  – stride height and stride length respectively. 

Sidewalk direction is calculated by determining the angle ψ (Fig. 6): 

𝜓 = 𝑎𝑡𝑎𝑛2(𝐷𝑦 , 𝐷𝑥) (12) 

 

Fig. 6. Robot movement direction 

And then the points of the generated trajectory are multiplied by the rotation matrix 

𝑅𝑧: 

𝑃1 = 𝑅𝑧(𝜓) ∙ 𝑃0 = [
cos 𝜓 − sin 𝜓 0
sin 𝜓 cos 𝜓 0

0 0 1

] [

𝑃𝑥0

𝑃𝑦0

𝑃𝑧0

] = [

𝑃𝑥0 cos 𝜓 − 𝑃𝑦0 sin 𝜓

𝑃𝑥0 sin 𝜓 + 𝑃𝑦0 cos 𝜓

𝑃𝑧0

] (13) 

Turning of the robot is performed with respect to a certain radius r. To implement 

the turn, it is necessary to imagine the position of the legs, as shown in Figure 7. The 

modification of the trajectories for the turn is carried out using the equations [46]: 

𝛾 = 𝑑 ∗ 𝑎𝑡𝑎𝑛2(ℎ, 2𝑟 + 𝑑 ∗ 𝑏), 𝜉 = 𝑑 ∗ atan2 (ℎ, 2𝑟 − 𝑑 ∗ 𝑏) (14) 

𝑃2 = [

cos 𝜎𝛾𝜉 −sin 𝜎𝛾𝜉 0

sin 𝜎𝛾𝜉 cos 𝜎𝛾𝜉 0

0 0 1

] [

𝑃𝑥1

𝑃𝑦1

𝑃𝑧1

], (15) 
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where d – turning direction, 𝜎𝛾𝜉  - 𝛾 or 𝜉 angles. 𝜎𝛾𝜉 = 𝛾, if the leg is right, otherwise 

𝜎𝛾𝜉 = 𝜉. 

The final operation is shifting each vector according to the base position of each 

foot:  

𝑃 = 𝑃2 + 𝑃𝑖𝑑𝑙𝑒 , (16) 

where 𝑃𝑖𝑑𝑙𝑒  – the vector of the idle position of the foot relative to the center of mass of 

the robot body. 

 

Fig. 7. Turning implementation 

3 Results 

This section presents the results of experiments on robot locomotion using the control 

algorithm described above.  

3.1 Simulation Experiments 

PyBullet is used as a simulation environment [46]. The robot model is described using 

URDF. Fig. 8 shows a visual image of the robot in the PyBullet environment. 

In all tests, the robot moves on a flat surface. The model processing frequency is 300 

Hz. The parameters of the algorithm are presented in Table 2. The values of a, μ, α did 

not lead to any major changes in the operation of the algorithm and were set as in [40]. 

Table 2. Parameters used in experiments for the CPG model and mapping function. 

Parameter Walk, trot, pace Gallop 

𝜔𝑠𝑤 4π 6π 

β 2 2 

α 100 100 

μ 1 1 

a 100 100 

𝑆𝐻 0.06 0.08 

𝑆𝐿 0.06 0.08 
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The first experiment was the movement along the longitudinal plane of the robot, 

using all the gaits from Table. 1. The simulation was performing for 5 seconds. Each 

gait showed the possibility of locomotion. Trot turned out to be the fastest gait, and in 

5 seconds the robot covered ≈1.95 m. The slowest gait was walk. Using it, the robot 

covered only 1 meter in the same time. Trot, pace and walk have minor deviations along 

the transverse Y axis, while the deviation of gallop was 0.2 m. Also, given the increased 

frequency of movement and stride length, the gallop was almost the slowest and least 

stable. Setting values, as in other gait types, the robot refused to make a steady move-

ment. All this confirms the need to stabilize robot locomotion by the method presented 

in Chapter 1. 

 

Fig. 8. Robot visualization in the PyBullet simulation environment while executing trotting gait 

 

 
a) 

 
b) 

Fig. 9. Dependences of the CoG X position of the robot base on time with an increase in 

(a) stride frequency, (b) stride length 

The second experiment is the effect of changing stride frequency and stride length. 

The robot walked using the trot gait, each simulation episode lasted 5 seconds. At the 

time t=2.5 sec, the following was performed: a) increase in step frequency from 4π to 

6π with a step length of 0.03 m and b) increase in step length from 0.03 m to 0.08 m 

with a frequency of 4π. As can be seen in fig. 9, the algorithm successfully changes 

these parameters, and the robot increases locomotion speed. 

The third experiment is the transition between gaits during locomotion. Similar to 

previous experiments, the simulation lasted five seconds. At the beginning of the ex-

periment, the robot moved with a walk gait, and at the time t=2.5 sec, the gait changed 

to a trot. As can be seen on the plot in Fig. 10, the robot successfully performed a gait 

transition in approximately 1 second, which can be seen from the change in the nature 

of the oscillations along the vertical Z axis. 

The fourth experiment is testing robot turning capability. The simulation lasted 15 

seconds, during which the robot made four turns. The experiment ended successfully, 

showing capability of implementing this operation. The results are presented in fig. 11. 
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Fig. 10. Gait transition between walk and trot 

 
a) 

 
b) 

Fig. 11. Implementation of changing the direction of the robot. (a) CoG orientation angles, (b) 

CoG movement in the horizontal plane. 

3.2 Hardware experiments 

While testing the performance of the algorithm on the hardware platform, the initial 

data from Table 2 was used. The robot moved on a flat surface. 

As a result of the experiments, it was possible to move with all the proposed gait 

types with the ability to switch between them on the go and change other parameters 

(frequency, length and height of the step), even with the absence of feedback to stabilize 

the movement. The robot also coped with the task of changing the locomotion direction, 

executing both sidewalk and turning. Photographs of the robot movement during the 

experiments are shown in fig. 12 and 13. Also you can watch the experiments in the 

supplementary video11. 

 
1  https://youtu.be/bFAk3QXRYn4 
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Fig. 12. Trot gait experiments 

 

 
Fig. 13. Changing moving direction experiments 

4 Conclusions 

In this paper, the Gait Generator algorithm is featured that combine CPG and mapping 

function with sidewalk and turning operations. All the gaits such as trot, pace, walk and 

gallop were executed both in simulation and real world. Moreover, this technique is 

able to change gait type online, locomotion direction, stride frequency, stride height 

and stride length. The results show the efficiency and ease of this approach. 

Since the robot has to manage with rough terrain and stabilize its body under external 

disturbances, an additional work with feedback control is needed. Proposed approach 

is feet trajectory optimization with RL approach which is the aim of the feature work.    
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