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Abstract

Tuberculosis (TB) remains a major public health challenge globally, and its bur-
den is particularly pronounced in the Kyrgyz Republic, where the prevalence of
multi-drug resistant (MDR) TB is high. This study aims to enhance early detec-
tion of TB by developing a Convolutional Neural Network (CNN) model trained
on chest X-ray (CXR) images. Due to the lack of well-labeled CXR datasets in
Kyrgyz hospitals, our research utilized an open dataset of TB and normal CXR
images to train and validate the model. One of the challenges was the imbal-
ance in the target class. To tackle this problem, we computed the class weights.
We developed two models from scratch: the first one without class weights, and
the second one implemented with class weights. Our class weights improved the
performance of the model, which achieved 97% accuracy, 94% sensitivity, 98%
specificity, 88% precision and 91% F1 score. Our results demonstrate the poten-
tial of CNN-based approaches in TB diagnosis and highlight the importance of
data infrastructure enhancement for advancing TB care in the Kyrgyz Republic.

Keywords: Tuberculosis, Chest X-Ray, Convolutional Neural Network, Kyrgyz
Republic, Binary Classification
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1 Introduction

Among the most prevalent diseases in the world that spreads quickly and causes a
great deal of illness is tuberculosis (TB), triggered by Mycobacterium tuberculosis, a
bacteria that specifically affects human lungs [1]. There are the following types of TB:
multi drug-resistant (MDR), pre-extensively drug-resistant (Pre-XDR), and exten-
sively drug-resistant (XDR) [2]. Even though TB is generally treatable [3], prior to the
coronavirus (COVID-19) pandemic, TB was the most common infectious agent-related
cause of death, surpassing HIV/AIDS [4]. Following the COVID-19 pandemic, in 2022,
TB ranked as the second most common cause of death worldwide [5]. According to
the Global Tuberculosis Report 2023 by the World Health Organization (WHO) [5],
the overall number of TB-related deaths worldwide in 2022 (including those among
HIV-positive individuals) was 1.30 million (range 1.18–1.43 million). Further, a high
prevalence of MDR TB in the Kyrgyz Republic is outlined in the report. By 2030,
WHO aims to decrease the incidence and mortality rates from TB by 80% and 90%,
respectively [6]. The foundation of their strategy is the early diagnosis and prompt
treatment of TB patients.

Fig. 1

In the figure 1 the number of registered TB patients in the Kyrgyz Republic from
2010 to 2022 is displayed. This line chart is generated via EXCEL program from
the dataset ”Number of morbidity of patients by active tuberculosis by types and
territory” [7]. Although it shows a decreasing trend, we are still far from achieving
”The END TB” goal.

The burden of TB in the Kyrgyz Republic in 2022 was 130 (range 106-152) rate
per 100 000 population, with a total number of 8600 (range 7100-10 000) incidents,
among which there were 3000 (range 2400-3600) MDR TB incidences and 240 (range
190-310) HIV-positive TB incidences. HIV-negative TB mortality rate amounted to
5.9 (range 5.2-6.7) per 100 000 population, with a total number of 390 (range 350-440)
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deaths, while HIV-positive TB mortality rate was 1.5 (range 0.85-2.3) with 98(range
56-150) deaths [8].

Factors such as stigma, the prevalence of drug and alcohol abuse and addiction,
the presence of neglected groups, the difficulty that migrants and the homeless have
in accessing healthcare facilities, and the relatively widespread use of either hospital-
ized models of care or alternative medicine add to the challenges healthcare systems
encounter in correctly and quickly diagnosing tuberculosis cases [9]. Istamov et al. [10]
conducted research on differences in TB treatment and its outcomes among migrants
and non-migrants in the Kyrgyz Republic. One of the findings of their work was the
high rate of internal (intra-country) migrants with MDR, while delayed treatment
is higher among external (inter-country) migrants due to a lack of access to public
health systems. The prevalence of TB seriously threatens public health in the Kyrgyz
Republic.

The research work of Sakmamatov et al. [11] states that early detection of TB is
essential to achieve excellent treatment outcomes. In this regard, the integration of
advanced technologies, specifically deep learning, offers a promising path for improving
the accuracy and efficiency of early TB diagnosis. Deep learning, a subset of artificial
intelligence (AI), has shown impressive results in a number of fields, including medical
picture analysis. Deep learning models, in particular Convolutional Neural Networks
(CNNs), can be trained to interpret Chest X-ray (CXR) pictures and help identify
anomalies related to TB. To our knowledge, there hasn’t been any such work published
in the Kyrgyz Republic. Thus, this study proposes the use of CNN in the detection of
TB from CXR images.

2 Research Problem

The primary objective of this research is to develop a CNN model tailored for the
detection of TB from CXR images.

i. Investigate the feasibility and effectiveness of utilizing deep learning technology,
specifically CNNs, in enhancing the early detection of TB.

ii. Assess the performance of the developed CNN model in terms of sensitivity,
specificity, precision, F1-score and overall accuracy.

iii. Address the challenges faced in the development of CNN model within the context
of the Kyrgyz Republic.

By achieving these objectives, this research aims to contribute valuable insights
to overcome challenges and advancements in the field of TB diagnosis in the Kyrgyz
Republic, with the ultimate goal of improving healthcare practices and outcomes,
especially in regions with a high burden of the disease.

This research work is divided into six sections. In Section 1, the introduction focuses
on the threat of TB in the world and the Kyrgyz Republic. In Section 2 the research
problem is discussed. Section 3 covers a review and analysis of related literature.
Section 4 provides the methodology used in this study. In Section 5 the results of
the research are presented. Section 6 discusses the obtained results and obstacles in
building the model. Section 7 concludes the findings of the study and future work is
discussed.
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3 Literature review

In this section, we will introduce related research works with a review and analysis of
their solutions and strategies.

Liu et al. [12] proposed the use of CNN based on the architectures of AlexNet
[13] and GoogLeNet [14] for the classification of various types of TB. They utilized
a dataset from “Socios en Salud”, Partners In Health in Lima, Peru. The dataset
contains 4701 CXR images: 453 normal (no TB) and 4248 abnormal (has TB). To deal
with a clear imbalance in the target classes, they applied a shuffling technique that
increased the performance of their models in predicting all TB manifestations. The
best accuracy they obtained was 85.65% for AlexNet. This study also highlighted a
lack of large medical datasets with high-quality images, which leads to restrictions in
training the CNN model. To overcome this obstacle, the authors adopted a pre-trained
model from the ImageNet dataset [15].

Hooda et al. [16] presented their solution to classify TB using an ensemble of
three CNN architectures, including AlexNet, GoogLeNet, and ResNet-34 [17]. This
study has collected CXRs from various datasets, acquiring 1133 images in total. The
authors fine-tuned all three models for TB detection and trained them separately at
the beginning with the appropriate values of the hyperparameters for each model.
In the next step, they combined the models into an ensemble with the help of a
fusion technique. The authors reported the performance of AlexNet, GoogLeNet, and
ResNet-34 to be 83.56%, 80.59%, and 84.12% accuracy respectively. The proposed
ensemble outperformed each model’s result, achieving 88.24% accuracy. The research
work concludes that the developed model would assist radiologists in the analysis and
final diagnosis of TB from CXRs.

In a comprehensive research conducted by Liu and Huang [18], six different CNN
models, namely DenseNet121 [19], Inception V3 [20], NASNet mobile [21], Resnet50
[17], Vgg16 [22], and Xception [23], were evaluated and analyzed. Their introduced
dataset of CXR photos, labeled by certified doctors of Chinese and American hospitals,
consists of 800 pictures, 394 of which are TB and 406 are not TB. For all models, a
sigmoid function was implemented as an activation function in place of a step function,
because finding the derivative of the sigmoid function requires less computing than
calculating the derivative of the step function. The authors have chosen a binary
cross-entropy function for six models as an alternative to the typical quadratic cost
function, resulting in faster learning of models and more accurate classification. In this
study, Stochastic Gradient Descent (SGD) was applied as a gradient descent algorithm.
After thorough experimentation, DenseNet was discovered to be the best model with
83.5% accuracy, whereas Xception’s performance was the worst, obtaining only 78.6%
accuracy.

Sundari et al. [24] in their research work introduced Optimized Sequential AlexNet
(OSAN) architecture for TB prediction. ”Tuberculosis (TB) Chest X-ray Database”
had been used in their study [25]. Among the 3600 medical images, 3000 were normal
and 600 were TB-positive. They used class weights to address the class imbalance,
which they identified as a common concern in most real-world scenarios. The class
weights technique assigns more weight to minority classes. During the training phase,
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the loss associated with the minority class was multiplied by a factor of five, increas-
ing their impact on model parameter updates. The suggested OSAN architecture’s
innovations are the following:

i. Adaptive Average Pooling layer instead of fixed-size pooling layer, has enabled
the model to capture features of TB from CXR photos more efficiently.

ii. Freezing of Pre-trained Layers method was implemented in seek of balancing
transfer learning and fine-tuning of the model.

iii. Customized Classifier was built to execute binary classification.
The overall obtained accuracy was 99.67%.

Maheswari et al. [26] suggested the Shallow-CNN (S-CNN) model, which has rela-
tively fewer layers compared to classical CNN models. According to the authors, most
Deep Neural Networks (DNN), especially being pre-trained, perform excellently in
classification. However, the price of such high accuracy is the inability to interpret why
they fail in other cases, leading to a dilemma between interpretability and accuracy.
To avoid this constraint, S-CNN was built. The study made use of the ”Tubercu-
losis (TB) Chest X-ray Database”, which was already mentioned before. They split
the data into 3 groups: a training set with 750 images, a testing set, and validation
sets with 125 pictures in each of them. The proposed model’s architecture comprises
four convolution-maxpooling layers that include different hyperparameters, which were
updated for the model to perform the best using a Bayesian optimization technique.
All these efforts led to an achievement of 95% accuracy and F1-Score correspondingly,
comparable results to DenseNet, whose results were 91% for accuracy and F1-Score.

Zhang et al. [27] conducted a meta-analysis of studies from the PubMed, Web of
Science, Embase, Scopus, MEDLINE, and CINAHL databases that were published
during the 2013-2023 period and focused on the implementation and success of AI in
TB treatment. After the filtering process, 25 relevant studies were admitted for review.
Their review highlights encouraging results of AI-enabled models, including CNN, in
the prediction of TB and treatment duration by utilizing imaging, sociodemographic,
clinical, and genomic data. The authors outline the importance of developing an AI-
enabled system with the consideration of ethics, data privacy, transparency of the
deployed system, compliance with medical standards, and constant refinement of its
performance. They conclude that the utilization of AI offers promising prospects in
enhancing treatment practices of TB.

We presented research works that proposed various solutions for detecting TB
from CXR. CNN has proven to be feasible and efficient in tackling this difficult task,
and several CNN architectures were analyzed. We reviewed diverse techniques and
strategies for handling a lack of large and high-quality CXR datasets and target class
imbalance. Finally, we established the necessity and potential of further research and
development of AI-enabled systems for improving TB treatment.

4 Methodology

4.1 Dataset

This study adopted the open dataset ”Tuberculosis (TB) Chest X-ray Database” [25].
It includes 4200 CXR images, 3500 of them are labeled as normal and 700 are TB.
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All CXRs are in Portable Network Graphics (PNG) file format. The size of each
image is 512×512 pixels. All the images are in the format of RGB with three channels
(Red, Green and Blue), each channel comprises pixels that represent shades of the
respective color. However, we can find gray-scale images, which were saved as RGB.
All private information has been deleted from the images in accordance with ethical
considerations and data privacy. The percentage of TB images is 16.67%, whereas
normal images amount to 83.33%, leading to the imbalance of the target class. Figures
2 and 3 demonstrate the samples of Normal and TB CXRs.

Fig. 2: Sample of Normal CXRs

Fig. 3: Sample of TB CXRs

4.2 Data Preprocessing

Data preprocessing is a critical stage that involves modifying and transforming data
before it is used by a model. We experimented with resizing images to 32×32 and
64×64, which resulted in a low quality of images, leading to a loss of important features
(pixels) that CNN would use for prediction. Thus, we discovered that the optimal
solution is to resize all images to 128×128 size. After that, we converted all CXRs
from RGB format to gray-scale, decreasing the number of pixels from 3 channels to
1, which reduced the computational time. We transformed the images into numpy
arrays, obtaining two sets: ”normal” with the shape of (3500, 128, 128) and ”tb” with
the (700, 128, 128) shape. As pixel’s value varies from 1 to 255 in the gray-scale mode,
we normalized each array by dividing by 255.
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4.3 Data Splitting

The dataset was randomly split into training, testing and validation sets. Training set
contains 70% of the original dataset, while testing and validation sets each cover 15%.
This allowed us to include a reasonable amount of normal and TB samples in each
set. We labeled normal CXRs as class 0 and TB images as class 1. The details are
displayed in the figure 4.

Fig. 4: Data Splitting

4.4 Handling the Class Imbalance

Class imbalance is an obstacle that can prevent our CNN model from training properly,
mainly affecting its performance. To tackle this issue, we developed our formula to
calculate class weights w0 for class 0 and w1 for class 1:

w0 =
N

N0
× k

w1 =
N

N1
× k,

where
• N0 is the number of samples in class 0,
• N1 is the number of samples in class 1,
• N is the total number of samples, N = N0 +N1.
• k is a scaling factor, set to 0.5 for balanced impact.
These weights are inversely proportional to the frequency of the respective class in

the dataset, scaled by a factor of 0.5. This means that the more frequent class gets a
smaller weight, and the less frequent class gets a larger weight, thereby compensating
for the imbalance during model training. This helps ensure that the minority class 0
has a higher influence on the model training process compared to the majority class
1, preventing the model from neglecting the minority class. We obtained the following
values for our class weights: w0 = 0.6 and w1 = 3.
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4.5 CNN Architecture

In this study, we developed our CNN model based on the architecture of AlexNet [13].
It consists of 5 convolutional layers,3 fully connected layers, and the output layer:

i. Convolutional Layers: The first convolutional layer comprises 96 filters with a
kernel size of 11x11 and a stride of 4, utilizing the Rectified Linear Unit (ReLU)
activation function defined by the following equation:

ReLU(x) = max(0, x) (1)

Subsequent convolutional layers consist of 256 filters of size 5x5 and 384 filters of
size 3x3. Each convolutional layer is followed by max-pooling layers of size 3x3
and strides of 2.

ii. Fully Connected Layers: Following the convolutional layers, the feature maps
are flattened and passed through three fully connected layers. The first two fully
connected layers consist of 4096 neurons each, with ReLU activation functions
and Dropout regularization with a rate of 0.4 applied to mitigate overfitting. The
third fully connected layer includes 1000 neurons, also with a ReLU activation
function.

iii. Output Layer employs a sigmoid activation function to produce binary classi-
fication probabilities for 2 classes. The sigmoid activation function is defined as
follows:

σ(z) =
1

1 + e−z
(2)

Fig. 5: Architecture of AlexNet for TB detection

The model was compiled using the Adam optimizer with the 0.001 learning
rate. The loss function for training was binary cross-entropy, suitable for binary
classification tasks. The model was trained for 30 epochs.
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4.6 Evaluation Metrics

We applied the following metrics to assess the performance of our CNN model:
i. Accuracy: It is the ratio of correctly predicted CXR images to the total number

of predicted CXRs, defined by the following equation:

Accuracy =
TP + TN

TP+ TN+ FP + FN
× 100, (3)

where
• TP (True Positive) is the number of TB CXR images correctly predicted as
TB.

• TN (True Negative) is the number of Normal CXR images correctly predicted
as normal.

• FP (False Positive) is the number of Normal CXR images incorrectly
predicted as TB.

• FN (False Negative) is the number of TB CXR images incorrectly predicted
as normal.

ii. Sensitivity (also known as Recall): It is the ratio of correctly predicted TB
images to the total number of TB images, defined as follows:

Sensitivity (Recall) =
TP

TP + FN
× 100 (4)

iii. Specificity: It is the ratio of correctly predicted normal images to the total
number of normal images, computed by the next formula:

Specificity =
TN

TN+ FP
× 100 (5)

iv. Precision: It is the ratio of correctly predicted TB images to the total number
of images that were predicted as TB:

Precision =
TP

TP + FP
× 100 (6)

v. F1 score: It is the harmonic mean of Precision and Recall, defined by the
following formula:

F1 Score =
2× Precision× Recall

Precision + Precision
(7)

5 Experimental and Results

We have trained our CNN model from scratch. At first, the model was trained with-
out implementing the class weights. The obtained accuracy was 83%, however, other
metrics showed low values. In the second training phase, we included the class weights
in the model. It strongly boosted the performance of the model, and this time the
confusion matrix showed that the model was predicting both classes. The model has
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achieved an accuracy of 97%, sensitivity of 94%, specificity of 98%, precision of 88%
and F1 score of 91%. Figure 6 demonstrates the accuracy and loss of the model over
epochs with class weights included and Figure 7 displays the confusion matrices for
Train and Test sets. In Table 1 the performance metrics of two models with class
weights and without class weights are shown.

Fig. 6: Accuracy and Loss over Epochs

Fig. 7: Confusion Matrices for Train and Test Sets

Table 1: Model Performance Metrics

Class Weights Accuracy Sensitivity Specificity Precision F1 Score

Not Included 83% 0% 100% 0% 0%
Included 97% 94% 98% 88% 91%
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6 Discussions

Our CNN model without class weights obtained 83%, which seems a decent result at
first glance. However, after inspection of the confusion matrix and other metrics, it was
discovered that the model was only predicting class 1 and neglecting class 0. Because
of the prevalence of class 1, the calculated accuracy was high, which may result in
misleading inference. Other metrics should be reviewed to assess a model objectively.
Thus, sensitivity and precision of 0% clearly show the inability of the model to identify
TB images. This version of the model is not suitable for TB detection in the case of
class imbalance.

The inclusion of the class weights improved the model’s prediction ability by a
great margin. Sensitivity of 94% and specificity of 98% tells us that the model predicts
both TB and normal images, respectively, with a high probability. Precision reveals
that 88% of the model’s predictions of CXRs as TB are correct, while the rest of 12%
are misclassified as TB. F1 Score of 91% demonstrates that the model’s predictions
of both TB and normal images are highly accurate, i.e. the model is balanced for
both classes. Our class weights contributed to the overcoming of class imbalance and
enhancing the CNN’s performance in both classes 0 and 1, making it a suitable model
to detect TB from CXR.

We discovered the lack of well-labeled datasets of CXR images in hospitals of the
Kyrgyz Republic, which put limitations to our research at this stage. According to
Sakmamatov et al. [11], it is crucial to reorganize the hospital case records in the
Kyrgyz Republic with a more structured recording of TB cases as it will allow future
researchers to gather more detailed information about TB patients. Shauer et al. [28]
in their study conclude that the incorporation of an electronic TB register system
may contribute to the advancements in TB care in the Kyrgyz Republic. In addition,
our study suggests improving monitoring databases in the Kyrgyz hospitals to open
new opportunities for future studies, allowing them to collect more CXR datasets
for further development of CNN models to detect TB in the context of the Kyrgyz
Republic, specifically adjusting models to identify MDR TB, as its prevalence in the
country was previously highlighted.

7 Conclusion and Future Works

Our proposed CNN model has successfully provided impressive results in TB detection
from CXR images. We overcame the problem of class imbalance with the help of our
class weights, which improved the model’s performance by a great margin compared to
the one without class weights. Thus, the model achieved 97% accuracy, 94% sensitivity,
98% specificity, 88% precision and 91% F1 score. The feasibility and effectiveness of
the CNN model in the TB classification promise significant improvements in the early
diagnosis of TB in the Kyrgyz Republic, which will lead to better treatment with
more probability of a successful cure from the disease, and achieve the ultimate goal
of reducing both the number of TB cases and mortality rate.

Our study also addresses the challenges in developing the CNN model specifically
for the Kyrgyz Republic. Due to the absence of well-structured databases of CXR
images in the Kyrgyz hospitals, our research was limited to available open dataset. Our
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study emphasizes the importance of restructuring hospital TB case records. Enhanced
databases will open new avenues for future studies related to the development of AI-
enabled models for TB prediction and more accurate analysis of TB cases and patients
in the Kyrgyz Republic.

The future work in this field will be the collection of CXR images from the hospitals
in the Kyrgyz Republic. Collaboration with health experts would be required to label
these images and divide them into classes. Future studies will focus on utilizing a
pre-trained AlexNet model to increase classification performance and minimize the
number of misclassifications by increasing precision and sensitivity. Furthermore, we
aim to train our model for the detection of various types of TB, especially MDR TB,
which dominates in the country.
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