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A BACKSTEPPING SLIDING MODE CONTROLLER DESIGN FOR 
SPACECRAFT FORMATION FLYING 

Amin Imani,* Mohsen Bahrami,† and Jafar Roshanian‡ 

In this paper, a backstepping sliding mode controller is developed for tracking 

control of spacecraft formation flying on elliptical orbits. The controller is de-

signed in accordance with the nonlinear model of relative motion, and combines 

the advantages of backstepping and sliding mode control techniques. After apply-

ing the backstepping method to incorporate the tracking errors and Lyapunov 

functions, a sliding mode controller is developed to guarantee the Lyapunov sta-

bility, handling all nonlinearities, robustness against uncertainties and tracking the 

desired trajectory. It is supposed that the leader and follower spacecraft are in a 

low Earth orbit while J2 perturbation and atmospheric drag are considered as ex-

ternal disturbances. The performance of the proposed controller in tracking the 

desired formation is compared to a sliding mode controller. Simulation results 

confirm the effectiveness of the proposed controller. 

INTRODUCTION 

Spacecraft formation flying (SFF) has increasingly attracted attention during the last few dec-

ades. Using this method, a large and expensive spacecraft can be replaced with a number of smaller, 

less expensive and cooperative spacecraft which work as an integrated unit and fulfill the purpose 

of the mission. Besides the simpler design and faster launching process, the main advantage of this 

system lies in reliability and flexibility which makes novel and innovative applications in space 

and the Earth science missions including observation of the Earth and its atmosphere, geodesy, 

deep space imaging with high resolution, in-orbit servicing and spacecraft maintenance1. A com-

mon method for implementation of SFF is Leader/Follower architecture. Based on this method, 

one spacecraft is controlled as a leader in a reference orbit while other spacecraft -as followers- 

adjust their positions relative to the leader and track the desired relative trajectory. In this study, 

attention is confined to control problem of SFF on elliptical orbits. A robust and precise nonlinear 

controller is necessary for spacecraft formation process, because it has nonlinear couple dynamics 

subjected to external disturbances. 
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It is well known that sliding mode control (SMC) is a robust method to control nonlinear sys-

tems which has satisfactory performance to keep the systems insensitive to the uncertainties and 

disturbances. An effective robust method for satellite control using a sliding mode controller was 

presented based on Hill’s equations. Parameters including the equivalent damping ratio, bandwidth 

and thrust were also estimated to minimize the fuel cost2. Hui et al. designed a low-level SMC for 

SFF based on nonlinear relative dynamics of circular reference orbit in another study3. They used 

the controller to control leader, follower and entire-formation maneuvering in low-Earth orbits. 

Second order sliding mode controller was also applied to control of spacecraft relative translation 

by Pukdeboon4. In another research, Hui and Li presented a terminal SMC to reduce fuel consump-

tion, track desired trajectory and accomplish formation reconfiguration in a proper time5. An adap-

tive terminal sliding mode controller was designed for spacecraft formation flying by Wang and 

Sun, in which Leader/Follower architecture was considered and the convergence of the desired 

trajectory to a neighborhood in finite time was proved analytically6. In some studies, adaptive SMC 

was used to control the relative position and attitude of spacecraft in a formation7,8. Bae and Kim 

designed an adaptive controller based on neural network to compensate the modeling error, external 

disturbance and nonlinearities to improve the performance of the sliding mode controller7. 

Backstepping controller as a nonlinear controller is a recursive process to control nonlinear sys-

tems. It is based on Lyapunov theory and can be designed with a systematic strategy. The system 

is initially represented in small subsystems, then by a recursive approach virtual Lyapunov-based 

control signals are determined for each subsystems. Actual control law can be obtained from the 

last step9. So, the backstepping technique is a flexible approach in designing controllers for nonlin-

ear systems. Backstepping method was used to control spacecraft formation flying in some re-

searches1,10-12. Adaptive backstepping controller was designed for satellite formation with mass un-

certainty and thruster error in some studies 11,12. In another study, Kristiansen et al. developed an 

integrator backstepping approach based on nonlinear model of relative motion12.  

In the present work, sliding mode control and backstepping technique are combined to design a 

robust backstepping sliding mode controller (BSMC) for spacecraft formation control on elliptical 

orbits. After applying the backstepping method to incorporate the tracking errors and Lyapunov 

functions, a sliding mode controller is developed to guarantee the Lyapunov stability, handling all 

system nonlinearities, robustness against uncertainties and disturbances and tracking the desired 

formation. In this paper, it is assumed that the spacecraft move in low Earth orbits and are subjected 

to the perturbing effects of 
2J  

 and atmospheric drag. The performance of the proposed controller 

in tracking the desired trajectory is compared to a conventional sliding mode controller.  

SPACECRAFT RELATIVE MOTION DYNAMICS 

In this section, dynamic model of relative motion for SFF is specified. It is assumed that each 

spacecraft is a point mass. As shown in Figure 1,  1 , ,C X Y Z  is the inertial coordinate system and 

lr  and 
fr  are the position vectors of leader and follower spacecraft, respectively. The coordinate 

system 2 { , , }C x y z  is a moving frame located on the leader’s center of mass. Herein, y  axis is 

along the direction of ( )l tr , x  is along the direction of leader velocity vector and normal to
 

y , and 

z  axis completes the right-handed 2C  coordinate frame.  
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Figure 1. Inertial and Moving Coordinate Systems 

The dynamics of the leader and follower in the inertial reference frame can be written as 

3l l l l

lr


  r r d u

 

(1) 

3f f f f

fr


  r r d u

 

(2) 

where r  r  , 3 2= 398 600 km s  is the constant of the Earth gravity, u  is control input vector and 

d  is the vector of external disturbance. It is supposed that the follower spacecraft should be con-

trolled; the leader is subjected to perturbations, and it moves in an uncontrolled ballistic trajectory; 

therefore 0l u . Position vector of the follower relative to the leader is defined as 

 
T

f l x y z   r r . The nonlinear relative dynamics of the follower with respect to the mov-

ing frame is described as13 

( ) ( , , , , , )l l l l fN n       C F r D u  (3) 

where 

f l D d d  (4) 

D  is the differential perturbation subjecting to the formation and , 

2 2
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(5) 

and 
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(6) 

 

 

in which , , ,l a e   are the angular velocity, the orbital semi-major axis, the eccentricity and the true 

anomaly of the leader spacecraft, respectively. 

CONTROLLER DESIGN  

Sliding Mode Control 

 Sliding mode controller as a robust controller is an appropriate technique for nonlinear systems 

control. It provides a systematic approach to the problem of maintaining stability and consistent 

performance in the face of modeling inaccuracies14.  

Because 
2J  disturbance and atmospheric drag are dominant perturbations in low-Earth orbits, 

we consider them as external disturbances in this study. They have bounded values based on space-

craft altitude, so for 
iD  in (6) we have 

1,2,3i iD q i   (7) 

where the positive constant 
iq  is considered as15,16 

7 210 km siq   (8) 

The sliding surface is chosen as 

 s e e  (9) 

where 
d e    and 

d e   . 3,d d R  are the desired relative position and velocity of the fol-

lower. 
1 2 3[ , , ]Ts s ss and 1 2 3( , , )diag     are sliding surfaces and slopes of sliding surfaces, re-

spectively. 

According to the sliding mode control methodology14, the control input law is determined as 

( ) ( ) sgn( )f d        u C F e k s  (10) 

where 1 2 3( , , )diag k k kk  is the gain matrix determined based on the amount of uncertainties, dis-

turbance and reaching time to sliding surface. Sign function vector sgn( )s is a column matrix of 

sign functions 

 1 2 3sgn( ) sgn( ),sgn( ),sgn( )
T

s s ss  (11) 

To guarantee stability, Lyapunov second method is used; 
1

2

TV  s s  is considered as Lyapunov 

function and ik  is determined in such a way that 0V  . Thus by choosing i ik q , the closed-loop 

system will be globally asymptotically stable. In practice, sign functions in Equation (10) can be 

replaced with continuous saturation functions to eliminate chattering phenomenon, then the con-

troller law becomes 

( ) ( ) ( )f d sat ,        u C F e k  s  (12) 
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where  1 2 3( , ) ( , ), ( , ), ( , )
T

sat sat s sat s sat s   s and saturation function ( , )isat s   is 

 ( , )i i isat s s s    (13) 

where   is a positive scalar constant. 

Backstepping Sliding Mode Control 

In order to utilize the benefits offered by the sliding mode and backstepping controller, these 

two techniques are combined to develop a backstepping sliding mode controller for spacecraft for-

mation. First, state-space form of the nonlinear dynamic (3) is considered  1 2 1, X X X : 

1 2

2 2( ) ( ) f

 


      

X X

X C X F D u
 

(14) 

Tracking error can be defined as 

1 1 d X X  (15) 

so 
2 X   is considered as virtual control for first subsyestem. It can be determined from the first 

Lyapunov function as follows 

1 1 1
2

TV


 Z Z  
(16) 

where 0  ; accordingly 
1V is 

1 1 1 1

T T

dV       Z Z Z X  (17) 

Virtual control input is selected as 

1 1d  X K Z  (18) 

where 
1K is a positive diagonal matrix. So 1V  becomes 

1 1 1 1

TV    Z K Z  (19) 

which means that the first subsystem is asymptitically stable. The second step of the controller 

design follows by defining the new variable 2 2 Z X . So we have 

2 2 1 1 1 1 1

2 2( ) ( )

d

f

     


        

Z X X K Z Z K Z

Z C X F D u
 

(20 

Sliding surface is defined as 

2 1 s Z Z  
(21) 

where 
1 2 3( , , )diag     are the slopes of sliding surfaces. Second Lyapunov function is considered 

as follows 

2 1

1

2

TV V  s s  
(22) 

Differentiating (22) gives 
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 

 

2 1 1 1 2 1 1 2 1

1 2 1 1 1 2 2 1 1( ) ( )

T T T T

T T T

f

V  

 

       

             



 

Z Z s s Z Z K Z s Z Z

Z Z Z K Z s C X F D u Z K Z
 

(23) 

Backstepping sliding mode control law is designed as 

   2 2 1 1 2 3( ) ( ) sgnf        u C X F Z K Z K s K s  (24) 

where 
2K  and 

3K  are positive diagonal matrices. Thus Equation (23) is written as 

 2 1 2 1 1 1 2 3 sgnT T T TV        Z Z Z K Z s K s s D K s  (25) 

We know that i iD q , so we have 

 
3

3 3
1

sgn( ) ( )T

i i i
i

s q K


  s D K s  (26) 

thus by choosing 
3i iK q , the time derivative of Lyapunov function is simplified to 

2 1 2 1 1 1 2

T T TV    Z Z Z K Z s K s  
(27) 

Note that Equation (27) can be rewritten as  

2

TV  Z QZ
 

(28) 

where 

1 2 2

2 2

2

2

T T 




 
  

  
 
  

  



K K K I

Q

K I K

 

(29) 

and 1 2

T    Z Z Z . According to the Schur’s lemma17, if    2 1 4 0  K K I  matrix Q  is 

positive definite; Therefore 
1Z  and 

2Z  will converge to zero, and the asymptotical stability of the 

proposed backstepping sliding mode control system is guaranteed.  

In order to overcome the chattering phenomenon, saturation function (13) is considered instead 

of sign function in the proposed control input (24).  

SIMULATION RESULTS AND DISCUSSION 

The nonlinear model of spacecraft formation (3) is used for simulation purposes. For control 

part, it is assumed that   and   are measurable and available. The perturbation due to the Earth’s 

oblateness with respect to the inertial frame is given as15 

2

2

7 5

2 2

2

7 5

3

7 5

15 3

15 3

2

15 9

e

Z X X

J R Z Y Y
J

Z Z
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 
 

 
 
  
 
 
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 
  

r r

D
r r

r r

 

 

 

(30) 
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where 2 0.0010826J  , 6378.137eR  km is the mean equatorial radius of the Earth. This perturba-

tion can be transformed to the moving frame by using coordinate transformation. Atmospheric drag 

is also given as16 

21
ˆ

2

D

drag

C S
v

m
  vD  

(31) 

where m  is the mass of spacecraft, 
DC  is the drag coefficient, S  is the effective surface,   is the 

local atmosphere density, v  is the relative velocity of the spacecraft with respect to the atmosphere 

and v̂  is the related unit vector. Constant parameters are assumed as follows: 

2100kg 2 0.5mDm C S    

 

Figure 2. Three-Dimensional Trajectory of the Follower Using BSMC 

The most significant density variation is due to the height above the surface. Locally, this vari-

ation might be accounted for by the barometric formula16 

0

0( ) exp
h h

h
H

 
 

  
 

 
(32) 

where 
0  is the density at the reference height 

0h , and H  is the scaling height at 
0h . The reference 

values are selected as18 

13 3

0 0600km 1.454 10 kg m 71.835kmh H      

The initial orbital elements of the leader are supposed as: 

7378.137km 0.1 30 45 0a e i          
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Figure 3. Total Tracking Error 

The desired relative trajectory of the follower is a circular formation with a radius of 1 km in x-

y plane19. The center of the desired formation is located on (10000,0,0)m. The period of the follower 

movement entirely lies on the leader spacecraft angular velocity around the Earth and is obtained 

as 6300sT  . The initial relative errors of the follower in the moving frame are chosen as 

( ) ( 200 200 300)(m)

( ) (0 1.22 0)(m / s)

x y z

x y z

e e e

e e e

 


 
 

(33) 

The parameters of the both controllers are considered below 

6

4 4 6

1 2 3

0.001 diag(1,1,1), (4 10 ) diag(1,1,1)

(6 10 ) diag(1,1,1), (6 10 ) diag(1,1,1), 0.003 diag(1,1,1), (10 ) diag(1,1,1)



  

    

         





k

K K K

 

and 510   for both controllers.  
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Figure4. Tracking Error along x-, y- and z- Axis 

 

Figure5. Relative Velocity Error along x-, y- and z- Axis 

According to the selected gains, stability condition for both controllers is fulfilled. Figure 2 

shows a three-dimensional view of the follower motion relative to the leader using the proposed 
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backstepping sliding mode controller input. System’s response in reducing the tracking errors dur-

ing one period of movement using both controllers have been presented in Figure 3 and Figure 4. 

Relative velocity error has been also demonstrated in Figure 5. 

 

Figure 6. Control Inputs of the Follower Using BSMC and SMC 

As shown in the figures, the backstepping sliding mode controller has more accurate response 

in tracking the desired formation. Figure 6 shows control inputs, and fuel cost has been demon-

strated in Figure 7. Fuel cost can be obtained as 

 
0

V  dt
t

x y zu u u     (34) 

Table 1. Comparison of Both Controllers at the End of One Orbit 

Controller ( )e m  V( )m s  

BSMC 0.39  2.55  

SMC 0.74  2.98  

 

The performance of both controllers at the end of one orbit have been compared in Table 1, in 

which e  is total tracking error and V  is fuel cost. Based on the results, the proposed backstep-

ping sliding mode controller has a superior performance in tracking the desired trajectory and also 

has lower fuel cost compared with the conventional sliding mode controller. 
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Figure7. Fuel Cost of the Follower Using BSMC and SMC 

CONCLUSION 

In this study, a backstepping sliding mode controller was designed for spacecraft formation 

control on elliptical orbits. The controller design was based on the nonlinear model of spacecraft 

formation while perturbation of 
2J  and atmospheric drag were considered as external disturbances. 

Using Lyapunov second theory, the stability of the closed-loop system was guaranteed. In compar-

ison the performance of the proposed backstepping sliding mode controller to a conventional slid-

ing mode controller, simulation results confirmed more efficient and superior performance of the 

proposed controller in tracking the desired formation and fuel cost. 
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