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Abstract. When performing calculations to assess reliability of hydraulic structures of cascades of 

hydroschemes on the basis of probabilistic methods, the necessity to simulate random natural-climatic 

phenomena producing loads and effects on hydraulic structures arises. In particular, statistical series of 

random quantities of such important natural-climatic phenomena are considered: annual lowest average 

monthly temperatures, annual maximal amplitudes of average monthly temperatures. Each of the 

enumerated natural-climatic phenomena is characterized by presence of close correlation connections 

between random quantities when passing from one hydroscheme of the cascade to another. The necessity to 

consider correlation connections requires construction (simulation) of joint distribution law of random 

quantities system. The purpose of the work is simulation of joint distribution law of system of random 

variables that do not satisfy the normal distributions, taking into account correlation connections between 

random variables when passing from one hydroscheme of the cascade to another. Methods of the theory of 

correlation and methods of mathematical statistics with the use of software package MathCad were used in 

the course of the investigation. Simulation of joint law of distribution of system of random variables that do 

not satisfy normal distributions, taking into account correlation connections between random variables when 

passing from one hydroscheme of the cascade to another, and also assessment of accuracy of results, that 

were performed, have shown advantages of this approach from the viewpoint of accuracy of results obtained 

by different procedures. The results can be used in probabilistic calculations of reliability of hydraulic 

structures and cascades of hydroschemes. 

1 Introduction 

Assessment of safety and reliability of hydraulic 

structures on the basis of probabilistic methods is 

regulated by normative documents [1–9]. Taking into 

account the extremely high potential danger of hydraulic 

structures, improvement of methods of assessment of 

their reliability is an important and relevant problem. 

During performing calculations on assessment of 

reliability of hydraulic structures of hydroscheme 

cascades, necessity to simulate distribution laws of 

random natural-climatic phenomena that create loads and 

effects on hydraulic structures arises. In this 

investigation the approaches that allow simulating a joint 

law of distribution of system of random quantities that 

do not satisfy the normal distributions in the closed form, 

and also obtaining the conditional distribution laws of 

random quantities of natural-climatic phenomena taking 

into account correlation connections, are realized. 

2 Analysis of recent researches 

Statistic series of random quantities of such important 

natural-climatic phenomena, obtained by direct 

measurements in dam sites of hydroschemes of the 

Dnieper cascade of hydroelectric stations: annual 

maximal flood discharges Qmax,i, annual maximal ice 

thickness hmax,i, annual lowest average monthly 

temperatures tmin,i, annual maximal amplitudes of 

average monthly temperatures tmin,i were investigated 

by methods of probability theory and mathematical 

statistics with substantiation of the proposed distribution 

laws in investigations [10–12]. Each of the enumerated 

natural-climatic phenomena is characterized by presence 

of close correlation connections between the random 

quantities when passing from one hydroscheme of the 

cascade to another. Investigations [11, 13] deal with 

revealing correlation connections between random 



 

quantities of natural-climatic phenomena in 

hydroschemes of the Dnieper cascade of hydroelectric 

stations. The necessity to take into account correlation 

connections between natural-climatic phenomena 

requires construction (simulation) of joint distribution 

law of random quantities system, which is realized in 

investigation [11]. In the mentioned sources, distribution 

laws of random variables of natural-climatic phenomena, 

that enter into the system, do not satisfy the normal 

distributions, therefore approaches to transform them 

into the normal laws by way of the use of the 

corresponding transformations were used. Principles of 

construction of the joint distribution law of system of 

random variables that satisfy the normal distributions are 

widely presented in present-day investigations [14–16]. 

Investigations of two-dimensional and multidimensional 

joint distribution laws of systems of discrete and 

continuous random variables that do not satisfy the 

normal distributions are proposed in investigations [15–

31]. Two-dimensional and multidimensional 

distributions with multiple correlation connections are 

presented in investigations [21, 23–26]. Application of 

non-linear regression models is presented in 

investigation [22]. Multidimensional distribution laws of 

random variables simulated with the use of the copula 

theory are presented in investigations [29, 32–39], in 

particular, hydrologic mode of hydrosystem in flood 

period is simulated in investigation [32]. 

The performed critical analysis of the present-day 

investigations and publications made it possible to 

formulate the purpose and determine the objective of the 

investigation. The objective of the investigation is 

development of the algorithm of construction of joint 

distribution law of random variables system taking into 

account correlation dependences between the natural 

factors: between annual maximal flood discharges of the 

watercourse (r. Dnieper); between annual lowest average 

monthly temperature at hydroschemes of the Dnieper 

cascade; between annual maximal amplitude of 

variations of temperature of outdoor air at the 

hydroschemes of the Dnieper cascade; between annual 

maximal ice thickness at the hydroschemes of the 

Dnieper cascade. 

The purpose of the work is simulation of joint 

distribution law of system of random variables that do 

not satisfy the normal distributions, taking into account 

correlation connections between random variables when 

passing from one hydroscheme of the cascade to another. 

Methods of the theory of correlation and methods of 

mathematical statistics with the use of software package 

MathCad were used in the course of the investigation. 

3 Results and discussion 

Joint density of distribution of continuous system of 

random variables (Х1, Х2), that satisfy the lognormal 

distributions [15, 19, 27, 28, 31] is presented by 

expression (1): 
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1 , 2  – root-mean-square deviations of random 

variables Х1, Х2; 

1m , 2m  – mathematical expectations of random 

variables Х1, Х2; 

r  – correlation coefficient of random variables Х1, Х2. 

Distribution (1) presents lognormal distribution on 

the plane. In this case each of random variables Х1 or Х2 

has density of lognormal distribution: 
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Conditional law of distribution of random variable Х2 

at a fixed value of variable Х1 has form [31]: 

 
 

 























































 











 









2

1

1110

2

2210

2

2
2

2

12

10
2

10

12

1

12














mlog
r

mlog

r
exp

r
f

.   (3) 

But in practical calculations it is more convenient to 

use expressions (2–3) in closed form [14]: 
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Conditional mathematical expectation of random 

variable Х2 at a fixed value of variable Х1 has form [14]: 
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and conditional dispersion and standard deviation of 

random variable Х1 are determined by expressions: 
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   1212  D .    (8) 

Conditional mathematical expectation  21m , 

dispersion  21 D  and standard deviation  21  of 

random variable Х1 at a fixed value of variable Х2 are 

calculated analogously By this means five parameters 

are determined:  21 m ,  12 m ,  21 ,  12  , 

r  of density of distribution of continuous system of 

random variables (Х1, Х2), that satisfy lognormal 

distributions. 

The value of random variable Х2 is determined by 

conditional law of distribution with parameters  12 m , 

 12  : 
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Let us illustrate the presented approach by an 

example. We simulate the joint law of distribution of 

two-dimensional system of random variables (Х1, Х2), 

that satisfy lognormal distributions. Analysis of 

statistical data on annual maximal amplitudes of average 

monthly temperatures at hydroschemes of the Dnieper 

cascade, and also determination of parameters of their 

distribution functions is performed in investigation [12]. 

It is presented in Tabl. 1. Selection of function of 

distribution has been performed by comparison of 

deviations of probabilities р and maximal amplitude of 

monthly average temperatures t of actual values from 

analytical distribution. It is presented in Tabl. 2. 

It is found that probabilities of annual maximal 

amplitudes of average monthly temperatures in t. Kaniv, 

t. Kremenchuk can be presented by lognormal 

distribution. Parameters of the distributions for t. Kaniv: 

mathematical expectation mt1 = 24.59 С, standard 

deviation t1 = 1.16 С; for t. Kremenchuk: 

mathematical expectation mt2 = 25.77 С, standard 

deviation t2 = 1.17 С. 

Investigation of correlation connections between 

annual maximal amplitudes of average monthly 

temperatures by statistical data of observations at 

t. Kaniv and t. Kremenchuk, carried out in investigation 

[13], indicates close correlation dependence between 

annual maximal amplitudes of average monthly 

temperatures in dam sites of hydroschemes of the 

Dnieper cascade. 

Table 1. Parameters of distribution functions of probability of 

annual maximal amplitude of monthly average temperatures at 

geographical places of location of hydroschemes Dnieper 

cascade. 

Item observation 

Logarithmic-normal distribution 

mathematical 

expectation 

standard 

deviation 

t. Vyshhorod 25.16 1.16 

t. Kaniv 24.59 1.16 

t. Kremenchuk 25.77 1.17 

t. Kamyanske 27.43 1.16 

t. Zaporizhzhia 27.00 1.16 

t. Nova Kakhovka 26.72 1.16 

Table 2. Results of assessment of accuracy of calculations of 

probability of annual maximal amplitude of monthly average 

temperatures at geographical places of location of 

hydroschemes of Dnieper cascade. 

Item observation 

Logarithmic-normal distribution 

deviations of 

probabilities 

р,  

deviations of 
maximal 

amplitude of 

monthly average 

temperatures 
t,  

t. Vyshhorod 2.8 0.4 

t. Kaniv 3.7 0.6 

t. Kremenchuk 4.2 0.8 

t. Kamyanske 2.8 0.5 

t. Zaporizhzhia 6.9 0.9 

t. Nova Kakhovka 2.9 0.5 

By results of correlation analysis of statistical 

samples of maximal amplitude of average monthly 

temperatures of outdoor air, °C, correlation coefficient of 

two samples at t. Kaniv and t. Kremenchuk is r = 0.871. 

It is presented in Fig. 1. 

The linear regression equation is taken as 

  xbbxy  10 ,   (10) 

where  xy  – regression of pairs of statistical series of 

annual maximum amplitudes of average monthly 



 

temperatures in the alignments in the geographical 

locations of hydropower plants of the Dnieper cascade; 

x  –  statistical series of the annual maximum amplitude 

of average monthly temperatures along the X axis; 

0b , 1b  – empirical coefficients. 

 

Fig. 1. Graph of the linear regression function of the statistical 

series of the annual maximum amplitude of the average 

monthly outdoor air temperatures, С, observed in t. Kaniv (X 

axis), for the statistical series of the annual maximum 

amplitude of the average monthly outdoor air temperatures, С, 

observed in t. Kremenchuk (Y axis): - - -  graph of the linear 

regression function; • • •  statistical series. 

Sample correlation coefficients, sample covariance, 

standard errors are calculated. It is presented in 

Tabl. 3, 4, 5. 

Table 3. The results of statistical processing of the annual 

maximum amplitude of the average monthly outdoor air 

temperatures, C in the geographical locations of hydropower 

plants of the Dnieper cascade for the period of observations 

from 1966 to 1977 and from 1979 to 2008. 

Item 

observation 

(reservoir) 

Selective 

average, С 

The 

standard 

deviation 

Selective 

dispersion 

Kyiv 

Reservoir 
25.7 2.7 7.3 

Kaniv 

Reservoir 
24.7 3.3 11.2 

Kremenchuk 

Reservoir 
25.5 3.4 11.5 

Middle 

Dnieper 

Reservoir 

26.2 3.6 12.9 

Dnieper 

Reservoir 
26.0 3.4 11.6 

Kakhovka 

Reservoir 
25.0 3.1 9.3 

Using expression (1), we can construct joint density 

of distribution f(1(t1), 2(t2)) of two-dimensional 

system of random variables (Х1 = t1, Х2 = t2), that 

satisfy lognormal distributions with parameters for 

t. Kaniv: mt1 = 24.59 С, t1 = 1.16 С; and 

t. Kremenchuk: mt2 = 25.77 С, t2 = 1.17 С. It is 

presented in Fig. 2. 

Table 4. The empirical coefficients of linear regression 

equation (10) of statistical series of the annual maximum 

amplitude of the average monthly outdoor air temperatures, C 

in the geographical locations of hydropower plants of the 

Dnieper cascade for the period of observations from 1966 to 

1977 and from 1979 to 2008. 

Item observation 

(reservoir) 

Coefficients 

b0 b1 

Kyiv Reservoir – 

Kaniv Reservoir 
0.412 0.946 

Kaniv Reservoir – 

Kremenchuk 

Reservoir 

3.583 0.884 

Kremenchuk 

Reservoir  – Middle  

Dnieper Reservoir 

1.026 0.989 

Middle Dnieper 

Reservoir  – Dnieper 

Reservoir 

2.034 0.914 

Dnieper Reservoir – 

Kakhovka Reservoir 
2.897 0.853 

Table 5. The results of correlation analysis of statistical series 

of the annual maximum amplitude of the average monthly 

outdoor air temperatures, C in the geographical locations of 

hydropower plants of the Dnieper cascade for the period of 

observations from 1966 to 1977 and from 1979 to 2008. 

Item 

observation 

(reservoir) 

Correlation 

coefficient of 

two 

statistical 

series 

Covariance 

of two 

statistical 

series 

Standard 

error 

Kyiv 

Reservoir – 

Kaniv 

Reservoir 

0.761 6.6 2.2 

Kaniv 

Reservoir – 

Kremenchuk 

Reservoir 

0.871 9.5 1.7 

Kremenchuk 

Reservoir  – 

Middle 

Dnieper 

Reservoir 

0.936 10.9 1.3 

Middle 

Dnieper 

Reservoir  – 

Dnieper 

Reservoir 

0.964 11.3 0.9 

Dnieper 

Reservoir – 

Kakhovka 

Reservoir 

0.950 9.4 1.0 



 

 

Fig. 2. Function of density of distribution f(1(t1), 2(t2)) of 

system of two correlated variables t1, t2, that satisfy 

lognormal distributions. 

Conditions (11–12), those function of joint density of 

distribution f(1(t1), 2(t2)) of system of two correlated 

random variables [14] t1, t2 must obey, – are satisfied 

     01111 t,tf  ,  (11) 

         122112211  
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
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tdtdt,tf  .   (12) 

We obtain conditional law of distribution 

f(2(t2)1(t1)) of random variable t2 at fixed value of 

t1 in analytical form by expressions (4–5). 

Conditional mathematical expectation 

m(2(t2)1(t1)) of random variable t2 at fixed value of 

t1 is obtained in analytical form by expression (6). Its 

numerical value is m(2(t2)1(t1)) = 25.65299 С. 

Conditional dispersion D(2(t2)1(t1)) and standard 

deviation (2(t2)1(t1)) of random variable t2 at 

fixed value of t1 is obtained in analytical form by 

expressions (7–8). Their numerical values equal 

D(2(t2)1(t1)) = 1.36911 С
2
, (2(t2)1(t1)) = 

=1.17009 С. 

Random probability of annual maximal amplitudes of 

average monthly temperatures p(t1) = p(t2), 

distributed from 0 to 1 is specified. By known 

probability of amplitude of average monthly 

temperatures p(t2), using conditional distribution law 

(9) with parameters m(2(t2)1(t1)), (2(t2)1(t1)), 

we determine the quantile – the value of amplitude of 

average monthly temperatures t2 simulated. 

The value of random variable t2 is determined by 

conditional distribution law (9) with parameters 

m(2(t2)1(t1)), (2(t2)1(t1)). It is presented in 

Fig. 3. 

 

Fig. 3. Probability curve for annual maximal amplitude of 

average monthly temperatures at dam site of Kremenchuk 

hydroscheme (t. Kremenchuk) on the coordinates 

t2 simulated, C – annual maximal amplitude of average monthly 

temperatures, p(t1),  – probability. 

In investigations [11], substitution of 
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i = 1…n, into output statistical series was used to 

transform laws of distribution of statistical data of annual 

maximal amplitudes of average monthly temperatures at 

hydroschemes of the Dnieper cascade into normal 

distributions, where ti – corresponding members of the 

output statistical series, tcond,i – corresponding members 

of the transformed statistical series; mean(t) – the 

average value of annual maximal amplitude of average 

monthly temperatures of the output statistical series; a, 

b – empirical coefficients. It is presented in Tabl. 6. 

Table 6. Parameters of transformation (13) of distribution laws 

of annual maximal amplitude of monthly average temperatures 

t, C at geographical sites of location of hydro schemes of 

Dnieper cascade. 

Item 

observation 

(reservoir) 

mean(t), C 
Coefficients 

a b 

Kaniv Reservoir 

(t. Kaniv) 
24,733 1,05 0,15 

Kremenchuk Reservoir 

(t. Kremenchuk) 
25,458 1,01 0,25 

Dnieper Reservoir 

(t. Zaporizhzhia) 
25,975 1,04 0,24 

Conditional distribution laws of lowest monthly 

average temperatures and of maximal amplitudes of 

monthly average temperatures according to [40] 

correspond to normal law if values of expression (14) are 

within the confidence interval: 
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і,condі,cond

t

tmintmax



 
,   (14) 

where max(tcond,i) – maximal values of maximal 

amplitudes of monthly average temperatures of 

transformed normal distribution; min(tcond,i) – minimal 

values of maximal amplitudes of monthly average 

temperatures of transformed normal distribution; 

(tcond,i) – standard deviations of values of maximal 

amplitudes of monthly average temperatures of 

transformed normal distribution. 

When the number of members of statistical series 

n = 24 and significance level р = 10, the lower 

boundary of the interval is 3.41, the upper boundary of 

the interval is 4.52. It is presented in Tabl. 7. 

Table 7. Confidence intervals (14) of transformation of 

distribution laws of annual maximal amplitude of monthly 

average temperatures t, C at geographical sites of location of 

hydro schemes of Dnieper cascade. 

Item observation 

(reservoir) 
(max(tcond, i) – min(tcond, i))/ 

(tcond, i) 

Kaniv Reservoir 

(t. Kaniv) 
3,41  4,20  4,52  

Kremenchuk 

Reservoir 

(t. Kremenchuk) 

3,41  4,40  4,52 

Dnieper Reservoir 

(t. Zaporizhzhia) 
3,41  4,21  4,52 

For annual maximal amplitudes of average monthly 

temperatures t1 cond and t2 cond at dam sites of two 

hydroschemes, that are specified by normal distribution 

law as random correlated variables with the 

corresponding parameters: mathematical expectations 

mt,1 cond, mt,2 cond, standard deviations t,1 cond, t,2 cond, 

correlation coefficient rt,1 cond,t,2 cond, correlation 

moment Кt,1 cond,t,2 cond, variation coefficient Cv; random 

probability of annual maximal amplitudes of average 

monthly temperatures p(t1 cond), distributed from 0 to 1 

is specified. By normal distribution law with parameters 

presented above mt,1 cond, t,1 cond, quantile – the value 

of annual maximal amplitudes of average monthly 

temperatures t1 cond - is determined by formulas: 

 ,mt

rmm

cond tcond 
cond t

cond t

cond t,cond tcond tcond t,cond t
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1

2
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


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    (15) 

2
21221 1 cond t,cond tcond tcond t,cond t r    .   (16) 

Parameters of conditional distribution law 

mt1 cond,t2 cond, t1 cond,t2 cond are being determined. By 

known probability of the value of annual maximal 

amplitudes of average monthly temperatures p(t2 cond), 

using conditional distribution law, quantile – the value of 

quantity of annual maximal amplitudes of average 

monthly temperatures t2 cond - is being determined. 

Recalculation of the value of annual maximal amplitudes 

of average monthly temperatures t1 cond, t2 cond, 

presented by conditional distribution law with 

substitution of formula (13), into real annual maximal 

amplitudes of average monthly temperatures t1 real, 
t2 real at dam sites of hydroschemes is being performed. 

It is presented in Fig. 4. 

 

Fig. 4. Points of the probability curve of annual maximal 

amplitude of average monthly temperatures at dam site of the 

Kremenchuk hydroscheme (t. Kremenchuk) on the coordinates 

t2, C – annual maximal amplitude of average monthly 

temperatures, p,  – probability: + – observed amplitude of 

average monthly temperatures t2, C;  – amplitude of 

average monthly temperatures t2 real, C, calculated by 

transformation into conditional normal distribution law [11]; 

 – amplitude of average monthly temperatures t2 simulated, C, 

calculated by two-dimensional lognormal distribution law. 

Deviations of the values of amplitudes of average 

monthly temperatures, obtained by different procedures, 

from the observed data were assessed by comparison of 

their standard deviations. It was found that deviation of 

amplitudes of average monthly temperatures t2 real, C, 

calculated by transformation into conditional normal 

distribution law [11], from the observed points of annual 

maximal amplitude of average monthly temperatures is 

(t2 real) = 2.227 C. Deviation of amplitudes of average 

monthly temperatures t2 simulated, C, calculated by two-

dimensional lognormal distribution law, from observed 

points of annual maximal amplitude of average monthly 

temperatures is (t2 simulated) = 1.682 C. Difference 

between (t2 real) = 2.227 C and (t2 simulated) = 

= 1.682 C is 24.5. 

Deviation of amplitudes of average monthly 

temperatures t2 simulated, C, calculated by two-

dimensional lognormal distribution law, from amplitudes 

of average monthly temperatures t2 real, C, calculated 



 

by transformation into conditional normal distribution 

law, is  = 2.11 C. 

4 Conclusions 

Taking into account the great diversity of distribution 

laws of random variables of natural-climatic factors 

connected by correlation dependencies, and 

mathematical complexity of construction of joint 

distribution laws, method which is based on 

transformation of distribution laws into normal form has 

advantage in the further use. Assessment of accuracy of 

the results obtained by different procedures is performed. 

The results can be used in probabilistic calculations of 

reliability of hydraulic structures and cascades of 

hydroschemes. 
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