
EasyChair Preprint
№ 15199

Erasure Coding Based Optimization in
Decentralized Distributed Storage Systems

Yiwei Gan, Zhijie Huang, Yulong Shi, Xiao Zhang and
Nannan Zhao

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 6, 2024

Erasure Coding Based Optimization in
Decentralized Distributed Storage Systems

Yiwei Gan∗, Zhijie Huang†, Yulong Shi‡, Xiao Zhang§, Nannan Zhao¶
School of Computer Science, Northwestern Polytechnical University, China

∗‡{ganyw,yulongshi}@mail.nwpu.edu.cn,
†§¶{jayzy.huang,zhangxiao,nananzhao}@nwpu.edu.cn

†corresponding author

Abstract—Nodes failure in decentralized distributed storage
systems is common. To ensure high data availability, these
systems employ data redundancy mechanisms, typically relying
on replicas. This paper proposes a decentralized data redundancy
scheme based on erasure coding, with Reed-Solomon and IPFS as
examples. The scheme reduces storage space and enhances fault
tolerance. Files are sharded and encoded across multiple nodes,
avoiding the redundancy of replicas. Users can retrieve any K
shards from N nodes to reconstruct complete files. This erasure
coding optimization combines efficient data exchange among
decentralized nodes with erasure coding technology, significantly
reducing storage space compared to the replica mechanism.
The implementation involves truncating and sharding the blocks
within the Merkle DAG generated by files, enabling flexible
adjustments to the code rate of erasure codes and the allocation
of storage nodes based on user needs and available resources.
This method achieves a balance between storage efficiency and
availability.

Index Terms—Decentralized Distributed Storage System, Era-
sure Coding, Reed-Solomon, IPFS, Merkle DAG

I. INTRODUCTION

With the rapid growth of data, traditional RAID storage
system, acting as a single-point storage solution, can no longer
meet the demands for massive data storage and fault tolerance.
Distributed storage systems, leveraging physical disks and
network technology, provide a solution by dispersing data
across different nodes in a cluster. This scheme not only
enhances data reliability and scalability but also facilitates the
decoupling of storage and computation.

Distributed storage systems can be categorized into cen-
tralized and decentralized. Centralized distributed storage sys-
tems, such as Google File System (GFS) [1] and Hadoop
Distributed File System (HDFS) [2], are well-known for their
large-scale storage capacity and robust data fault tolerance.
However, these systems heavily rely on the metadata man-
agement and scheduling capabilities of a master node, which
introduces a significant risk of a single point of failure.

Decentralized distributed storage, which does not rely on a
central node, addresses the limitations of centralized systems.
Prominent decentralized systems such as Sia [3], Storj [4],
and IPFS [5] provide enhanced scalability and fault tolerance.
IPFS, for example, utilizes content addressing and P2P net-
working to enable decentralized data storage and transmission.
While IPFS aims to create a global, decentralized network for

file storage and sharing, it currently lacks support for erasure
codes.

This paper focuses on enhancing the fault tolerance and
storage efficiency of IPFS by adopting erasure coding instead
of replication-based fault tolerance in decentralized distributed
storage. This scheme leverage P2P networks, enabling nodes
to interact directly without the need for central coordination,
which reduces the burden on central nodes and enhances
cluster scalability. Furthermore, the equal status of nodes
ensures that the system remains operational even in the event
of nodes failures.

The main contributions of this paper can be summarized as
follows:

1) A decentralized storage optimization scheme that utilizes
erasure coding, which has been experimentally validated
for reliability.

2) A shard allocation algorithm designed for decentralized
storage systems.

3) Implementation of Merkle DAG-based erasure encoding
and decoding techniques.

4) A method to recover complete files from a decentralized
storage system, even in the event of node failures and
some shards being corrupt. Which is based on content-
addressing and unique file identification, ensuring the
integrity and availability of files in the system.

II. BACKGROUND AND MOTIVATION

A. Fault Tolerance for Distributed Storage Systems
Currently, the primary data fault tolerance mechanisms in

distributed storage systems can be divided into two types:
replication and erasure coding.

• Replication: replication involves maintaining multiple
copies of data across various nodes to ensure data avail-
ability. For example, the Google File System (GFS) em-
ploys replication by duplicating data at the chunk level.
While this approach provides high data availability, it has
several drawbacks, including increased storage costs and
high write amplification. Furthermore, to maintain con-
sistency across these replicas, a robust synchronization
mechanism or consensus algorithm is necessary to ensure
the cluster’s status remains consistent.

• Erasure Coding: erasure coding is a technique that divides
original data into data shards and generates parity shards,

which are then distributed across various nodes. This
method allows the original data to be reconstructed from
the remaining shards in the event of shards corruption
or loss. Compared to replication, erasure coding signifi-
cantly reduces the need for data synchronization between
nodes, which decrease the load on both the storage system
and network. This method enhances storage efficiency
and enables the flexible adjustment of redundancy to
balance storage resources with fault tolerance. However,
erasure coding requires computational resources during
encoding and decoding. Moreover, even though it’s less
than replication, erasure coding is also susceptible to
write amplification during the encoding phase. For exam-
ple, HDFS+ [6] employs Reed-Solomon codes for erasure
coding, dividing data into shards and distributing them
across nodes. This system also implements both online
and offline encoding strategies to accommodate various
data access patterns. Additionally, Local Reconstruction
Codes (LRC) [7] can be used to accelerate data recovery
by utilizing additional redundant space.

B. Erasure Coding in Decentralized Distributed Storage

Decentralized storage systems, which leverage global de-
vices for peer-to-peer (P2P) data storage, operate without a
central control node. This approach enhances scalability and
bolsters fault tolerance. Erasure coding is frequently used
in decentralized systems due to the relative instability of
nodes. For instance, Storj, a decentralized content storage
network, employs Reed-Solomon (RS) codes with a (40,20)
configuration, meaning that data is split into 40 shards and
20 parity shards are generated for recovery. Storj connects
users to storage nodes via ”satellites”, which coordinate
metadata storage and facilitate data transfer. While erasure
coding significantly enhances data reliability and availability,
Storj’s dependency on satellites and the Ethereum network for
conducting transactions and coordination somewhat limits its
level of decentralization compared to IPFS.

Regarding erasure coding in IPFS, Shin et al. [8] shown
that incorporating erasure coding into IPFS Cluster can reduce
storage costs compared to the original replication mechanisms.
Their study focused on the evaluation of the storage overhead
for availability of erasure coding in 22 nodes IPFS Cluster but
did not delve into the specifics of implementation. While Ling
et al. [9] proposed a decentralized Alpha Entanglement (AE)
codes scheme for IPFS. This approach enables users to achieve
a reliability level comparable to replication while consuming
less storage and incurring only a minor bandwidth overhead.
However, this is merely a proof-of-concept implementation
aimed at demonstrating how AE codes contributes to IPFS
and has not been tested in a decentralized environment. Our
scheme implement a comprehensive erasure coding solution
within the IPFS Cluster and conduct extensive tests to eval-
uate its effectiveness and reliability in a small decentralized
environment. Our testing process will cover various scenarios
and conditions to simulate real-world usage patterns, allowing

for a comparative analysis with the replication fault tolerance
mechanism.

C. the Challenges of Decentralized Erasure Coding

Erasure coding in decentralized systems like IPFS presents
unique challenges due to the lack of a central authority and
the dynamic nature of the network.

1) Decentralized Network: In decentralized systems, all
nodes can communicate and exchange data with each other
without any hierarchical roles. IPFS allows nodes to join and
leave freely, using the Bitswap mechanism to facilitate data
exchange. When a IPFS node requires data blocks, it first
searches its local storage. If the block is not found, it sends
a request to connected peers or the Kademlia DHT [10], as
illustrated in Fig. 1. The Bitswap mechanism manages these
interactions, and each node maintain multiple connections to
enhance data retrieval reliability and speed. For erasure coding
in IPFS, the challenge is to allocate shards effectively in this
unstable environment, which will be addressed in III-E on the
hash-based shard allocation algorithm.

Fig. 1. IPFS Kademlia DHT network

2) Decentralized File Structure: Decentralized storage sys-
tems often use Merkle Directed Acyclic Graphs (Merkle
DAGs) [11] to organize data. In IPFS, files are segmented
into 256 KB blocks, which are then constructed into a Merkle
DAG. This structure is pivotal for enabling efficient data
verification and retrieval. The Merkle DAG architecture brings
several benefits:

• Efficient Data Verification: Files are segmented into 256
KB blocks and verified through their unique CIDs, re-
ducing the need for extensive data transfer and ensuring
correctness with minimal overhead.

• Content Addressing: IPFS uses cryptographic hash func-
tions to uniquely identify data blocks, enabling efficient
retrieval and minimizing metadata overhead.

• Tamper-Proofing: Each node in the Merkle DAG repre-
sents a data block, and changes to the tree alter the CID
(Content Identifier), ensuring data integrity and version
control. This feature is the basic of Merkle-CRDT [12].

• Deduplication: Identical data blocks share the same CID,
allowing the system to automatically identify and avoid

2

duplicates, which optimizes storage usage across the
network.

Integrating erasure coding into IPFS requires maintaining the
Merkle DAG structure. Which involves adapting the encoding
and decoding processes to preserve the integrity of DAG
nodes.

III. ERASURE CODING FOR DECENTRALIZED STORAGE

A. Definitions and Symbols

To clarify, the following basic concepts commonly used in
this paper are described:

• Erasure Coding: In storage systems, erasure coding is a
method used to enhance data availability and ensure fault
tolerance beyond simple replication. It involves splitting
data into K shards and encoding them to generate N−K
parity shards. The total of N shards is then distributed and
stored across different nodes. For data recovery, retrieving
any K shards is sufficient to decode and reconstruct the
complete data, thus achieving fault tolerance.

• MDS (Maximum Distance Separable): This property
ensures that raw data can be decoded from any K out
of N shards, satisfying the Singleton bound [13] of
the encoding method. This achieves theoretically op-
timal storage utilization by maximizing data recovery
efficiency.

• Stripe: An instance of erasure coding consisting of
N individual shards distributed across different nodes.
Stripes are independent of each other.

• Code Rate: The ratio of the number of data shards K
to the total number of shards N in a stripe. A code
rate greater than 0.5 is considered high, otherwise, it is
considered low.

• IPFS (InterPlanetary File System) [14]: A decentral-
ized distributed storage system and modular file transfer
protocol designed for content addressing and P2P net-
working. It enables decentralized storage and transfer of
data, aiming to create a global, decentralized network for
storing and sharing files.

• IPLD (InterPlanetary Linked Data): Designed for in-
teroperability across various data formats and storage
models, IPLD is the standard implementation in IPFS
for creating addressable and linked decentralized data
structures. IPLD allows the processing of different data
sources using a unified interface, facilitating the creation
of complex formats across multiple data sources.

• Pin: In IPFS, the term ”pin” indicates marking a data
block or Merkle DAG to prevent it from being garbage
collected. In IPFS Cluster, pinning describes files fixed
within the cluster and includes various types such as
DataType, MetaType, ClusterDAGType, and ShardType.
The processing of ShardType is particularly relevant to
sharding and erasure coding implementations.

B. Principle of Erasure Coding

This paper employs Reed Solomon codes (RS codes), which
were proposed by Reed and Solomon in 1960 [15] and are

now widely utilized in the field of distributed storage systems.
By performing polynomial operations over a Galois field, RS
codes, which are MDS codes, can adapt to any number of data
and redundancy disks. This flexibility in adjusting the code rate
makes them highly suitable for decentralized storage [16].

The principle involves multiplying the data shards with a
specific generating matrix to generate parity shards, which are
then distributed across the decentralized network. In case an
error occurs during data transmission or storage, the original
data can be retrieved by using the inverse matrix of the
generating matrix to decode the data from the remaining
N − K parity shards, accommodating the unreliable nature
of nodes.

RS encoding and decoding operations in a Galois field
support a variety of matrix, with common examples being
Vandermonde and Cauchy matrices. These matrices support
transversal coding, with polynomial operations performed in
the Galois fields GF (2w) [17].

When using Vandermonde matrix for RS encoding, the
vector representation of the data shards is denoted as MT =
(m1,m2, . . . ,mk). By specifying the parameters (i.e., K
data shards and N − K parity shards), the Vandermonde
encoding matrix for the Galois field can be transferred as
GT = [gj,i](0<i≤n,0<j≤k). The encoded stripe, including data
shards and parity shards, is given by:

WT = GM =

g1,1 · · · g1,k
...

. . .
...

gn,1 · · · gn,k

m1

...
mk

 =

w1

...
wn

 (1)

Since RS codes satisfy the MDS property and the coding
matrix is invertible, it is only necessary to acquire any K
rows of W to recover the full amount of data by the inverse
operation of the matrix:

M = G−1
K WT

K (2)

Where GK is the submatrix of G containing K rows, and
WK is the corresponding K rows of the encoded data.

C. Erasure Coding in IPFS Cluster

IPFS Cluster, as a cluster management tool for IPFS, does
not change the main mechanism of IPFS. Its primary role is
IPFS orchestration and pinset management. IPFS Cluster is
capable of tracking and recording the status information of
each IPFS node as well as IPFS Cluster node. When a user pins
a file to the cluster, the IPFS Cluster node can communicate
with all IPFS in the cluster via P2P network and stream
the data of blocks to specific IPFS nodes. Additionally, each
IPFS Cluster node maintains the same pinset via the Raft or
CRDT consensus protocol. The pinset includes pins’ structure
containing the Peer IDs of storage nodes, organization, and
file types.

Based on the cluster orchestration and metadata manage-
ment features provided by IPFS Cluster, we further implement
decentralized erasure coding fault tolerance. The default fault

3

tolerance mechanism of IPFS Cluster is replication, which
copies files to all IPFS peers in the cluster. The number
of peers where files are stored can be changed by setting
replication-min and replication-max. If a file is
added using erasure coding, the replication-min and
replication-max are automatically set to 1. Then each
data shard and parity shard will be stored in only one IPFS
peer respectively, and only one replica of shards will be
maintained in the cluster. The remaining peers only need to
store the metadata associated with this pin.

Files are segmented into 256 KB blocks in RAW format
before erasure coding. These blocks are then interconnected
and structured into a Merkle DAG by InterPlanetary Linked
Data (IPLD). Only the leaf nodes of the Merkle DAG are
required to store the RAW data, while the non-leaf nodes are
Protobuf nodes that store the CIDs of the child nodes. After
successfully constructing the Merkle DAG, the data blocks
of the Merkle DAG are sent to the DAG Service module in
order for further processing. Since the construction adheres
the depth-first-search Merkle DAG construction strategy, the
last Protobuf node serves as the root of this file.

When the DAG Service receives data blocks, it trans-
mits blocks to a specific IPFS peer over the P2P network.
Concurrently, the data blocks are also directly dispatched to
the erasure coding module. After obtaining data blocks, the
erasure coding module will incorporate the data blocks into
shards in accordance with a specific shard size. In cases where
a data block does not fully occupy a shard, the remaining space
is appropriately padded with zeros to guarantee a complete
shard. After accumulating K data shards, the erasure coding
module will encode the data shards and form a stripe along
with the parity shards. Utilizing the hash-based allocation
algorithm, IPFS Cluster will find the suitable IPFS peer for
each shard within the stripe and dispatch it.

Upon the completion of the shards transfer, the IPFS Cluster
adds this pin to the pinset, within which there are included the
CID of the file, ClusterPin, data shards, parity shards, and the
Peer IDs of the stored file.

And after that, the consensus layer further maintains the
file as well as the pinset state. The process of file sharding
and encoding is shown in Fig. 2, and the corresponding
pseudocode is presented in Algorithm 1.

Algorithm 1 Sharding and Erasure Encoding
1: fileStream← open(file)
2: blocks← fileStream.Read(256KB) ▷ IPFS blocks size
3: DAG,CID← layoutMerkleDAG(blocks)
4: shardSize← getShardSize(fSize,K,N)
5: dataShards← mergeBlock(blocks,shardSize)
6: parityShards← RSEncode(dataShards,K,N)
7: shards← dataShards + parityShards
8: peers← consensus module
9: shard2peer← shardAllocate(file.Meta,shards,peers,K,N)

10: IPFS← sendShards(shard2peer,shards)
11: shardPins← createPin(dataShards,shard2peer)
12: pins← createPin(parityShards,shard2peer)
13: clusterDAGPin← createPin(pins,shardPins,metadata)
14: pin← createPin(DAG.Root,CID,clusterDAGPin)

D. Shard Size Determination

When adding files to a decentralized distributed file system,
shard size is critical to the efficiency of adding files and the
performance of RS encoding and decoding. IPFS Cluster can
be considered a P2P storage system, as characterized by Lin
et al. [18]. The optimal selection of shard size is ideally
influenced by several factors: the reliability of the nodes µ,
the code rate of the erasure coding K/N , and the desired
reliability A of the target files. Consequently, the chosen shard
size results in a variable number of file blocks. The relationship
between the number of file blocks b and these factors is
outlined below:

Ab(b) =

Nb
N−K∑
i=b

(Nb
K

i

)
µi(1− µ)

Nb
N−K −i (3)

When considering the reliability of erasure coding, K
N−K ·

µ > 1 indicates a higher reliability compared to replication.
While increasing the number of shards can enhance availabil-
ity, we need to consider that typical behaviour of IPFS cluster
peers neither join nor leave the cluster at extreme frequencies.
Furthermore, the performance limitations of the IPFS nodes
need to be taken into account, particularly their capacity to
handle the reading and processing of a single stripe during
encoding and decoding tasks.

Given these factors, it is prudent to set a reasonable
threshold for shard size in relation to the total stripe size.
A practical ceiling for the stripe size might be set below 1
GB to ensure that the processing demands on IPFS nodes
remain manageable. Moreover, to leverage the benefits of
erasure coding, files should be divided into at least K shards
as much as possible. Within this framework, it is beneficial to
maximize the shard size as much as possible, balancing the
trade-off between reliability and performance to optimize the
overall efficiency of the IPFS Cluster.However, it is usually
impossible to control the actual total size of the IPFS storage
file blocks during the file addition process because additional
metadata such as non-leaf nodes of the Merkle DAG, nodes
of the folder, etc., need to be maintained when converting the
file into a Merkle DAG.

When determining the shard size, we can first calculate the
file size, then estimate the size of the metadata, and finally
divide the total size according to the number of peers to
get the shard size. This method effectively reduces metadata
and maximizes computing resources utilization. It minimizes
the number of RS encoding operations while leverage the
benefits of erasure coding, ensuring that the actual shard size
is closely approximate N ·FileSize

K . The pseudocode is shown
in Algorithm 2.

E. Hash-based Shard Allocation Algorithm

After determining the shard size, it’s necessary to decide
where each shard will be stored. The default storage scheme
for IPFS Cluster is replication. Nevertheless, as we use RS
codes for different IPFS peers to store distinct data and parity
shards for fault tolerance, we need to assign each shard to a

4

Fig. 2. IPFS erasure encoding process for RS(6,4)

Algorithm 2 Shard Size Determination
1: procedure getShardSize(fSize,K,N)
2: BlockSize← 256KB ▷ IPFS blocks size
3: Threshold← 1GB ▷ threshold of stripe
4: DAGMetaSize← fSize/5KB ▷ metadata cost of

Merkle DAG
5: ShardSize← (fSize+DAGMetaSize)/N
6: while ShardSize× N > Threshold do
7: ShardSize← ShardSize/2
8: end while
9: ShardSize← ShardSize+ 0.5× BlockSize

10: return ShardSize
11: end procedure

specific IPFS peer. The shard allocation algorithm is shown in
Fig. 3.

Fig. 3. shard allocation

The goal is to evenly distribute shards among IPFS peers,
allowing each peer to store both data and parity shards. Since
user access data shards more frequently than parity shards,
which can make the IO throughput of the IPFS peers more
balanced. The implementation steps are as follows:

1) Get Peer IDs of all IPFS peers within the cluster through
the consensus module.

2) Hash the combination of the file metadata and Peer
IDs, then sort the hash result as the key to ensure the
consistent order of IPFS peers across different shards
of the same file. As the hash value changes, the order
of IPFS peers assigned to each file may vary, thus
distributing the storage load of data and parity shards
evenly among the IPFS peers.

3) Allocate the shards to the specified IPFS peers. The first
half of the nodes are assigned to store data shards, while
the second half is reserved for parity shards. Employing
Round-Robin Scheduling, the storage of both type of
shards begins with the first IPFS peer in the ordered
list. This sharding allocation algorithm ensures optimal
fault tolerance when adding files.

Once the destination for each shard is determined, the data
blocks corresponding to the shard are then sent from the IPFS
Cluster node to different IPFS peers through the P2P network,
and the shard is pinned at the corresponding IPFS peer.

What’s more, in scenarios where the number of nodes is
insufficient to evenly distribute the shards, such as having five
nodes available to store 14 shards (comprising 10 data shards
and 4 parity shards), our approach is to designate 4 nodes
as data nodes and 1 node as parity nodes, then use Round-
Robin Scheduling to evenly distribute 10 data shards to 4 data
nodes and 4 parity shards to 1 parity node. The corresponding
pseudocode is presented in Algorithm 3.

F. Data Recovery in IPFS Cluster

In decentralized distributed storage, the instability of nodes
may lead to data loss, especially when replication fault toler-
ance is utilized, if the last replica goes down, the correspond-
ing data may be lost permanently. Employing fault tolerance
with erasure coding, where each node stores merely one
shard of the file, reduces the storage pressure and enables the

5

Algorithm 3 Hash-based Shard Allocation
1: procedure shardAllocate(file.Meta,shards,peers,K,N)
2: hashFunc← sha256
3: peersWithMeta← merge(peers,hashFunc(file.Meta))
4: peers← sort(peers,orderFunc(peersWithMeta))
5: dNum← ⌈K× len(peers)/N⌉
6: if dNum = len(peers) then
7: dNum← dNum− 1
8: end if
9: dPeers← peers[:dNum]

10: pPeers← peers[dNum:]
11: shard2peer← new map[Shard][Peer]
12: for shard,i in shards do
13: if shard is dataShard then
14: shard2peer[shard]← dPeers[i%len(dPeers)]
15: else
16: i← i-K
17: shard2peer[shard]← pPeers[i%len(pPeers)]
18: end if
19: end for
20: return shard2peer
21: end procedure

storage of more data. Additionally, we can introduce cronjob to
periodically check whether a certain shard exists in each node.
When the file is at the risk of being lost, it will be recovered
promptly and stored in a shard on a new node. When some
nodes go down, the process of file recovery is as follows:

1) Get file metadata by CID. Obtain the MetaPin associ-
ated with the CID to acquire ClusterDAGPin for shard
retrieval.

2) Retrieve shards rely on ClusterDAGPin. We can obtain
the CIDs of the data blocks within the shard by reading
the metadata of ClusterDAGPin, then use the Bitswap
protocol to download the block contents and reassemble
the shards. While parity shard can be regarded as an
individual Merkle DAG, which can be retrieved directly
through the DAG Reader.

3) Parallel retrieve mechanisms. Let’s focus on the scenario
of retrieving one stripe. The primary process fetches
all shards of a stripe from the IPFS network, while a
secondary process simultaneously begins Reed-Solomon
decoding with the first k shards to reconstruct any
missing data. Both processes operate in parallel, and
either can be halted once successful retrieval is achieved.

4) Repin the recovered shards to ensure their availability
on the IPFS network. For data shards, divide them
into blocks according to the metadata, stream these
blocks, and pin the ShardPin. For parity shards, pin
them directly as files using the original parameters. This
method circumvents the need to repin the entire file,
streamlining the recovery process.

The pseudocode for the primary part of the data recovery
process is presented in Algorithm 4.

IV. EXPERIMENTS AND ANALYSES

The previous section describes how to implement RS codes
in IPFS Cluster, this section will conduct performance tests
to prove its reliability. The system is deployed on 37 Ali
Cloud servers spanning several regions in China. Each node is

Algorithm 4 Data Recovery
1: metaPin← CID
2: clusterDAGPin← metaPin.Reference
3: shard2peer← extract(clusterDAGPin.Metadata)
4: peers← consensus module
5: piple← make Shard piple ▷ used by shards

transmission from Retrieve to Decode
6: createThread(Retrieve(piple,shard2peer,peers))
7: createThread(Decode(piple,K,N))
8: procedure Retrieve(piple,shard2peer,peers)
9: shards← new []Shard

10: for each shard,peer in shard2peer do
11: shard← getShard(shard,peer) ▷ fetch shard

from IPFS peer concurrently
12: piple← shard
13: shards← shard
14: if len(shards) == K then
15: return shards
16: end if
17: end for
18: end procedure
19: procedure Decode(piple,K,N)
20: shards← new []Shard
21: while len(shards) < K do
22: shards<-piple
23: end while
24: shards← RSDecode(shards,K,N)
25: IPFS← repin(shards,shard2peer,peers)
26: return shards
27: end procedure

configured with a dual-core CPU, 4 GB of RAM, and 20 GB
of SSD storage, with a public broadband limit of 100 Mbps.

A. Storage Efficiency

In the experiments, we employ both erasure coding and
replication to add files of different sizes and compare their
performance with the same fault tolerance level. The experi-
ments use RS(14,10), which split files into 10 data shards and
generate 4 parity shards, permitting any 4 nodes to fail. Hence,
5-Replica fault tolerance is chosen as a compare experiment.
The experiment shows the variation of the time required to add
files using different fault tolerance methods by adding 21 files
of different sizes multiple times, recording the time required
for each addition and calculating the average.

As shown in Fig. 4, when the file size is less than 16 MB,
the time to add a file using erasure coding is slightly longer
than replication. However, when the file size is greater than or
equal to 16 MB, the time taken to add a file using erasure
coding is gradually less than that required for 5-Replica
replication. Especially for large files like 1 GB, the time to
add a file using erasure coding is even less than half of that
using replication. This is because 5-Replica addition requires
replicating the file to five nodes, resulting in more storage
and transmission overhead. Whereas erasure coding merely
distributes data and parity shards to each node. When the file is
small, the advantage of erasure coding is not obvious because
it requires encoding and distribution of shards, but as the file
size increases, the time required for encoding and distributing
shards in erasure coding increases at a much slower rate
compared to the 5-Replica, and thus the fault-tolerant scheme
of erasure coding demonstrates a higher degree of efficiency.

6

Fig. 4. response time of adding files

Although there are some fluctuations in the time needed to
add files in both ways, through multiple tests, for small files
(less than 16 MB), replication is slightly faster than erasure
code. For larger files (greater than 16 MB), erasure coding
gradually outperforms replication in terms of efficiency of
addition. Especially for large files (greater than 256 MB), the
addition time of erasure coding is significantly reduced and
demonstrates higher efficiency. This indicates that file size
is an important factor when choosing a storage strategy. For
larger files, the use of erasure coding can significantly reduce
storage and transmission overheads. Based on the test results,
we can observe that the time required to add a file using
erasure coding is always less than replication when the file is
large. The average throughput from these tests is summarized
in TABLE I.

TABLE I
Average Throughput of addition

Method Average Throughput

RS(14,10) 7.57 MB/s
5-Replica 2.71 MB/s

The table shows that the average throughput of adding a file
using RS(14,10) is always greater than that of the 5-Replica
method. Additionally, we calculate the total size of the data
blocks actually pinned in IPFS and divide the portion larger
than the original file size by the original file size to obtain the
write amplification factor. We measured the write amplification
factor for files of varying sizes, added using erasure coding,

and compared it with the 5-Replica method. The results are
depicted in Fig. 5.

Fig. 5. write amplification

When the file size is less than 0.5 MB, the write amplifica-
tion factor for two methods of adding files is 4. In other words,
when the file is small, the actual content written to disk when
adding the file is nearly five times the size of the file. This
occurs because the default block size of IPFS is 256 KB, RS
encoding generates 4 parity shards based on the data shards of
one block. As a result, the write amplification factor is 4 when
the file size is less than or equal to 256 KB. When the file size
is larger than 256 KB, the shard size grows larger, the number
of blocks that constituting the Merkle DAG increases, and the
write amplification factor decreases, eventually approaching
the desired write amplification factor of 0.4 for RS(14,10),
which is in line with the evaluation of [8]. On the other hand,
the write amplification factor of replication is basically kept to
4, as it requires replicating all the blocks of the Merkle DAGs
to 5 different IPFS peers.

B. Recovery Efficiency

In this section, the primary objective is to evaluate the data
recovery efficacy following the loss of 4 data storage nodes. In
this experiment, we maintain the same parameters as before
but randomly shut down 4 nodes that stored the file, then
recover this file and repin the shards to the IPFS Cluster.
Specifically, we measured the time taken to retrieve the shards
from the remaining nodes, decode them back into the original
data, and repin the recovered shards to the IPFS Cluster. The
results of this process are illustrated in Figure 6, and we also
calculated the average throughput for recovery, summarized in
TABLE II.

It can be inferred that when dealing with small files, the
retrieval time may fluctuate. This is due to the fact that during
shard allocation, if the storage node of a shard coincides with
the retrieval node, or if the storage node and retrieval node are
located in the same LAN, it will speed up the retrieval of the
shard, and the logic for repinning the shard remains the same.

It’s important to note that the main bottleneck in file
recovery lies in the processes of retrieving a sufficient number
of shards and repinning the file shards, while the throughput
of RS decoding is much larger than that of retrieving and
repinning the shards.

7

Fig. 6. recovery time

TABLE II
Average Throughput of recovery

Method Average Throughput

ecrecovery all step 10.33 MB/s
ecrecovery retrieve shards 10.16 MB/s

RS decode 2254.40 MB/s
ecrecovery repin 10.79 MB/s

V. CONCLUSION

In this paper, we propose an erasure coding optimization
for decentralized storage, which reduces write amplification
of RS(14,10) by 87.5% with the same fault tolerance as 5-
Replica. Furthermore, the average throughput of adding files
using erasure coding is 7.57 MB/s with a broadband limitation
of 100Mbps, which is almost triple that of the 5-Replica
replication. When it comes to recovery efficiency, the average
throughput is 10.33 MB/s, and the bottleneck mainly resides
in the network transmission of retrieving and repinning the
shards.

Future work encompasses improving the erasure encoding
and decoding of Merkle DAGs by modifying the structure
of Merkle DAGs to accommodate the calculation of erasure
coding and exploring the most appropriate erasure codes to
facilitate highly efficient encoding and decoding. Additionally,
which also includes exploring diverse code rates for erasure
codes and optimizing better shard allocation algorithms to
make it suitable for dynamic scenarios of decentralized dis-
tributed systems.

ACKNOWLEDGMENT

This work is supported in part by the National Key Re-
search and Development Program (No.2022YFB2702101),
and the National Natural Science Foundation of China (No.
62272394).

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proceedings of the nineteenth ACM symposium on Operating systems
principles. Bolton Landing NY USA: ACM, Oct. 2003, pp. 29–43.
[Online]. Available: https://dl.acm.org/doi/10.1145/945445.945450

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST). Incline Village,
NV, USA: IEEE, May 2010, pp. 1–10. [Online]. Available:
http://ieeexplore.ieee.org/document/5496972/

[3] T. S. Foundation, “GitHub - SiaFoundation/siad: The Sia daemon.”
[Online]. Available: https://github.com/SiaFoundation/siad

[4] Storj Labs, “GitHub - storj/storj: Ongoing Storj v3 development.
Decentralized cloud object storage that is affordable, easy to use,
private, and secure.” [Online]. Available: https://github.com/storj/storj

[5] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,” arXiv
preprint arXiv:1407.3561, 2014.

[6] F. RomanusIshengoma, “HDFS+: Erasure Coding Based Hadoop Dis-
tributed File System,” International Journal of Scientific & Technology
Research, vol. 2, no. 9, 2013.

[7] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing Elephants: Novel
Erasure Codes for Big Data,” Jan. 2013, arXiv:1301.3791 [cs, math].
[Online]. Available: http://arxiv.org/abs/1301.3791

[8] H. Shin, M. Lee, and S. Kim, “Space and cost-efficient reed-solomon
code based distributed storage mechanism for ipfs*,” in 2023 14th In-
ternational Conference on Information and Communication Technology
Convergence (ICTC), 2023, pp. 1165–1169.

[9] Q. Liang and Y. Yang, “Making the interplanetary file system
(ipfs) more reliable,” in EPFL, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:259305472

[10] I. Baumgart and S. Mies, “S/Kademlia: A practicable approach towards
secure key-based routing,” in 2007 International Conference on Parallel
and Distributed Systems. Hsinchu, Taiwan: IEEE, 2007, pp. 1–8.
[Online]. Available: http://ieeexplore.ieee.org/document/4447808/

[11] M. Szydlo, “Merkle tree traversal in log space and time,” in Advances in
Cryptology - EUROCRYPT 2004, C. Cachin and J. L. Camenisch, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 541–554.

[12] H. Sanjuan, S. Poyhtari, P. Teixeira, and I. Psaras, “Merkle-CRDTs:
Merkle-DAGs meet CRDTs,” Apr. 2020, arXiv:2004.00107 [cs].
[Online]. Available: http://arxiv.org/abs/2004.00107

[13] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes. Elsevier, 1977, vol. 16.

[14] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of IPFS: a storage layer
for the decentralized web,” in Proceedings of the ACM SIGCOMM 2022
Conference. Amsterdam Netherlands: ACM, Aug. 2022, pp. 739–752.
[Online]. Available: https://dl.acm.org/doi/10.1145/3544216.3544232

[15] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain
Finite Fields,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 2, pp. 300–304, Jun. 1960. [Online]. Available:
http://epubs.siam.org/doi/10.1137/0108018

[16] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized
Erasure Codes for Distributed Networked Storage,” IEEE Transactions
on Information Theory, vol. 52, no. 6, pp. 2809–2816, Jun. 2006,
arXiv:cs/0606049. [Online]. Available: http://arxiv.org/abs/cs/0606049

[17] L. Xianghong and S. Jiwu, “Summary of research for erasure
code in storage system,” Journal of Computer Research and
Development, vol. 49, no. 1, pp. 1–11, 2012. [Online]. Available:
https://crad.ict.ac.cn/cn/article/id/2654

[18] W. Lin, D. Chiu, and Y. Lee, “Erasure code replication revisited,” in
Proceedings. Fourth International Conference on Peer-to-Peer Comput-
ing, 2004. Proceedings. Zurich, Switzerland: IEEE, 2004, pp. 90–97.
[Online]. Available: http://ieeexplore.ieee.org/document/1334935/

8

