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Abstract—This paper is the first to evaluate the feasibility
of deploying QUIC, a new UDP-based transport protocol cur-
rently undergoing IETF standardization, directly on resource-
constrained IoT devices. It quantifies the storage, compute,
memory and energy requirements of the Quant QUIC stack on
two different IoT platforms, and finds that a minimal standards-
compliant QUIC client currently requires approximately 58 to
63 KB of flash, around 4 KB of stack, and can retrieve 5 KB of
data in 4.2 to 5.1 s over 0-RTT or 1-RTT connections, using less
than 16 KB of heap memory (plus packet buffers), less than 4 KB
of stack memory and less than 1.09 J of energy per transaction.

I. INTRODUCTION

QUIC is a secure new transport protocol for the general
Internet. Originally designed by Google [1] and deployed
in the Chromium browser and on Google’s backend servers
since 2013 [2], the original “gQUIC” variant was the starting
point for the standard version of QUIC that the Internet
Engineering Task Force (IETF) is likely to publish in 2020.
QUIC—which is no longer an acronym [3]—runs over the
User Datagram Protocol (UDP) to traverse network address
translators (NATs) and firewalls, borrows congestion control
algorithms and related concepts [4] from the Transmission
Control Procotol (TCP), and uses the latest Transport Layer
Security protocol version 1.3 (TLS13) [5] to provide strong,
low-overhead security [6]. It multiplexes many concurrent
application-level streams into a single end-to-end connection,
like the Stream Control Transmission Protocol (SCTP) [7],
and will add advanced features in upcoming versions, such as
partial reliability (also inspired by SCTP) or multipath operation
similar to Multipath TCP (MPTCP) [8].

The initial focus of QUIC is to securely and efficiently
carry Hypertext Transfer Protocol (HTTP) traffic; HTTP-over-
QUIC has been dubbed “HTTP/3” [9] to differentiate it
from HTTP/2 [10], which operates over TCP and Transport
Layer Security (TLS) version 1.2 but offers nearly-identical
application-level semantics. However, QUIC is a general-
purpose transport protocol and likely to replace TCP and TLS
for many other applications.

Because of their enormous importance to the smooth opera-
tion of the Internet, QUIC and TLS13 have been and continue
to be the subject of intense scrutiny. For TLS13, the IETF
changed their standardization process [11] to incorporate results
from parallel security analyses to harden the standard. One of
several such examples corrected an interaction attack based

on an automated analysis of the protocol [12]. The ongoing
standardization of QUIC and its resulting implementations are
similarly informed by concurrent academic work [13, 14].

It would be of great benefit to the Internet of Things
(IoT) if the research and engineering effort spent on securing
the web protocol suite could be leveraged, because effective
and lightweight security mechanisms for IoT remain a key
challenge. It is not necessary to implement the complete
web public key infrastructure (Web PKI); a subset of the
concepts and mechanisms might already bring substantial
benefits. Compared to plaintext application protocols on top of
UDP, QUIC offers strong security, Internet-ready congestion
control, rich applications semantics (streams, soon partial
reliability and multipath operation) and has many rapidly
maturing implementations [15].

Severely constrained microcontrollers with only a few KB
of random-access memory (RAM) and a few tens of KB
of persistent storage will likely continue to require carefully
tailored, minimal mechanisms. It is unlikely that these low-end
“Class 0” devices [16] will be able to adopt even a select few of
the key components of the Web PKI. However, due to Moore’s
law, many more capable devices with tens of KB of RAM and a
few hundreds of KB of persistent storage have become available
at interesting price points. This paper investigates whether these
somewhat more powerful devices have sufficient capabilities
to exchange data using QUIC. Specifically, it quantifies the
storage, compute, memory and energy requirements of the
Quant QUIC stack on two different IoT platforms.

Section II describes the hardware and system software
used in this paper in more detail. Section III discusses the
Quant QUIC stack and its underlying Warpcore packet I/O
framework ported to the two IoT platforms. Section IV presents
measurements of the storage, compute, memory and energy
requirements of running QUIC on IoT devices. Section V
discusses related work, and Section VI concludes this paper.

II. SYSTEM HARDWARE AND SOFTWARE

The two IoT platforms chosen for this paper are the Particle
Argon [17] and an ESP32-DevKitC V4 development kit [18],
referred to in the rest of the paper as “Argon” and “ESP32”.
Table I compares key attributes of the two platforms.

The Argon runs Particle’s Device OS system software [19],
which is built on top of an underlying FreeRTOS [20]; release
1.4.3 is used for the experiments in this paper. Device OS is
quite bulky, leaving only about 60 KB RAM (out of 256 KB)
and 125 KB flash memory (out of 1 MB1) available for an

1The Argon includes an additional 4 MB of flash that is accessible over an
SPI bus, but that can only be used to store data, not code (this memory is
used to emulate the EEPROM).

Network and Distributed Systems Security (NDSS) Symposium 2020
23–26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.23xxx
www.ndss-symposium.org

https://dx.doi.org/10.14722/ndss.2020.23xxx
www.ndss-symposium.org


Table I. IOT PLATFORMS USED FOR THE MEASUREMENTS.

Platform Particle Argon ESP32-DevKitC V4

SoC Nordic Semiconductor nRF52840 ESP32-D0WDQ6
CPU ARM Cortex-M4F Tensilica Xtensa LX6
Instruction set 32-bit 32-bit
Clock speed 64 MHz 240 MHz
FPU IEEE 754 single-precision IEEE 754 single-precision
Hardware crypto ARM TrustZone CryptoCell-310 AES, SHA, RSA, and ECC
RAM 256 KB 520 KB
Flash 1 MB (+ 4 MB SPI) 4 MB
Other memory 4 KB EEPROM (emulated) 96 B e-Fuse
WLAN IEEE 802.11 b/g/n IEEE 802.11 b/g/n
OS Device OS 1.4.3 RIOT-OS 2019.10
Toolchain arm-none-eabi-gcc 5.3.1 xtensa-esp32-elf-gcc 5.2.0

application on the Argon. This is due to maintaining background
connectivity to Particle’s device cloud, which allows remote
maintenance and access to devices, including over-the-air
firmware updates. It is unfortunately impossible to disable
device cloud connectivity without major changes to Device OS.

The ESP32 normally runs Espressif’s “IoT Development
Framework” (ESP-IDF), which is also FreeRTOS-based. To
investigate whether different underlying IoT OSs affect the
feasibility of running QUIC, we chose instead to run the ESP32
under RIOT [21], a completely different OS that shares no code
with FreeRTOS. RIOT is also an attractive platform, because it
supports much a more diverse set of hardware; currently around
170 different boards of about a dozen different architectures.
In the future, we would like to evaluate QUIC on other boards.

These two devices were chosen, because they represent
examples of the top end of current resource-constrained devices;
at least the class that is not powerful enough to run general-
purpose OSs such as Linux. They also both support WLAN
connectivity, which eases experimentation.

III. QUANT AND WARPCORE

Quant [22] is a BSD-licensed C implementation of the
emerging IETF standard for QUIC. Quant uses Warpcore [23]
as its network stack and focuses on high-performance datacenter
networking. However, Quant and Warpcore are reasonably
lightweight at ca. 10 300 and 3700 lines of code2, respectively.

A. Warpcore

Warpcore is a minimal BSD-licensed C implementation of
an userspace UDP/IP/Ethernet stack for the netmap [24] packet
I/O framework. It prioritizes performance over features, and
over full standards compliance. It supports zero-copy send and
receive operations, implementing a run-to-completion model
that uses neither threads, timers nor signals. Warpcore also has
a backend implementation for the POSIX Socket application
programming interface (API), allowing applications linking
against the Warpcore API to work without netmap.

Device OS on the Argon includes the lightweight IP stack
(LWIP) [25], which has enough POSIX compliance to support
the Warpcore Socket backend without major modifications3.

Although RIOT claims to support LWIP as an add-on
module, it does not function at present. RIOT’s native generic

2Plus ca. 3000 for netmap support (not compiled in on IoT platforms).
3As part of this research, a few patches were contributed to Device OS to

expose some required LWIP calls, such as poll.

network stack (GNRC) [26] is not POSIX compliant, IPv6-
only and lacks core features, such as the ability to “poll”, i.e.,
block execution while waiting for network input. Nevertheless,
a bare-bones Warpcore backend was implemented, to evaluate
QUIC on RIOT at least to some degree.

Warpcore exports an API that has a socket-like concept for
an endpoint of a network session, but I/O operations occur on
chains of pre-allocated packet payload buffers, allowing for
zero-copy I/O. Neither LWIP nor GNRC support zero-copy I/O,
which is unfortunate for IoT OSs, given its benefits in terms
of computational and memory overheads.

B. Quant

Quant implements the QUIC transport layer but does not
implement an HTTP/3 binding (which is a future work, see
Section V). It implements an event-based architecture around a
tickless implementation [27] of hierarchical timing wheels [28].
Quant uses khash, a generic hash table based on double hashing
adopted from klib [29] to track connections by identifier
and for other purposes; khash was patched to avoid double-
precision math and to allow static allocation. Quant also
implements discrete interval encoding trees (DIETs) [30] to
concisely represent integer ranges, such as used for QUIC’s
acknowledgment (ACK) blocks. The DIET implementation is
based on splay trees [31], which are also used as a general
ordered data structure for some other purposes.

Stemming from Quant’s focus on high-speed datacenter
networking, these data structures are fast, but not particularly
optimized for constrained nodes. For example, they are not
particular frugal in their memory usage and rely on dynamic
memory allocation. Nevertheless, their footprint is sufficiently
small for IoT use. One topic for future work (see Section V)
is to replace these data structures with more suitable ones.

Besides Warpcore, the most important external dependency
of Quant is picotls [32], an MIT-licensed C implementation
of TLS13 supporting multiple engines that supply the necessary
cryptographic primitives. Its “minicrypto” engine is particularly
suited for embedded use, relying on micro-ecc [33] for
a reasonably fast secp256r1 implementation [34], and on
cifra [35] for most other cryptographic operations (X25519,
AES, etc.) Although both the Argon and the ESP32 have hard-
ware implementations of most if not all required cryptographic
operations needed by TLS13 (see Table I), neither OS makes
them available to applications, and picotls also does not have
an engine that would exploit their presence on either platform.

One critical limitation of the picotls “minicrypto” engine
is that it is currently missing support for verifying the peer
signature during the TLS handshake. This is a temporary
implementation limitation and not a limitation on the use of
TLS on constrained nodes; appropriate profiles exist [36].

IV. MEASUREMENT RESULTS

This section presents a several initial measurement results
to quantify the storage, compute, memory and energy footprints
of the Quant QUIC stack on the Argon and ESP32.
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Figure 1. Argon (top) and ESP32 (bottom) code sizes for different build
options, cumulative from left to right.

A. Code Size

We first investigate the static footprint of Quant and its
dependencies, i.e., we try to answer the question of how much
flash memory is required to hold their code and static data.

Figure 1 shows two bar diagrams—the top one for the Argon
platform, the bottom for the ESP32—that quantify the build
sizes of Quant under a combination of different build options,
which are cumulatively applied left-to-right. In addition to
reporting the overall binary size (on top of the respective bars),
the diagrams also show the sizes of Quant’s main components,
i.e., a minimal application4 performing a download of a 5 KB
object over WLAN, Quant and Warpcore, which make up the
main QUIC component, and picotls, cifra and micro-ecc,
which make up the TLS component. Not shown in Figure 1 are
the OS sizes for the two platforms, which weigh in at around
604 KB for the Argon5 and 267 KB for the ESP32.

Although both platforms claim support for link time
optimization (LTO), their use of outdated toolchains from
2015/16 (see Table I) with various LTO bugs can result in
link errors or non-executable binaries. The reported numbers
have therefore been obtained with LTO disabled. When the
platforms switch to newer toolchains with functioning LTO,
minor additional reductions in footprint are possible. For
example, on the ESP32 (where the build at least succeeds
with LTO enabled), the resulting binaries shrink by about 2 %.

The leftmost “baseline” bars show that a minimal applica-
tion using Quant requires 98 KB of flash on both on the Argon
and the ESP32, without any particular build options in addition
to the toolchain defaults (both already set -Os to optimize
for size, -DNDEBUG to disable assertions, etc.) Also, Quant by

4The application bar is not visible in the ESP32 diagram, because the code
size is only 483 B. The Argon application has more features, such as reacting
to button presses and signaling status via LEDs, and weighs in at 3 KB.

5RIOT is a bare-bones OS that only includes the minimal functionality
required by the application. Device OS has many more features, such as
connecting the device to Particle’s cloud, over-the-air firmware updates, etc.

default performs only single-precision floating point operations,
which are handled by the hardware on both platforms and
therefore do not require helper functions that increase the
binary size further (as double-precision math would.)

The next “32-bit only” bars quantify the sizes of the build
when the costliest 64-bit operations have been eliminated, result-
ing in around 4 to 5 KB of reductions. A large part is contributed
by the avoidance of 64-bit divisions, all occurrences of which
divide by constant values and can therefore approximated by
much cheaper multiplications with “magic” numbers, followed
by right-shifts [37]. Other savings accrue from using 32-bit
values (and math) for several internal QUIC variables, such
as packet numbers, window sizes and round-trip time (RTT)-
related measures (which are kept in µs).

By default, a Quant application can act as a QUIC server
and client at the same time (to enable proxying, etc.) Dropping
support for QUIC server mode (“only client” bars) yields an
additional 3 KB saving at the QUIC level over the “32-bit only”
builds, but a much more significant 11 to 14 KB reduction at
the TLS level. TLS13 is a complex and sufficiently asymmetric
protocol, and the removal of all server-side processing from the
binary is a big saver. The more modest savings at the QUIC
layer are mostly due to using zero-length connection identifiers
(IDs), which allow removal of a several data structures servers
need for ID-based lookups.

TLS13 requires implementing the AES_128_GCM_SHA256
cipher suite and recommends the implementation of both
AES_256_GCM_SHA384 and CHACHA20_POLY1305_SHA256. Like-
wise, it requires secp256r1 as a key exchange, and recommends
implementation of X25519 [5]. For IoT use, especially if soft-
ware updates are possible, it is likely enough to only implement
the minimum subset of those, i.e., the AES_128_GCM_SHA256
cipher suite and the secp256r1 key exchange. The “min.
ciphers” bars show that this leads to a further large 7 to 8 KB
code size reduction compared to the “client-only” measurement,
specifically, to the cifra component. Note that if Device OS
or RIOT were able to expose the crypto facilities present in the
hardware, cifra and possibly micro-ecc could be dropped
completely, yielding reductions of 5 KB and 4 KB, respectively.

Together, the build options above reduce the footprint of
Quant by about 25 to 30 %. It is possible to make some further
gains by giving up support for some features of QUIC, but
these gains are comparatively minor:

• QUIC features “connection migration”, which allows a client
to switch an established QUIC connection to a path through
a different interface. This is mostly useful for multi-homed
clients and long-lived connections, neither of which is likely
in an IoT scenario. The “w/o migration” bars quantify the
resulting build sizes when support for migration is not
compiled into Quant; a further reduction of about 3 KB.

• QUIC’s CONNECTION_CLOSE frames contain optional error
reasons, which are human-readable strings, and Quant by
default uses them for quite verbose messages. Dropping the
transmission of error reasons reduce the sizes of the builds by
1 to 2 KB, as shown by the “w/o err reasons” bars, because
these static strings are no longer part of the binary.

• A “stateless reset” can be sent by one endpoint that has
already dropped state for a QUIC connection to signal this

3
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Figure 2. Argon stack and heap sizes during a 5 KB download.

in an authenticated way to its peer. This is an optimization,
and not supporting stateless resets reduces the footprint of
Quant by another 1 KB (“w/o SR support” bars).

• Packet reordering is an occasional occurrence in many
networks. By default, Quant caches STREAM and CRYPTO
frame data that arrives out-of-order, to save the peer from
retransmitting it. However, the data structures to support this
caching have a cost and dropping reordered zero-RTT data
or all reordered data can avoid that cost. Doing so reduces
the footprint by 1 KB when dropping 0-RTT only (“drop
reor. 0-RTT” bars), and another 1 KB when dropping all
reordered data (“drop all reor.” bars).

• Quant by default collects connection statistics, similar to the
TCP_INFO structure in Linux [38]. Disabling this functionality
reduces the footprint by up to another 1 KB (“w/o info” bars).

Overall, a minimal Quant client requires 63 KB flash on
the Argon and 58 KB on the ESP32, a reduction of 36 % and
40 % over the initially measured baseline size, respectively.

B. Stack and Heap Requirements

This section quantifies the stack and heap memory require-
ments of running Quant on the Argon and the ESP32. To that
end, each device is requesting a 5 KB object from a server
on the same WLAN. The binaries running on the IoT devices
are instrumented (via -finstrument-functions) so that stack
size, heap size and the call stack depth is logged over a serial
connection whenever a function is entered or exited in the
application, Quant, Warpcore and picotls modules.

Due to the high overheads of logging this data over a slow
112.5 Kbit/s link, it is impractical to also instrument the cifra
and mirco-ecc cryptographic libraries, which have many small
functions that greatly increase the logging overhead. It is also
not possible to store this data on-device, due to its volume. The
data reported in this section are therefore not the maximum
stack and heap sizes, which are several hundred bytes higher.
Nevertheless, the data gives a reasonable understanding of the
progression of stack and heap memory usage and should give
a reasonably accurate picture of what the stack usage will be
when the cryptographic operations are offloaded to hardware.

Figure 2 and Figure 3 show the progression of the stack
sizes (top diagrams) and heap sizes (bottom diagrams) for the
Argon and the ESP32, respectively6. Also shown are cumulative

6In the diagrams on the left, a random 20 % of data points are plotted, to
reduce overplotting.
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Figure 3. ESP32 stack and heap sizes during a 5 KB download.

distribution functions (CDFs) of the raw data, to the right of
the respective time series plots. Note that time units are not
shown on purpose; the overheads of logging are so high7 that
their absolute values are meaningless. Each plot is subdivided
into several phases: the “init” phase (red background) covers
Quant and Warpcore initialization, the “open” phase (orange
background) covers the establishment of a QUIC connection to
the server, the “transfer” phase (green background) covers the
sending of the request and the reception of the 5 KB response,
and the “close” phase (blue background) covers closing down
the QUIC connection and releasing the resources allocated in
the “init” phase. Furthermore, the red horizontal line in the
heap plots shows the maximum available heap memory of
the given platform. Gaps in the time series occur either when
waiting for data from the peer, or when the non-instrumented
cryptographic modules or the OS execute.

The stack usage in Figures 2 and 3 is quite similar, apart
from the much longer “init” phase8 in Figure 3. In both figures,
stack usage during “open” almost reaches 3 KB, whereas it
remains around 1 KB during the “transfer” phase. The public
key cryptography involved in the TLS handshake obviously
requires more stack than the symmetric key cryptography
used during the data transfer. Unfortunately, what matters is
maximum stack usage during the execution, and a value of
3 KB is large for resource-constrained devices. Much of this
usage occurs in picotls, which uses several statically allocated
buffers of several hundred bytes (see Section V).

The heap usage in Figures 2 and 3 stays rather flat
throughout the execution, which is desirable behavior on
resource-constrained nodes. A main reason for this is that Quant
preallocates packet buffers during the “init” phase; this can be
observed in Figure 3, where the heap usage jumps by about
23 KB, which corresponds to the allocation of 15 maximum
transmission unit (MTU)-sized packet buffers9. Another 8 KB
are allocated for packet meta-data, an MTU-sized scratch space
for various en- and decoding operations, and other global data.
During the transfer, the heap size drops by another 4.5 KB due
to dynamic data structure allocation (ACK blocks, etc.)

Although the Argon reports more available heap (around
156 KB) compared to the ESP (around 142 KB), Device OS
uses more heap memory for its execution compared to RIOT,

7Even exporting the reported data took tens of seconds.
8For the ESP32, “init” includes associating to the WLAN, whereas the

Argon performs this procedure during boot (before instrumentation begins),
hence the much longer “init” phase.

9The same is somewhat visible on the very left of Figure 2
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Figure 4. Argon battery voltage (left) and transaction durations (right) for
repeated 1-RTT and 0-RTT connections.

leaving less for the application. On the Argon, heap usage is
around 128 KB, while it is around 64 KB on the ESP32.

C. Energy and Performance

This section quantifies the energy consumption and overall
performance of executing QUIC translations on resource-
constrained nodes. Due to the lack of a suitable battery for
the ESP32, this experiment was only performed on the Argon.
It is powered by an—initially fully charged—2000 mAh 3.7 V
lithium-ion polymer (LiPo) battery holding about 26 640 J of
energy. The Argon then continuously requests 5 KB objects
from a server located on the same WLAN, thereby slowly
draining the battery. Two separate runs are performed: one
where all connections perform a full 1-RTT handshake, and
another where all but the first connection instance use an
accelerated 0-RTT handshake. The two diagrams in Figure 4
show the results of these experiments.

The left diagram in Figure 4 plots battery voltage over time
for both the 1-RTT and 0-RTT runs. From a starting voltage
of approximately 4.1 V, the Argon drains its battery over the
course of about 42 to 45 h until its charge is insufficient to
power the device. Each battery charge is enough for 29 338
1-RTT and 31 844 0-RTT connections; each transaction takes
around 0.90 J and 0.83 J, respectively. Due to the coarseness
of the Argon’s battery level reporting, more experiments are
needed to verify whether this difference is due to a somewhat
higher initial charge at the beginning of the 0-RTT run or if
0-RTT connections do in fact consume measurably less energy.

The right diagram in in Figure 4 is a CDF of the
transaction durations for the 1-RTT and 0-RTT run. The median
1-RTT connection took 5.10 s compared to the median 0-RTT
connection at 4.74 s, an 8 % improvement.

V. FUTURE AND RELATED WORK

To the best of our knowledge, this paper is the first to inves-
tigate the feasibility of deploying QUIC directly on resource
constrained IoT devices. Another recent paper [39] investigated
using QUIC to transport Message Queuing Telemetry Transport
(MQTT) [40], by running a subset of the Google’s original
Chromium “gQUIC” code on Raspberry Pi Model 3B devices.
However, those are so much more powerful (quad-core ARMv8
Cortex A53 at 1.2 GHz, 1 GB RAM, many GB of storage) than
either of the two platforms investigated in this paper that is
questionable whether they even qualify as resource-constrained.

QUIC itself [1] has been the topic of several papers, focusing
on its deployment and performance on the Internet [41, 42],

especially for media traffic [43, 44, 45] and some of its core
components, such as its security [46] and multipath [47, 48]
frameworks.

In the broader IoT space, a several communication protocols
have been proposed; a recent paper [49] compares several of
the key ones, including the Constrained Application Proto-
col (CoAP) [50], the Advanced Message Queuing Protocol
(AMQP) [51] and MQTT [40].

The experimental results in Section IV should be expanded
to evaluate the performance of QUIC more fully. Specifically,
data upload cases should be measured in addition to the existing
measurements for downloads, and measurements should try
to quantify the overheads and performance of various QUIC
mechanisms, such as streams, frames, etc. Experiments should
vary the sizes of transferred objects, and the performance of
QUIC should be compared against plain TCP, TLS over TCP
as well as other IoT protocols such as CoAP or MQTT. Finally,
once the RIOT stack gains support for asynchronous I/O, a
performance comparison between the Argon and the ESP32—or
RIOT on other boards—may prove interesting.

Several other development-oriented items are future work:

• Quant currently implements the QUIC transport protocol [3,
4, 6] but not its HTTP/3 binding [9]. A future version of
Quant should optionally include support for HTTP/3, either
by depending on an existing implementation [52] or by
creating its own. An investigation like the one in Section IV
should quantify the resulting overheads.

• One of the largest consumers of runtime stack is picotls.
It should be straightforward to at least end its use of large
stack-allocated buffers, which may allow QUIC to support
more constrained hardware more easily.

• The hash and splay data structures in Quant are not particu-
larly suitable for embedded use. First, their implementation
as generic C macros causes code duplication when they
hold multiple different date types. Second, they optimize for
managing large numbers of elements efficiently, which is
unnecessary on constrained nodes, which will usually only
have one or at most a few active connections, and those
running at low speeds. More suitable data structures should
reduce the binary code size by several more KB.

• Making use of cryptographic operations provided by the
hardware, rather than relying on cifra and micro-ecc, has
the potential to reduce the required flash size, as well as
improve performance and reduce energy consumption.

• Since the preliminary energy measurements in Section IV-C
do not show significant energy benefits of using 0-RTT, a
future study should investigate if the TLS footprint could be
further reduced by dropping 0-RTT support.

• The measurements in the paper were performed over
WLAN. IPv6 over Bluetooth Low Energy (BLE) [53] or
IEEE 802.15.4 [54] may have different performance/energy
consumption behaviors, and hence may allow QUIC to run
on more constrained hardware. As a data point, the WLAN
driver on the ESP32 weighs in at 115 KB—this is almost
half of RIOT’s total size (267 KB) on that platform. Link
layers designed for IoT use, such as BLE or IEEE 802.15.4
should have smaller footprints.

5



With the improvements above, it may become possible
to consider experimenting with QUIC on 16-bit or even 8-bit
microcontrollers. Doing so will however entail other challenges,
such as lack of any floating-point support, etc.

VI. CONCLUSION

This paper presents a feasibility analysis of deploying
the upcoming IETF standard for QUIC directly on resource-
constrained 32-bit IoT edge devices. It finds that it is possible
to deploy a QUIC client in a few tens of KB of flash and
RAM, with a reasonable energy consumption and performance.
With some further effort, it may become possible to reduce the
required footprint to deploy QUIC on 16-bit microcontrollers.
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