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Abstract

Datasets for most music information retrieval (MIR) tasks
tend to be relatively small. However, in deep learning, in-
sufficient training data often leads to poor performance.
Typically, this problem is approached by transfer learning
(TL) and data augmentation. In this work, we compare
various of these methods for the task of multi-instrument
recognition. A convolutional neural network (CNN) is able
to identify eight instrument families and seven specific in-
struments from polyphonic music recordings. Training is
conducted in two phases: After pre-training with a mu-
sic tagging dataset, the CNN is retrained using multi-track
data. Experimenting with different TL methods suggests
that training the final fully-connected layers from scratch
while fine-tuning the convolutional backbone yields the
best performance. Two different mixing strategies — mu-
sical and non-musical mixing — are investigated. It turns
out that a blend of both mixing strategies works best for
multi-instrument recognition.

1 Introduction

Instrument recognition is an important task in MIR. The
goal of early research was to identify single instruments in
monophonic recordings. This task was usually approached
using hand-crafted features and traditional machine learn-
ing algorithms [1, 2]. Later, research shifted to predomi-
nant instrument recognition in polyphonic recordings. Only
recently, people started to think about the ultimate goal of
instrument recognition; namely multi-instrument recogni-
tion — whose aim is to identify all instruments in a poly-
phonic mixture. Formally, this is a multi-label classifica-
tion problem since multiple mutually non-exclusive labels
can be assigned to each instance. Lately, deep learning be-
came the preferred way to tackle multi-instrument recog-
nition and most other problems in MIR. Commonly, music
classification tasks — including multi-instrument recogni-
tion — are approached with CNNs using mel-spectrograms
as input. Macro Fl-scores of 85 % have been reported
for multi-instrument recognition in classical music record-
ings [3]. On the MedleyDB [4] dataset, class-wise F1-
scores up to 90 % were achieved using CNNs operating
on mel-spectrogram representations [5]. Deep learning ap-
proaches using raw audio as input [6] are usually inferior to
those which use 2D time-frequency representations. How-
ever, this might change in the future if datasets grow and
computing power increases. Besides CNNs, other archi-
tectures have also been explored. For instance, an atten-
tion model [7] obtained a macro F1-score of 81 % on the
OpenMIC [8] dataset.

Training of deep neural networks (DNNs) requires huge
amounts of data and the amount of skill required reduces as

the amount of training data increases [9, p. 19]. However,
even today’s biggest datasets for multi-instrument recog-
nition, such as OpenMIC, are small compared to datasets
for other audio signal processing tasks. This is mainly due
to copyright protection of music. TL is a good option to
boost generalization of DNNs for MIR tasks with insuffi-
cient data. For pre-training, there are several large-scale
audio and music datasets available [10, 11]. Promising re-
sults have been obtained with transfer of DNNs to vari-
ous audio analysis tasks, after pre-training on a huge audio
dataset [12]. For TL to be most effective, source and target
task should be similar.

In this paper, we focus on multi-instrument recognition
as a target task. For pre-training, we use a major music
tagging dataset [13]. Music tagging is perfectly suitable
as a source task, as it is highly related to multi-instrument
recognition; in music tagging, labels typically include
genre, instrumentation, mood etc., whereas in
multi-instrument recognition labels are limited to instru-
mentation. Besides TL, we use data augmentation to over-
come data scarcity. Fortunately, three major multi-track
datasets have been released lately [4, 14, 15]. Although
these multi-track datasets are much smaller than other au-
dio datasets, they allow extensive data augmentation by
mixing single-instrument tracks. In music source separa-
tion, good results have been obtained by randomly com-
bining sources from different songs [16]. However, this
data augmentation technique was never explored for multi-
instrument recognition. Moreover, at least for humans,
source separation and multi-instrument recognition are sig-
nificantly easier in case of such random, non-musical mix-
tures, i.e. each instrument plays in a different key and
tempo. In this work, we investigate if augmenting musical
mixtures with non-musical mixtures while training DNNs
results in performance gains for multi-instrument recog-
nition. Furthermore, results on various non-musical and
musical blending compositions are reported.

The paper is organized as follows. Section 2 introduces
the DNN model, data resources, TL and details about data
mixing. In Section 3 experimental results for various TL
and mixing approaches are presented. Section 4 concludes.

2 Method
2.1 Model Architecture

The classifier’s architecture (see Fig. 1) was adopted
from [17] and is similar to a VGG-Net [18] commonly used
for image classification. A stack of convolutional layers,
hereafter referred to as backbone, is followed by fully con-
nected layers. In the backbone, the time domain signal is
converted to a mel-spectrogram with 128 frequency bins.
A window length of 512 and a hop size of 256 are used to
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Figure 1: Architecture of the CNN used for multi-
instrument recognition.

compute the spectrogram representation. After that, seven
convolutional blocks are employed to find relevant patterns
in this time-frequency representation. Each block consists
of a 2D convolutional layer with a kernel size of 3 x 3 fol-
lowed by batch normalization, ReL.U activation and 2 x 2
max pooling. After seven convolutional blocks, the fre-
quency dimension is reduced to one. Finally, 1D max pool-
ing is applied over the time axis to shrink the time di-
mension to one as well. Since the last convolutional layer
has 512 kernels, the resulting output representation of the
backbone has a size of 512. The backbone extracts suit-
able representations from the mel-spectrograms. Subse-
quent fully connected layers learn non-linear combinations
of these features to support the decision whether a certain
class is active or not. Between the fully connected layers,
batchnorm and dropout are applied. In the last layer of
the classifier, a sigmoid activation function for each instru-
ment class maps the model’s predictions to values between
zero and one, therefore the outputs can be interpreted as
probabilities.

2.2 Data Resources

For TL, a combination of three multi-track datasets is used
— MedleyDB [4] (including MedleyDB 2.0 [19]), Mixing
Secrets [14] and Slakh [15]. After discarding songs which
exhibit severe crosstalk between the individual instrument
tracks, the first two datasets both feature approximately
130 songs and the last one contains 2100 songs. Note that,
although the Slakh dataset is superior when it comes to
size, several instruments sound quite unrealistic because
all audio was synthesized from MIDI files using virtual
instruments. In addition to the three multi-track datasets,
MTG-Jamendo [13], a large music tagging dataset contain-
ing around 55000 songs is utilized for pre-training of all
models. This music tagging dataset already comes with
a predefined split. However, each multi-track dataset was
randomly divided into training, validation and test set con-
taining 65 %, 17.5 % and 17.5 % of all songs, respectively.
We made the decision to split the multi-track datasets at
random for the sake of simplicity. This practice can poten-
tially lead to overoptimistic results if songs from the same
artist or album are contained in multiple splits. In order to
reduce computation time, all audio data was converted to
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Figure 2: Two-level instrument taxonomy.

mono and downsampled to 32 kHz.

Since the three multi-track datasets used in this work
exhibit different class structures, a unified instrument tax-
onomy has to be developed. Moreover, we want this taxon-
omy to be hierarchical in order to leverage relationships be-
tween instruments for learning broader concepts of musi-
cal instruments [20]. As a general rule for training DNNs,
a sufficient number of examples for every class is required.
In other words, classes with insufficient number of exam-
ples have to be discarded, which basically means that some
information gets lost. However, our multi-track datasets
are highly imbalanced and for certain instruments only few
examples are available. To still utilize these underrepre-
sented classes for training, our two-level hierarchy was de-
fined as shown in Fig. 2. It is inspired by the Hornbostel-
Sachs [21] system, which classifies musical instruments
based on their underlying sound production mechanisms.
As the physical principle of an instrument strongly corre-
lates with its sound, such a taxonomy seems appropriate
for our use case. The first level of our proposed taxon-
omy represents eight instrument families: voice, percus-
sion, bowed string, plucked string, woodwind, brass, key
and synth. The second level embodies seven specific in-
struments for which abundant data was available: singer,
drums, violin, electric guitar, acoustic guitar, electric bass
and piano. While training the model for these instruments,
the corresponding instrument family label was used as tar-
get as well. In total we have 15 classes, i.e. the model has
15 outputs.

2.3 Musical and Non-Musical Mixing

Our main data augmentation approach is to create new
unique mixtures out of the single-instrument tracks
(sources) from the multi-track datasets. Therefore, we pro-
pose two mixing strategies — musical mixing and
non-musical mixing. Musical mixing means that only
sources from the same song are combined to generate a
new mixture, whereas non-musical mixing signifies that
each source in a mix originates from a different song. The
latter, which was successfully used in music source sep-
aration [16], obviously results in “non-musical”, strange
sounding mixes, as each instrument plays in a different key
and tempo. Nevertheless, the number of training examples
can be increased massively by this mixing strategy, which
in turn improves generalization. Musical mixing, on the
other hand, naturally produces well-sounding results, since



all sources originate from the same song and are therefore
uniform in tempo and key. In order to investigate the per-
formance of the two proposed mixing strategies, an exper-
iment is conducted in Section 3.3. Note that for validation
and testing, musical mixing was used exclusively, because
in real-world recordings, instruments will almost always
play in the same key and tempo. In the following para-
graph, the data mixing approach is explained in more de-
tail, illustrating how a polyphonic mixture is constructed
from individual sources.

Initially, one of the three multi-track datasets is se-
lected — each one with the same probability of 1/3. This
step is necessary, because the Slakh dataset is much larger
than the other two multi-track datasets. Simply merging
them and sampling from the combined dataset would lead
to a domination of Slakh samples. However, this should be
avoided, because, as already mentioned, the Slakh dataset
is synthesized from MIDI files and is therefore not the best
to represent real-world music recordings. In the next step,
one of the two proposed mixing strategies is selected. Mu-
sical mixing is applied with probability p,,,sicq; and non-
musical mixing is used with probability 1 — p,,ysicai- Then
we choose the number of sources N in the mixture. As
our models should be able to cope with solo-instrument
recordings as well, we load single sources (N = 1) with a
certain probability pgingie—source- After that, the following
steps are performed N times for the non-musical mixing
method: select a song, select a source from this song, select
a four-second chunk from this source, apply some digital
audio effects on the audio and add it to the mixture. Four
digital audio effects from the audiomentations [22] library
are utilized — each one with a certain probability: ampli-
tude scaling (gain), three types of filters (high shelf, low
shelf and peaking filter), pitch shifting and time stretching.
The order of these effects as well as all their parameters are
random. Note that, in the musical mixing case, all sources
originate from the same song, therefore a song is selected
only once and not N times (at every loop iteration). Fur-
thermore, the time position of all chunks has to be identical
in order to obtain musical sounding results. Finally, pitch
shifting and time stretching are omitted for the same reason
when musical mixing is applied.

2.4 Transfer Learning (TL)

TL is the procedure of applying knowledge gained from
solving one task to another, related task [23]. CNNs typi-
cally learn general concepts — like detecting edges or sim-
ple shapes — in the earlier layers and increasingly more
complex, task-specific concepts in the later layers. There-
fore, the first convolutional layers can easily be reused for
a similar task. If source and target tasks are related, such
as music tagging and multi-instrument recognition, even a
complete transfer of all convolutional layers can be consid-
ered [24] as for both tasks, the CNN has to identify similar
patterns in mel-spectrograms.

In order to train our classifier, we experimented with
two TL methods. For both approaches, we first replaced
the fully connected layers of the pre-trained model with
new, randomly initialized ones. Furthermore, the size of
the output layer was adjusted to 15 to suit the target task
of predicting eight instrument families and seven explicit
instruments, according to the taxonomy proposed in Sec-
tion 2.2. During training with the multi-track data, we ei-
ther (1) froze the whole backbone network and only re-
trained the fully connected layers or (2) allowed the back-

bone to be learnable as well, but with a smaller learning
rate than the fully connected layers. As a third method (3)
the entire model is trained with the multi-track data from
scratch, i.e. not utilizing the pre-trained weights obtained
by training with MTG-Jamendo. Strictly speaking, method
(3) has nothing to do with TL, nevertheless we use it as
a reference to show the benefits of methods (1) and (2).
The results of these three experiments are discussed in Sec-
tion 3.2.

3 Experiments
3.1 Experimental Setup

Prior to all experiments, a CNN was trained on the 50 most
popular tags from the MTG-Jamendo dataset. The follow-
ing experiments use this pre-trained model as a starting
point for TL. Since we generate training examples on-the-
fly when working with the multi-track data, the concept of
epochs — a complete pass over the training set — does not
exist. Therefore, we defined the transit of 1920 samples
(120 batches of size 16) as one epoch. After each epoch,
the model was evaluated on the validation set and at the
end of training (after 150 epochs), the model with the low-
est validation loss was retained. For all experiments, the
ADAM optimizer in combination with a step-wise learning
rate scheduler was employed. Every 20 epochs the learn-
ing rate was reduced by a constant factor of 0.3. Binary
cross-entropy served as a loss function. For testing, 120
musical mixtures were created on-the-fly from the individ-
ual instrument tracks contained in the test splits of the three
multi-track datasets.

3.2 Transfer Learning (TL) Results

We investigate the three TL methods proposed in
Section 2.4. Each model was evaluated on the testing data
and area under the receiver operating characteristic curve
(ROC-AUC), area under the precision-recall curve (PR-
AUC) [25] and test loss were computed. For all three TL
methods, 0.01 was chosen as an initial learning rate for the
fully connected layers. When training from scratch, the
same learning rate was used for the backbone as well. For
the fine-tuning approach, the learning rate of the backbone
was initialized with 0.0001. The ratio between muscial and
non-musical mixes pyusical Was set to 0.6 for this experi-
ment.

ROC-AUC | PR-AUC | Test Loss
From Scratch 0.8488 0.6812 0.4459
Frozen Backbone 0.8908 0.7623 0.4160
Fine-tuned 0.9429 0.8334 0.3618

Table 1: ROC-AUC, PR-AUC and test loss for different
TL approaches.

Table 1 contains the results of the three TL experi-
ments. Unsurprisingly, the performance is worst when no
pre-training is exploited and the model is trained from
scratch (i.e. From Scratch) on the multi-track data. Uti-
lizing a pre-trained backbone with frozen parameters (i.e.
Frozen Backbone) significantly increases the performance,
indicating that pre-training on a large-scale dataset is ben-
eficial indeed. However, fine-tuning the weights of the
backbone (i.e. Fine-tuned) to fit the needs of the target
task yields additional performance gains.
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3.3 Mixing Strategy

Our data augmentation technique (see Section 2.3), is based
on mixing of individual sources to create new examples for
training. For this reason, the two mixing strategies musical
mixing with probability p,,ysicq; and non-musical mixing
with probability 1 — py,yusicar are used. To determine the
best ratio between these two methods, we experimented
with different values for the hyperparameter p,,ysicar- AS
depicted in Fig. 3, the best performance was obtained for
Pmusical = 0.4. The result of this investigation suggests,
that neither mixing strategy is superior, but rather a com-
bination of both works best. Using only the non-musical
mixing approach results in a larger variation of the train-
ing examples. However, the model does not get the chance
to learn how to identify sources in “real” music where all
instruments play in the same key and tempo. In this case,
instrument recognition is usually more difficult though, at
least for us humans, since masking of individual sources is
more pronounced due to synchronous note onsets and over-
lapping partials. Although overlapping of partials results in
consonant sounds, it is substantially harder to distinguish
individual sources in this case. On the other hand, if only
the musical mixing approach is utilized, fewer variation in
the training examples can be created, as the number of pos-
sible combinations of sources from a single song is limited.
This in turn can lead to poorer generalization of the model.
We infer from this experiment, that a blend of both mixing
strategies is optimal for multi-instrument recognition.

3.4 Performance of the Classifier

After setting the classification threshold for the sigmoid
activations of the CNN outputs to 0.35 — this value maxi-
mizes the Fl-score — we are able to report
threshold-dependent metrics. Fig. 4 shows the class-wise
F1-scores and accuracies of our final model. Unsurpris-
ingly, classes with abundant training data, such as percus-
sion, drums or plucked strings, exhibit the best F1-scores,
while identification of instruments or families with insuf-
ficient data, like brass, woodwind or violin, does not work
well. Note that the F1-score for the brass class is zero be-
cause the number of true positives is zero. In addition to
F1-scores, we also report the class-wise accuracy. How-
ever, accuracy has to be used with caution, since it is highly

dependent on the distribution of the dataset. For example,
a high accuracy for the brass class is obtained, completely
hiding the fact that not a single brass instrument was iden-
tified correctly. Instead, the model always predicts the ab-
sence of the brass family, which is true most of the time,
since the brass class is very poorly represented in the data.
Apart from that, we obtained state-of-the-art performance
for the majority of classes. With F1-scores above 95 % for
some classes, our classifier can easily compete with other
recent multi-instrument recognition systems from the lit-
erature [3, 5, 7]. Unfortunately, performances reported by
different researchers are generally hard to compare since
there is no benchmark dataset for multi-instrument recog-
nition.
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fier.

4 Conclusion

In this paper, we investigated how different TL methods
perform when transferring pre-trained CNNS to the task of
multi-instrument recognition. We show that pre-training
on a music tagging dataset yields significant performance
gains. For TL, training the fully connected layers from
scratch and fine-tuning the convolutional layers worked best.
Furthermore, we explored musical and non-musical mix-
ing as strategies to generate training examples. For the task
of multi-instrument recognition, a combination of both mix-
ing strategies — using 40 % musical mixtures and 60 % non-
musical mixtures — turned out to be ideal. In the end,
we evaluated our final model and obtained class-wise F1-
scores above 95 % for some classes, which is state-of-the-
art for instrument recognition in polyphonic recordings.
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