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Abstract—4G networks dramatically boost the speeds and cov-
erage of networks, and there are mounting mobile data produced
by data sources of 4G. The generated data can be applied
into preventing financial criminal activities, for example, account
leakage risks can be prevented with such data instantly, which
demands short time delay to predict the fraud, at most within
50 ms. Furthermore, the lower latency, higher data capacity of
forthcoming 5G networks will create a new platform for the
delivery of services wherever the 5G network exists, paving a
way for artificial intelligence-based banking services. Real-time
prediction services and data analytics services that can be inte-
grated into business applications have become eagerly demanded
in recent years. However, most machine learning and deep
learning platforms only provide offline model training&test and
model predictions without real-time feature processing. Diting is
an easy-to-use distributed intelligent machine learning platform,
providing offline model training and low-latency feature serving
for predictions in real time. Diting offers incremental feature
computing, combines technologies of resource scheduling, rule
engines, and Remote Procedure Call (RPC), and builds a real-
time distributed computing framework, thus offers low-latency
end-to-end prediction services. Diting is also a collaborative,
drag-and-drop and virtualization tool. Domain expert users
without any programming knowledge can quickly fulfill their
business logic. Using real production data for over two months,
we show that Diting tremendously improves productivity, and
bridges the gap between offline and real-time feature engineering.

Keywords: Real-time Computing, Incremental Aggrega-
tion, Distributed Systems, Feature Engineering.

I. INTRODUCTION

Since the first 4G networks were launched, e-commerce has
undergone an extensive proliferation in the past decade, now
over 80% of online shopping is running on 4G networks in
Jingdong (JD), the world’s third-largest internet company by
revenue and China’s largest online retailer. JD Finance, the
wealth management platform of JD, was established to give
individuals and businesses quick, easy and convenient access
to the financial service. The pervasion of 5G networks could
revolutionize the e-commerce and the finance industry by
Virtual Reality (VR), Augmented Reality (AR) technologies
and predictive machine learning-based services. These services
generally collect a user’s behavioral data in real time to
recommend location-based financial advice, such as suggesting
new ways to save at the retail store and offering more precise
and valuable wealth management consultation.

Nowadays, machine learning (ML) has come to play an
integral role in many stages of the financial ecosystem, from
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assessing risks to granting loans, to the handling of bad assets,
to fraudster detection. ML models are required to be trained
with a wide range of features. Solving a ML problem often
involves the following steps: gathering data, cleaning data
(ETL), feature engineering (FE), model training, testing and
prediction [1]. ETL stands for Extract, Transform, Load, and
it aims to provide clean data before FE. In Diting, ETL is
incorporated into FE. In order to build a model that can
make the best prediction or recommendation, the first thing
one needs to do is to generate appropriate features from
the datasets; better features are the deciding factor of the
performance of a system.

With advancements in technology, more and more predic-
tions are expected to be done in real time [2]. Identifying
fraudulent purchases in a particular time frame in e-commerce
scenarios can prevent losses of millions of dollars per year.
However, FE of traditional artificial intelligence platforms
often focused on a batch or offline FE. It would take a
team of data engineers additional months to develop a manual
pipeline of real-time FE. To the best of our knowledge, there
is no precise report concerning systems that automatically
provide feature serving in real time using the same logic as
offline feature cleansing. Real-time feature serving is defined
as providing the feature processing service for real-time ML
prediction, bringing feature data over the network in real time.

Rather than force the session to process the entire source
data from scratch, incremental computing is generally adopted
to do the real-time computing. Intuitively, incremental FE
computation can be implemented using dynamic/incremental
algorithms methods, where programmers need to design the
logic that maintains the value of a function over an evolving
set, for example, tracking the maximum amount of payment
that changes with insertions or deletions of incoming tuples
[3]. Nevertheless, after a large body of prior research in
the incremental algorithms, we found that although they are
efficient, they are usually complex to realize even for simple
fully dynamic questions like dynamic connectivity [4], [5], [6].
Therefore, we resort to incremental sliding window analytics
[6] to tackle real-time computation, and better yet, certain
characteristics of sliding windows are exploited so that the
time consumption of a single incoming tuple is not dependent
on the size of the whole historical data but rather commensu-
rate with the number of intermediate results.

In summary, the main contributions of this paper are ab-



stracted as follows:

« an easy-to-use distributed ML framework and analyt-
ics: Machine learning can be hard to grasp for most peo-
ple, especially those who are from a non-programming
background. Diting is a drag-and-drop tool that automates
machine learning and does not require any coding. It’s
a visualized modeling tool that lets users build custom
models, train them, tune them by adjusting parameters,
and deploy them in applications. The model is built in
the distributed cluster, its performance is guaranteed.

o support for custom-built end-to-end FE pipelines:
Diting eliminates most of the draining operations related
to preparing features for ML, ranging from cleansing,
normalization, feature extraction to feature transforma-
tion.

« offer a unified framework for real-time and offline FE
and model prediction service: FE is the process of con-
structing new features from existing data to train an ML
model. Diting removes human-labor processes for users,
provides an automatic offline-to-real-time projection of
FE & ML pipelines.

II. RELATED WORK

Spark streaming [7] processes data streams in mini-batches,
where each mini-batch collects a set of events that arrived over
the batch period. The minimum interval at which data received
is recommended to be 50 ms. While we require each and every
record is processed as it arrives, and the maximum latency is
50 ms.

Storm uses topologies to do real-time computation. For
a Storm topology, the user has to specify the amount of
resources, and the resources is not shared between topologies,
therefore the maximum amount of runnable topologies is finite.
Whereas in Diting, real-time DAGs can be dynamically added
or removed as rules, are evenly distributed in the cluster by
dynamic scheduling, so the resources of CPU and memory of
the cluster isn’t occupied exclusively by any DAG, there is no
limitation of the number of the DAGs. Once the average loads
of CPUs or the heap size per worker (JVM) is too high on a
cluster, new servers can be added to the cluster. Besides, Storm
still requires manual programming, whilst coding is removed
from Diting system by configuring rules.

III. IMPLEMENTATION & DESIGN

Since the problem of Real-time feature serving is generic,
any other organizations can draw on the experience we de-
scribe here no matter what industries they involve in as long
as unifying offline and real-time FE is business-critical.

A. Highlights of Our Approach

Incremental Aggregation for FE. Incremental aggregation
aims to tackle the problem of real-time computing of a limited
set of aggregate operators such as mean, max, min, sum,
count, .etc, and a large number of complex aggregates of the
above basic operators. Besides, one predictive computation
is customized for certain business scenarios. If a customer

demands more features, then accordingly the pipelines could
be adjusted to it.

We first consider some fundamental operators in database
systems and Data Stream Management Systems (DSMS) [8],
[9], [10], [11]. They are categorized into distributive (e.g.,
max, min, sum, and count) aggregates and algebraic (e.g.,
avg, std, trend, skew) aggregates, and some holistic aggregates
(e.g., median, mode), organized by [12].

The incremental aggregates we support are listed as follows:
mean, standard deviation, sum, min, max, count, distinct count,
trend, time since last time, last value, skew, and feature
generation derived from previous aggregates.

Considering continuous tuples from 4G networks are
deemed as inputs of downstream of the streaming system
like Apache Storm [13], the featre serving automatically will
trigger an incremental aggregation pipeline to compute the
statistics instantly, without recomputing on a large chunk of
historical raw data from scratch. These results will be stored
in a fast key-value database, such as Redis, to offer a prompt
fetch for the following predictive service.

Two-Phases FE processing algorithm: We create a Two-
Phases FE processing algorithm. In phase A, the pipeline pre-
computes all the incremental intermediates for the required
measures; in phase B, the pipeline doesn’t do any incremental
calculation and directly fetches the intermediates produced in
phase A and make a simple calculation to derive the final
results. The motivation of separating the two phases is to
achieve the real-time outcome of the features and minimize
the computation and I/O transmission. The phase A takes place
right after a new tuple arrives at a window and propagates the
update of the tuple with the previous aggregated value. The
phase B relies on a few intermediates, which means it is in the
blink of an eye. The prerequisite of this approach is that we
know in advance about the sort of aggregates and features that
are needed in an application. The customization characteristic
of the framework is adopted to improve the performance of
the response time. For example, average can be treated as
. sum and count are incrementally calculated in the
phase A ahead, and The phase B only merges the incremental
intermediate and the value of the current tuple, and does a
division of sum and count, and similarly standard deviation
relies on sum of squares, sum, count.

Rule-based Real-time Distributed Computing The start-
ing point of a model training&test and model prediction
service is the generation of a user directed acyclic graph
(DAG, also known as workflow), composed of nodes produced
by our user in the Web Ul. The DAG will be automatically
mapped into two separate versions, an offline DAG and an real-
time DAG. Offline DAGs are different from real-time DAGs
because real-time DAGs do not include all the nodes in offline
DAGs, such as model training or test, model evaluation, etc.
In a DAG, a node represents a task, which can be mainly
classified into two categories, one is feature related, another is
model related; and an edge stands for the data dependencies
between tasks, which makes the nodes connected in a pipelined
manner. Through a few clicks of drag-and-drop and parameter




configuration, a user of ML scientist can model a request in
a DAG like Fig. 1.
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Fig. 1: DAG example

It is worth noting that multiple DAGs could be executed
because multiple users could be using the system simultane-
ously, and a user may create any number of different DAGs
at any time, and after model training and test, a user can
deploy a DAG service. All DAGs can be executed parallel
simultaneously. For offline DAGs, there are many mature
resource management and job scheduling systems could help
schedule jobs of offline DAGs, such as Hadoop Yarn [14],
Apache Mesos [15]. For real-time DAGs, a distributed com-
puting framework is required for adding and removing real-
time DAGs dynamically.

The benefit of the rule-based approach is that users only
need to draw a user DAG and configure parameters, no need
of writing codes. The details will be discussed in Chapter 3.

B. Incremental Windowing

Windows are at the core of processing streams [8], [16], in
this paper, we employ an incremental update mechanism that
can embody incremental changes of the newly arrived tuple
and update the intermediates of the measure attributes.

Among the three types of sliding windows: Hopping, Tum-
bling, and Overlapping, we focus on Tumbling windows (also
called Fixed windows). Tumbling windows are defined by a
static window size, and the window size equals the sliding
period [17], [18]. The tumbling window processes queries
in a non-overlapping manner. The only difference between

our tumbling window and traditional tumbling window is
that traditional tumbling window waits until window time is
over, and process only once when all the tuples belong to
the window is collected. We create an incremental tubmling
window, once an incoming tuple arrives, it will get processed
at once, so it does not cover the entire input when a windows
starts. The current window tumbles on a window-size basis.
when the last window time is over, and the window is empty.
As time goes by, the input tuples arrives, the window gets
filled in real time until it is full. Therefore, we achieve better
real time performance by not waiting for the whole length of
a window size. For example, a one-minute tumbling window
incrementally processes tuples that occurred in one minute and
slides after the minute passed.
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Fig. 2: Windowing design and merge, with an example of
computing the average of 90 days.

Windowing chops up an unbounded stream into finite
dataset based on time or tuples, and then process each window
as a separate group [19]. We support four types of windows
sizes, one day (daily), one hour (hourly), one minute, and one
second. The upper limits of caching number for each window
are 180 days, 24 hours, 60 minutes, and 60 seconds, and we
require features within the longest time span of 180 days be
available in 50 ms at most. These various window sizes are
fairly enough for generating features for possible user queries
we collected.

The tumbling window offers an advantage of simplicity for
later window merging that joins integer number of windows.
The window merging logic subjects to both the window
partitioning and sliding methods, it regards the current day
as an integer day no matter whether it has finished, then glues
the remanent windows together. If a query is about to fetch a
feature in the past 90 days, a combination output of eighty-
nine-days windows and one incomplete accumulating window
will be returned as shown in Fig. 2.

IV. RULE-BASED REAL-TIME DISTRIBUTED COMPUTING

It is hard to let users do custom coding and implement
the model training and serving especially when requirements
change frequently. With the combination of real-time technolo-
gies of resource scheduling, rule engine, RPC HA service,



the rule-based real-time distributed computing framework is
established.

Resource scheduling involves allocating system resources
according to the computational load of given tasks, which is a
crucial technique for providing high performance distributed
computing [20], [21]. Scheduling of tasks in distributed com-
puting systems aims to schedule when and where each task
should be executed in a cluster. As can be seen in Fig. 3, the
feature service master does the scheduling by checking which
worker has the least running jobs.

Rule engines [22] are a mechanism for executing “busi-
ness rules”, interprets complicated condition/action statements,
often in the form of “if/then” notations. Rules are stored
in a rule database, then the engine watches over the input
stream, matches the data against the existing rules in real
time, and then execute appropriate actions when conditions are
met and therefore can keep data moving at low latency [22].
The biggest advantage of rule engines is that they decouple
business logic and application code, which means business
logic doesn’t need to be hard-coded into the program with
procedural languages. All the business logic is centralized, so
it is easier to maintain, enhance and update new logic, which is
a pluggable component that doesn’t have to restart the system
for rule changes or deploying new executable rule.

In rule engines, we make one rule represent one DAG
executor or one Node executor. A worker and DAGs are of
one-to-many relationship. Assume a rule is a DAG, when
building a rule engine, and deploying a new DAG to a worker,
to decide on which worker the DAG should be deployed,
the resource scheduler of the master judges on-the-fly which
worker is running the least number of DAGs, then allocates
the DAG to the worker. So the association between a DAG
and a worker is a one-to-one mapping.

RPC is a protocol that allows one program to request a
service of a program located in another computer on a network
as if it were a normal local program. We use a cross-language
RPC framework as a fundamental technique for distributed
services. It provides high availability (HA) in the production
environment and supports load-balance. We develop the dis-
tributed framework by designing a master and many workers
on the cluster. Each worker or master is redundantly distributed
in the cluster , if any worker or master failed, the system
still provides normal service. The number of workers on a
RPC service lies in the CPU and main memory capacity of it.
The logical structure of rule engines and distributed services
is illustrated in Fig. 3. A job can be a feature serving node
or a real-time DAG executor, the significant characteristic of
the real-time distributed computing architecture is that both
of feature serving and DAG executors are working on the
mechanism of it.

When a message arrives, each message has a “topic” at-
tribute, representing the data source of DAGs, and many DAGs
may have the same topic (data source), so the master looks up
the topic and gets which DAG the message belongs to. Since
a DAG and a worker are of one-to-one relation, the master
matches the topic with a worker, then dispatches the message

Real-time distributed computing architecture
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Fig. 3: Real-time distributed computing architecture. If a
message from feature serving or a real-time DAG is matched
with a rule, a job will be started as a rule executor.

to all the workers with related DAGs, and execute the DAGs
concurrently.

Fig. 4 shows how users of Diting interact with the system
and work in order. From the user perspective, he or she by
drag-and-drop can create an application model as a user DAG,
After one click of the “Save” button, the offline system will
generate an offline DAG transparently in the background. Then
the user click “Train” button, the offline system will run the
offline DAG which executes feature engineering and model
training and test altogether.

Now, users can click “Deploy Prediction Service” button
to add related rules to the real-time service, it will convert
the user DAG to a real-time DAG; finally, the user click
“Start Prediction Service” button, the system will add the real-
time DAG rule to rule-based real-time distributed computing
service, and the rule of the service takes effect . The user is
free of coding throughout the process.

V. EXPERIMENTAL EVALUATION

We built Diting system on a cluster of 10 servers, each
with hardware as follows: 2 x Intel ® Xeon ® E5-2650 v4
of CPU, 16 x DDR4 2133Hz 16GB of RAM, 8 x SAS 2.5”
15K 6Gb 600GB (RAID 10) of storage, 2 x Intel X520 10Gb
of network.

We present an experiment of a login model to show the
performance of Diting. Login model is an approach to capture
outliers of login behaviors in JD over 220 million active users,
it captures the sequence of login actions, uses the model
of LightGBM to predict the probability of a user account
being hacked and at risk of capital losses. The LightGBM
is a gradient boosting framework that uses tree based learning
algorithms [23].

We evaluate the performance of Diting by doing feature
computing for the login model on the real production stream-
ing data, the features calculated by Diting is mainly about the
count of login behaviors in the past 2/5/24 hours, and average
time of a login action, the distinct count of located cities
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Fig. 4: Diting system flowchart. Users enjoy the real-time end-
to-end feature serving and prediction service.

of a login action, etc. There are about 27 features produced
in a feature engineering. Fig. 5 shows the prediction service
latency of a tuple is done on a dataset of two months, the
average time of a feature computing is circa 4.1 ms, which fills
the lacunae between offline and real-time feature engineering,
and tremendously improves productivity. Traditional methods
of developing a pipeline of feature serving take about two
months. 100% accuracy is guaranteed as long as the offline
and real-time processing are working on the same data.

latency
10.0 ms
7.5ms
5.0 ms
2.5ms
0 ms
3/1 3/16 411 4/16 5/1
min max avg
latency 3.33ms 9.10ms  4.10ms

Fig. 5: Average latency running on a real production streaming
data source for two months. The two pulses of the figure are
due to network instability.

VI. CONCLUSIONS

We presented Diting, a real-time feature serving system with
an easy-to-use interface, and a rule-based distributed comput-
ing framework. We showed that Diting can create millions of
features both in real-time and offline circumstances. We also
validated that Diting is real-time in a production cluster with

throughput
40 Mil
30 Mil
20 Mil
10 Mil
0
3N 3116 a1 4/16 5N
min max avg
throughput 20.2 Mil 37.7 Mil 30.7 Mil

Fig. 6: Throughput aggregated by day running on a streaming
data source for two months.

inspiring results. Incremental aggregates of more basic features
and more accurate feature computing are our future work.
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