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Abstract: 

Type 1 diabetes requires strict blood glucose management to 

maintain normal levels and prevent complications. 

Predicting future blood glucose levels is essential for 

effective management. This study compares four learning 

models to assess their effectiveness in predicting blood 

glucose based on current measurements. The literature 

review focused on articles exploring blood glucose 

prediction in type 1 diabetes with minimal human 

intervention. The selection criteria considered the reliability 

and accuracy of approaches in predicting blood glucose. 

Performance evaluation involved measures such as root 

mean square error, mean absolute percentage error, 

coefficient of determination, relative error analysis, and sum 

of squares of glucose prediction errors. The datasets 

consisted primarily of patients with type 1 diabetes. 

Preliminary results showed that some approaches performed 

well in the short term, indicating their ability to accurately 

predict future blood glucose levels. Other approaches 

demonstrated good long-term results, highlighting the need 

for extended evaluation in diabetes management. 

Understanding the strengths and weaknesses of each 

approach is crucial to guide future research. This 

comparison underscores the importance of developing 

robust prediction methods tailored to clinical needs to 

improve the management of type 1 diabetes and prevent 

complications. Further research is needed to explore the 

most promising approaches and adapt them to the individual 

needs of patients. 

1. Introduction :   

Type 1 diabetes is a chronic disease caused by the 

autoimmune destruction of beta cells in the pancreas 

responsible for insulin production [1]. This results in insulin 

deficiency and the subsequent chronic increase in blood 

glucose levels known as hyperglycemia [2]. The 

International Diabetes Federation (IDF) Diabetes Atlas 

report in 2021 [3] revealed a continuous global rise in 

diabetes prevalence, with an estimated 537 million adults 

aged 20 to 79 living with diabetes, representing 

approximately 1 in 10 individuals in this age group. 

Projections indicate that this number will reach 643 million 

by 2030 and 783 million by 2045 [3]. Understanding blood 

glucose levels and their related conditions, hypoglycemia, 

and hyperglycemia, is essential for preventing 

complications. Hypoglycemia occurs when blood glucose 

levels drop abnormally low, usually below 70 mg/dL [4], 

leading to severe consequences if left untreated, such as 

seizures, loss of consciousness, and even coma. Conversely, 

hyperglycemia is characterized by excessively high blood 

glucose levels, often associated with fasting plasma glucose 

above 126 mg/dL or random plasma glucose above 200 

mg/dL in the context of diabetes [4]. Poorly controlled 

chronic hyperglycemia can result in long-term complications 

affecting blood vessels, nerves, kidneys, eyes, and increasing 

the risk of cardiovascular diseases, strokes, and circulatory 

problems [5] [6]. The primary treatment for these conditions 

involves regulating blood glucose levels through insulin 

administration. Individuals with type 1 diabetes typically 

require insulin injections to compensate for insufficient 

insulin production by the pancreas. Achieving optimal 

glycemic control through precise insulin dosing is crucial for 

the best healthcare outcomes. Continuous glucose 

monitoring (CGM) systems offer a promising solution for 

improving glycemic regulation [7]. CGM devices allow real-

time glucose monitoring throughout the day and night, 

offering an alternative to traditional self-monitoring of blood 

glucose (SMBG). Integrating intelligent prediction and 

control algorithms into CGM systems can generate alerts for 

hypoglycemia or hyperglycemia risks, further enhancing 

diabetes management. 

This study compares four learning approaches for predicting 

future blood glucose levels in type 1 diabetes patients, 

focusing solely on blood glucose measurements. While other 

algorithms use various inputs like diet, emotions, activities, 

and stress, and other factors. our study concentrates on 

glycemic measurements. By reviewing existing literature, 

we evaluate the performance, advantages, and limitations of 

these approaches, shedding light on applied techniques, data, 

results, and challenges. This analysis unveils strengths and 

weaknesses in a clinical context, identifying accurate and 

reliable methods for glycemic prediction. Ultimately, these 

findings will enhance type 1 diabetes management, offering 

tailored decision support tools to cater to patient needs. 

The remainder of this article is organized as follows: Section 

2 will present the specific learning approaches used in the 

comparison, explaining their basic principles, operation, and 

application for glycemic prediction, as well as the evaluation 

metrics used to assess their performance. Section 3 will 

provide the results and discussion of the performance of the 

different blood glucose prediction algorithms based on the 



literature. In Section 4, we will present the conclusion and 

explore the future work possibilities to enhance diabetes 

management through predictive models. 

2. Methodology 

2.1. Description of Dataset 

Continuous glucose monitoring (CGM) is a crucial 

technology providing real-time measurements of blood 

glucose levels for modeling and prediction. A comparative 

study analyzed algorithms using the OhioT1DM dataset, 

constructed from CGM values of 12 type 1 diabetes patients. 

The dataset includes glucose measurements, insulin doses, 

and other relevant physiological sensor data. OhioT1DM 

was chosen for its representativeness and availability as a 

CGM data source for in-depth analysis of blood glucose 

prediction approaches. 

2.2. Presentation of learning models 

2.2.1. Vector regression based on the 

differential evolution algorithm 

Hamdi et al. [8] used support vector regression (SVR) with 

the differential evolution (DE) algorithm [8] to predict future 

blood glucose levels. SVR is a robust predictive analysis 

technique commonly applied in diverse domains [9]. It 

focuses on structural risk minimization, estimating a 

function by minimizing the generalization error's upper 

bound [10]. Mathematically, SVR maximizes the hyperplane 

margin to minimize error tolerance and predicts blood 

glucose at time t+PH using the current time t and prediction 

horizon PH. 

𝑦𝑡+𝑃𝐻 = 𝑓(𝑥𝑡) = ⟨𝜔, 𝜙(𝑥𝑡)⟩ + 𝑏                                      (1)                                   

Here, 𝑥𝑡 represents the past glucose measurements, 𝜙 is a 

fixed transformation of the feature space, ω is the weighting 

matrix, and b is the bias. The SVR algorithm aims to solve a 

non-linear regression problem by projecting the training data 

𝑥𝑖 (where i=1,...,N and N is the size of the training dataset) 

into a new feature space called 𝜙, where the relationship 

between 𝑥𝑖 and 𝑦𝑖  becomes linear. For this purpose, an ϵ-

insensitive loss function is used, where the error is tolerated 

up to a certain value ϵ. The SVR model parameters (C, ϵ, γ) 

are estimated using the differential evolution (DE) 

algorithm, which optimizes these parameters to improve the 

accuracy of predictions. In this context, the SVR algorithm 

solves the following optimization problem: 

 Minimize : 

1

2
‖𝑤‖+

2 𝐶 ∗ ∑ (𝜀 + 𝜀𝑖
∗)

𝑁

𝑖=1
                                                (2)                                                 

Subject to constraints: 

𝑦𝑖 − ⟨𝑤, 𝜑(𝑥𝑖)⟩ − 𝑏 ≤ 𝜀 + 𝜀𝑖                                         (3)                                                         
⟨𝑤, 𝜑(𝑥𝑖)⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜀𝑖

∗                                         (4)                                                          

       𝜀𝑖, 𝜀𝑖
∗ ≥ 0  For i = 1,..., N                                           (5)                                                   

The constant C determines the trade-off between the 

smoothness of the SVR function f(x) and the tolerance for 

deviations larger than ϵ. In this work, the radial basis 

function (RBF) was used as the kernel function, defined by 

a specific equation where γ is a kernel parameter. The 

proposed approach was applied to blood glucose prediction 

using data from diabetic patients. Prediction performance 

was evaluated using statistical measures such as: 

Root Mean Squared Error (RMSE):  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1                                            (6)                                                 

Mean Absolute Percentage Error (MAPE):        
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|

𝑛

𝑖=1
× 100%                                    (7)                                                            

Coefficient of Determination (R2):  

        𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)

2
𝑛

𝑖=1

∑ (𝑦𝑖−𝑦)
2𝑛

𝑖=1

                                                  (8)  

Where 𝑛 is the number of samples, 𝑦𝑖  is the actual blood 

glucose value, �̂�𝑖 is the predicted blood glucose value, and 𝑦 

is the average of the actual blood glucose values. The results 

demonstrated that the DE-SVR approach was accurate, with 

an average RMSE of 9.44 mg/dL, an average MAPE of 

3.74%, and an average R2 of 0.971 for a prediction horizon 

of 15 minutes. The performance was also evaluated for 

different prediction horizons, showing an increase in RMSE 

with increasing horizon [8]. The DE-SVR approach proves 

effective for biomedical prediction tasks and time series 

forecasting. 

2.2.2. Artificial Neural Networks (ANNs) 

Ben Ali et al. [11] propose an approach for blood glucose 

prediction using Artificial Neural Networks (ANNs) based 

on previous measurements. The ANN architecture includes 

an input layer with Nbin neurons, a hidden layer with Nbhid 

neurons, and an output layer with a single neuron. The 

prediction utilizes a sliding window of length Nbin, 

incorporating past glucose measurements and predictions to 

forecast future values and exploit temporal relationships for 

enhanced accuracy. The Levenberg-Marquardt algorithm 

[12] is employed to train the ANN, adjusting weights and 

biases to minimize the error between predicted and actual 

glucose values [13].  

The prediction formula is expressed as : 

 𝑮𝒑𝒓𝒆𝒅= f(G(t-Nbin+1), G(t-Nbin+2), ..., G(t-1))              (9) 

In this formula,  𝑮𝒑𝒓𝒆𝒅 represents the predicted blood glucose 

value at time t, and G(t-Nbin+1) to G(t-1) represent the 

previous glucose measurements. To determine the optimal 

structure of the ANN, a specific algorithm is used. In this 



algorithm, the number of neurons in the hidden layer (Nbhid) 

is fixed, while the number of neurons in the input layer 

(Nbin) is gradually increased. At each step, the Root Mean 

Squared Error (RMSE) is calculated to evaluate the 

prediction performance of the ANN. The algorithm stops 

when the predefined minimum error (min_RMSE) is reached 

or when the maximum number of allowed neurons in the 

input layer is reached [11]. 

The study involves 12 patients with type 1 diabetes, using 

FreeStyle Libre data divided into training (70%) and test 

(30%) sets [14]. Each patient's ANN is trained, and 

prediction performance is evaluated with RMSE, MAPE, 

R2, REA, and SSGPE statistical measures. 

The expression for Relative Error Analysis (REA) is:  

𝑹𝑬𝑨 =
𝟏𝟎𝟎

𝒏
∗ ∑ (𝒏

𝒊=𝟏 |
𝑮𝒑𝒓𝒆𝒅 (𝒊)−𝑮𝒂𝒄𝒕𝒖𝒂𝒍(𝒊)

𝑮𝒂𝒄𝒕𝒖𝒂𝒍(𝒊)
| )                              (10)                                  

The expression for Sum of Squared Glucose Prediction 

Errors (SSGPE) is defined as:  

𝑺𝑺𝑮𝑷𝑬 = ∑ (𝑮𝒑𝒓𝒆𝒅(𝒊) −  𝑮𝒂𝒄𝒕𝒖𝒂𝒍(𝒊))
2

     𝒏
𝒊=𝟏            (11) 

The mathematical formulas used for evaluation demonstrate 

the quantitative performance of the ANN proposed by Ben 

Ali et al. [11]. The results indicate that the approach exhibits 

good blood glucose prediction, with RMSE values ranging 

from 1.14 to 8.83, MAPE values ranging from 0.56% to 

5.83%, and R2 values ranging from 0.974 to 0.995, showing 

accurate predictions of glucose levels. However, challenges 

persist due to variations caused by external and internal 

factors, impacting prediction accuracy. Generalizing results 

to different patient populations is crucial. Nevertheless, the 

ANN approach holds promise for blood glucose prediction, 

inspiring potential applications in various forecasting tasks 

[11]. 

2.2.3. Artificial Neural Networks with Temporal 

Features  

As part of the methodology used by Ganjar Alfian et al. [15], 

CGM devices were used by type 1 diabetic patients to collect 

their real-time glucose data. The real-time glucose data was 

used to train a prediction model using a machine learning 

algorithm. To predict glucose levels, a Multilayer Perceptron 

(MLP) model was utilized. The methodology by Ganjar 

Alfian et al. [15] includes the following steps: 

2.2.3.1. Data preparation 

The collected CGM glucose data underwent a filtering 

process to remove noise, represented mathematically as: 

Preprocessed data=Filtering (Raw data)                        (12)  

The data was then divided into training and testing sets using 

the split function. 

Training set, Testing set=split (Preprocessed data)            (13)                                       

To transform the glucose data into a suitable format for 

learning, the sliding window approach was used. This 

involves creating windows of size "n" from previous data, 

where "n" represents the number of data points used for 

prediction. Mathematically, this can be represented as:  

Window =Preprocessed data [t−n: t−1]                        (14)                                 

In this formula, "t" represents the current time, and "t-n:t-1" 

indicates the indices of previous data points to include in the 

window. The glucose values for the next "h" minutes were 

used as the desired output vector for each input window. This 

can be expressed mathematically as:  

Output vector=Preprocessed data [t: t+h−1]                (15)                        

Here, "t+h-1" represents the index corresponding to the end 

of the prediction period. 

Finally, the constructed input and output datasets were split 

into distinct sets for training and testing, as mentioned 

earlier. 

2.2.3.2. Temporal Domain Functionality and 

proposed Prediction Model  

To improve the prediction of future blood glucose levels, 

statistical attributes of the temporal domain, such as 

minimum, maximum, mean, and standard deviation, were 

used as additional features for the previous blood glucose 

values. These statistical features were combined with the 

previous values to create an input matrix. A Multilayer 

Perceptron (MLP) model was used to predict future blood 

glucose levels, with the backpropagation algorithm used to 

train the MLP by minimizing the RMSE between the 

predictions and the actual values. 

The MLP model had two hidden layers with 100 neurons 

each, utilizing the ReLU activation function and the Adam 

solver for weight optimization. A regularization parameter of 

0.0001, learning rate of 0.001, and maximum of 1000 

iterations were set [15]. The grid search algorithm was 

employed to determine the optimal parameters, as presented 

in Table 1 [15]. 

 

 

Table 1: MLP model parameters for predicting future blood glucose levels

Number 

of layers 

Number 

of 

neurons 

Activation 

function 

Solver for weight 

optimization 

Regulation 

parameter 

(alpha) 

Learning 

rate 

Maximum number of 

iterations 
 

2 100 Relu Adam 0,0001 0,001 1000 
 
 



The proposed model was evaluated using the DirecNet CGM 

dataset, which included data from 12 patients with type 1 

diabetes. The model's performance was measured in terms of 

RMSE, MAPE, and 𝑅2, according to equations 6, 7, and 8, 

respectively. Additionally, the glucose-specific metric, 

gMSE, was used to evaluate the model's performance. The 

formula for gMSE is given by: 

𝑔𝑀𝑆𝐸 =
1

𝑁
𝛴𝑡(𝑦 − �̂�𝑡)2𝑃ⅇ𝑛(𝑦, �̂�𝑡)                                        (16)                                            

Ganjar Alfian et al. [15] employed the grid search algorithm 

to evaluate parameter combinations, selecting the ones that 

achieved minimal prediction error and improved glucose 

prediction accuracy. It's important to note that these 

parameters may vary depending on the data and model 

requirements, but they demonstrate the adjustability of 

parameters through grid search to enhance MLP model 

performance. 

2.2.4. A Deep Neural Network Fusion Approach 

for Predicting Glucose Levels in Diabetes 

Management 

In their study, Hatice Vildan et al. [16] developed an 

innovative approach for diabetes management and glucose 

level prediction. They employed three deep neural networks 

(LSTM, GRU, and WaveNet) and utilized a 30-minute 

history of blood glucose for training. The networks were 

used to predict glucose levels in advance for 30, 45, and 60-

minute periods. Hyperparameters were optimized by testing 

various combinations for each network. The study utilized 

the OhioT1DM dataset, consisting of glucose measurements, 

insulin amounts, and physiological sensor data, from 12 

patients with type 1 diabetes. 

2.2.4.1. LSTM (Long Short-Term Memory) 

LSTM is a specialized recurrent neural network that captures 

long-term dependencies in sequence data, making it ideal for 

processing word sequences in text or time series data [17] . 

The prediction formula of an LSTM utilizes the output from 

the previous cell, h(t-1), to predict the current output, h(t). 

Here is the corresponding mathematical formula: 

h(t) = LSTM(x(t), h(t-1))                                                  (17)                                                           

In this formula, x(t) represents the input at time step t, and 

h(t-1) is the previous hidden state. This formula computes 

the current output by utilizing the current input and the 

previous hidden state. This enables the LSTM to incorporate 

information from the past when predicting future values. 

2.2.4.2. GRU (Gated Recurrent Unit)  

The Gated Recurrent Unit (GRU) is a simpler version of 

LSTM used for modeling sequence data, with two main 

gates: the reset gate and the update gate [18]. These gates 

control the flow of information and the impact of past data 

on future data. 

The mathematical formula to compute the output of a GRU 

is as follows:  

h(t) = GRU(x(t), h(t-1))                                                        (18)          

In this formula, x(t) represents the input at time step t, h(t-1) 

is the previous hidden state, and h(t) is the current output. 

Computing the output of the GRU involves several steps, 

governed by the reset and update gates. The reset gate 

determines which part of the previous state should be 

forgotten and which part of the current input should be 

considered. The formula for the reset gate is typically defined 

as follows: 

r(t) = sigmoid (Wr * [h(t-1), x(t)])                                    (19)          

The forget gate controls the update of the previous hidden 

state using the current input and the previous state. The 

formula of the forget gate is typically defined as follows: 

z(t) = sigmoid (Wz * [h(t-1), x(t)])                                  (20) 

Then, the candidate state is calculated using the current input 

and the previous hidden state, along with the reset gate:  

h'(t) = tanh(W * [r(t) * h(t-1), x(t)])                                (21)      

Finally, the current hidden state is calculated by combining 

the previous state weighted by the forget gate and the 

candidate state:  

h(t) = (1 - z(t)) * h(t-1) + z(t) * h'(t)                                (22)       

This formula updates the hidden state by utilizing 

information from the previous state, the current input, and 

the reset and forget gates. 

2.2.4.3. WaveNet 

WaveNet, a deep neural network for modeling and 

generating sequential data like audio signals, distinguishes 

itself from traditional recurrent neural networks through the 

use of dilated convolutions, capturing patterns at different 

time scales [16] [10]. These dilated convolutions enable the 

model to consider samples at varying distances, allowing it 

to capture long-term relationships within the sequence [10]. 

The general formula for WaveNet is given as: 

y(t) = WaveNet(x(t), h(t))                                                 (23)                                                           

In this formula, x(t) represents the input at time step t, h(t) is 

the hidden state, and y(t) is the current prediction or output. 

The WaveNet function takes into account both the current 

input and the hidden state to generate the prediction. 

WaveNet's distinctive feature is the utilization of dilated 

convolutions, employing filters with varying distances 

between their values. This technique widens the model's 

receptive field, enabling it to capture patterns across different 



time scales. The specific formula for dilated convolution in 

WaveNet depends on model parameters like the number of 

filters, filter sizes, and dilation rates, which are selected 

based on the task's specific characteristics and requirements. 

2.2.4.4. Fusion Performance of LSTM, GRU, 

and WaveNet Networks for Predicting 

Glucose Levels in Type 1 Diabetes 

The trained models underwent separate data testing to assess 

their glucose level prediction performance. Predictions from 

LSTM, GRU, and WaveNet were fused using specific rules, 

resulting in seven distinct outcomes per patient [16]. This 

fusion aimed to capitalize on the strengths of different neural 

network architectures for varying glucose levels. The 

Surveillance Error Grid (SEG) was employed to determine 

the relative performance of the three networks at different 

glucose levels [16]. A decision-level fusion mechanism was 

proposed, assigning weights to the networks based on their 

performance in high-risk regions. 

In cases where both networks made identical predictions, 

their results were combined for fusion. However, if this rule 

couldn't be applied, a weighted sum was calculated based on 

each network's accuracy in glucose prediction. The fusion 

result was then determined by considering the weighted sum 

of the three networks, with LSTM, WaveNet, and GRU 

networks having fixed weighting coefficients of 0.4, 0.2, and 

0.4, respectively, based on the analysis of their performances 

for different prediction durations. 

To select hyperparameters for LSTM, WaveNet, and GRU 

networks, a grid search method was employed. This involved 

defining a grid of possible hyperparameter combinations, 

such as hidden layer size and learning rate, and evaluating 

the model's performance for each combination. Various 

evaluation metrics, including RMSE, MAE, RMSPE, 

MAPE, and SEG. The calculations for these numerical 

evaluation metrics were provided in equations (6), (7), (10), 

(24). A visualization of a simple SEG figure is shown in 

Figure 1. 

𝑅𝑀𝑆𝑃𝐸 = √
1

𝑛
𝛴𝑖=1

𝑛 (
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖
)

2

                    (24) 

A grid search was performed to select hyperparameters for 

LSTM, WaveNet, and GRU neural networks. It 

systematically explored various combinations in the 

hyperparameter space, using values commonly employed in 

the literature to ensure established knowledge and best 

practices. The grid search identified the optimal 

hyperparameter combinations for LSTM, WaveNet, and 

GRU based on their glucose level prediction performance. 

These optimal values were utilized in training the models and 

presenting the study's results. 

 

Figure 2: Displaying the SEG regions visually [16]. 

The evaluations demonstrate that the fusion method of 

LSTM, GRU, WaveNet networks yielded the most effective 

performance in terms of blood glucose prediction. This 

approach achieved the lowest RMSE values, namely 21.90 

mg/dL, 29.12 mg/dL, and 31.10 mg/dL for prediction 

periods of 30, 45, and 60 minutes respectively [16]. These 

results indicate a relatively high accuracy in glucose level 

prediction.  

3. Results and Discussion  

The performance of different blood glucose prediction 

algorithms based on the literature is summarized in table 2, 

and table 3. 

 

 

 

 

Table 2: Performance of Vildan Duduku et al.'s 

algorithm for RMSE, MAE, MAPE, and RMSPE 

metrics. 

 

 

 

 

 

 

 

 

 

 

    Table 3: Comparison of the Performance of    Various 

Learning Models for Blood Glucose Prediction 

The study compared various models for predicting blood 

glucose levels in patients with type 1 diabetes. Takoua 

Hamdi et al. [8] and Ben Ali et al. [11] provided RMSE 

metrics for all prediction periods (15, 30, 45, and 60 

Métrique 
RMSE 
(mg/dl) 

MAE 
MAPE 
(%) 

RMSPE 

30 min 21.90 15.87 10.96 25.89 

45 min 29.12 21.52 14.93 20.86 
60 min 31.10 26.41 18.53 15.40 

 

          Metric 

PH  
 

RMSE 

(mg/dl) 

MAPE 

(%) 
R2 

Takoua 
Hamdi 
el al. 
[17] 

15 min 9.44 3.74 0.971 

30 min 10.78     

45 min 11.78     

60 min 12.95     

Ben Ali 
et al. 
[18] 

15 min 6.43 3.87 0.986 

30 min 7.45     

45 min 8.13     

60 min 9.03     

Ganjar 
et al 
[19] 

15 min 2.82 1.52 0.99 

30 min 6.31 3.46 0.97 

45 min 10.65 5.89 0.91 

60 min 15.33 8.68 0.82 



minutes), but only calculated MAPE and R2 metrics for the 

15-minute prediction period. In contrast, Ganjar et al. [15] 

and Vildan Duduku et al. [16] presented comprehensive 

results across all prediction periods. The results indicated 

that Ganjar Alfian et al.'s algorithm [15] outperformed others 

in terms of RMSE, MAPE, and R2 for 15 and 30-minute 

predictions. Ben Ali et al.'s algorithm [11] demonstrated 

higher RMSE performance for 45 and 60-minute predictions, 

suggesting its effectiveness for long-term forecasting. 

Takoua Hamdi et al.'s algorithm [8] showed comparable 

performance to Ben Ali et al.'s [11] but slightly lower. Vildan 

Duduku et al.'s algorithm [16] displayed higher RMSE and 

MAPE values, indicating lower accuracy compared to the 

other algorithms. These discrepancies in performance can be 

attributed to differences in techniques, approaches, datasets, 

features, parameters, and metrics used in each study. Ganjar 

Alfian et al.'s algorithm [15] was found to provide the best 

short-term predictions, while Ben Ali et al.'s [11] performed 

better for long-term predictions, utilizing custom feature 

input and a "recursive strategy" for multi-step time series 

prediction. In contrast, Ganjar Alfian et al.'s study [15] used 

a "direct strategy". 

The findings suggested that machine learning algorithms 

have the potential to predict future blood glucose levels 

effectively, facilitating improved diabetes management by 

offering accurate predictions for patients to take appropriate 

measures. Ganjar Alfian et al.'s algorithm showed promising 

results, indicating its potential as a solution for future blood 

glucose prediction. 

 

4. Conclusion 

In conclusion, this comparative review highlights the 

importance of learning algorithms in predicting future blood 

glucose levels in individuals with type 1 diabetes, while also 

emphasizing opportunities for improvement and suggesting 

promising research directions. These findings contribute to a 

better understanding of the performances of different 

algorithms, particularly when compared to other approaches 

that utilize factors such as sports and diet, States of emotions, 

activities, stress, emotional strain, along with glycemic 

measurements and other factors. It is essential to note that 

the algorithms examined in this study focused on glucose 

predictions without human intervention, making glycemic 

devices smarter by automatically detecting hypoglycemia 

and hyperglycemia. Ganjar Alfian's algorithm demonstrated 

better short-term performance, whereas Jaouher Ben Ali's 

showed superior long-term results, illustrating the respective 

advantages of direct and recursive strategies. Moreover, 

artificial neural networks were identified as providing the 

best results among the evaluated approaches. These 

conclusions underscore the significance of further research 

to validate and improve these algorithms using larger and 

more diverse datasets, aiming to enhance their effectiveness 

for broader clinical use and improve the management of type 

1 diabetes. The results of this study deepen our 

understanding of the predictive capabilities of these 

algorithms and pave the way for potential advancements in 

the field of diabetes management.  
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