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Abstract. The differential system of balance equations for a binary mixture of fluids as the
system of a single fluid, plus that relating to diffusive motion, is used to present constitutive
proposals for the terms of exchange and to verify the metaphysical principles of Truesdell.
After two particular examples are considered presenting peculiar constitutive relations for such
growth terms and study small plane waves in order to verify the influence of these terms on the
solutions.
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1 INTRODUCTION

In the present paper we present the thermodynamic system of balance equations for a binary
mixture of fluids such as the system of a single fluid, in addition to that pertinent to the relative
motion, using a mere change of variables [1]. Next, we follow [15] to recognize all the thermo-
mechanical fields as defined in the motion of the mixture as a whole and in the diffusive motion,
so as to verify the three metaphysical principles of [16] and, further, we assume that the entropy
flux is not equal to the heat flux divided by the temperature [9].

Furthermore, we recover the kinetic energy theorem for the binary mixture directly from the
mechanical equations in order to propose the expressions of growths for the body by minimizing
the production or destruction of mass and linear momentum: the different proposals take into
account the essential features of classical models of two-phase mixture of fluids in the presence
of production terms capable of describing the effects of diffusion, virtual inertia, inviscid inertial
drag, and so on (see, e.g., [2, 4, 7]).

Finally, we consider two examples, such as the superfluid helium and a mixture of Euler
fluids, and study the propagation of small vibrations near an undisturbed state of equilibrium
for the mixture to verify the influence of the growth terms on the linear solutions.

2 BALANCE AXIOMS FOR BINARY MIXTURES OF FLUIDS

Let us consider the thermodynamic of a binary homogeneous mixture of fluids, where we
assume that physical transfers, and eventual chemical reactions, are exchanges rather than true
processes of creation or destruction, therefore we allow mass, linear momentum, rotational
momentum, and energy of any constituents to change form, but do not allow the total mixture
to produce these quantities, in agreement with the third metaphysical principle of Truesdell [16]
that postulates, for a simple fluid mixture, the same balance laws as for a single fluid.

In this case, following [5, 14], it is possible to rewrite the usual differential system of balance
laws in terms of average displacement and relative one (or drifts), rather than peculiar ones. Let
us report here the balances of mass, linear momentum, moment of momentum and energy of
the whole mixture with a single temperature θ for the constituents, respectively:

ρ̇+ ρ divv = 0, ρ v̇ = div T + ρ b, T = T T ,

ρε̇ = div h+ ρ λ+ T · grad v, (1)

where the dot ˙ denotes the material derivative with respect to time following the mean motion
v. In equations (1) we introduced the following quantities:

1) the density and the velocity of the mixture defined by

ρ := ρ1 + ρ2 and v := µ v1 + (1− µ) v2, (2)

respectively, where
µ :=

ρ1

ρ
(3)

is the concentration of the first constituent: here and henceforth, the subscripts 1 and 2 stands
for the first component of the mixture and the second one, respectively;

2) the Cauchy’s stress tensor T and the density per unit mass of body force b of the mixture
defined by

T := TI − ρ µ (1− µ)w ⊗ w and b := µ b1 + (1− µ) b2, (4)
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where TI := T1 + T2 is the symmetric inner part of the stress and w := v2 − v1 the relative
velocity: it should be noted that, in general, the peculiar stress tensors Tj are not symmetric, but
their sum TI must be for equations (1)1 and (4);

3) the density per unit mass of total internal energy ε and of heating supply λ of the mixture
defined by

ε := εI +
1

2
µ(1− µ)w2 and λ := λI + µ(1− µ) c · w, (5)

where the inner part are defined as εI := µε1 + (1 − µ) ε2 and λI := µλ1 + (1 − µ)λ2, while
c := b2 − b1 is the drift body force;

4) the mixture heat flux vector

h := h1 + h2 + STw + ρ µ (1− µ)
[
ζ +

1

2
(1− 2µ)w2

]
w, (6)

where S := µT2−(1−µ)T1 and ζ := ε2−ε1 are the drift stress and internal energy, respectively.
In addition, we need the drift balance equations of mass, linear momentum and moment of

momentum, respectively, to close the differential system, that is:

ρ µ̇ = div [ρµ(1− µ)w] + ρα, S − ST = ρM, (7)
ρ µ (1− µ) {ẇ + grad [v − (1− 2µ)w]w} =

= divS + ρ µ (1− µ)c− T gradµ+ ρ {α [v − (1− 2µ)w]−m} , (8)

where ρα, ρm and ρM are the growths per unit volume of mass and linear and rotational mo-
menta, respectively.

Furthermore, the entropy principle is expressed in the following form [9]:

ρ η̇ ≥ div k + ρ λI θ
−1, (9)

where η := µ η1 + (1− µ) η2 is the total entropy density per unit mass of the mixture and k the
mixture entropy flux vector defined by

k := θ−1
{
h− STw − ρ µ (1− µ)

[
ζ +

1

2
(1− 2µ)w2 − θξ

]
w
}
, (10)

where ξ := η2 − η1 is the drift entropy density; therefore, the classical proportionality relation
between the entropy flux k and the heat flow h through the temperature is now modified as
reported in the equation (6), where the thermal quantity [−ρ µ (1− µ) (θ−1ζ − ξ)w], as well

as a term proportional to the interstitial power
{
−θ−1

[
1
2
ρ µ (1− µ)(1− 2µ)w ⊗ w + S

]T
w
}

,

affect the entropic flow.
Moreover, we should consider other two equations for ζ and ξ, but we supposed that the

energy exchange between the constituents is so efficient that the mixture can be characterized by
a single temperature; therefore, such an assumption is tantamount to restricting considerations
to the mixture energy equation (1)4 only, rather than to each energy equation separately [10],
because the dissipation principle does not restrict the peculiar growths of energy: we need then
work only with the mixture forms for reduced energy and entropy balances (see, also, [16]).

Besides, the rate of total radiant heating λ differs from its inner part λI only if the mass
forces bj are not equal, and so c 6= 0 (see the relation (5)): in this case, the balance equation for
total internal energy (1)4 and the dissipation axiom for mixtures (9) show that the work of mass
forces against the diffusion, although it provides warming to the body, does not contribute to
the production of entropy.



Vincenzo Giacobbe and Pasquale Giovine

3 ‘VIS VIVA’ THEOREM AND CONSTITUTIVE PROPOSALS FOR EXCHANGE
TERMS

Now we infer the kinetic energy theorem for the binary mixture, described in the previous
section, directly from the linear momentum equations (1)2 and (8) taking the scalar product of
both sides by v and w, respectively, using the mass equations (1)1 and (7)1 and the symmetry
of T (1)3, integrating by parts, where possible, both sides over a domain B that moves with the
mean velocity v and summing at the end term by term; finally, we have the theorem:

d

dτ

∫
B

1

2
ρ
[
v2 + µ (1− µ)w2

]
+
∫
∂B

1

2
ρ µ (1− µ){[2 v − (1− 2µ)w]⊗ w} · w ⊗ n =

=
∫
B

ρ
{
b · v + µ (1− µ) c · w +

[
m− 1

2
α[2 v − (1− 2µ)w]

]
· w
}

+

+
∫
∂B

(v · TIn+ w · Sn)−
∫
B

[TI · (grad v − w ⊗ grad ν) + S · gradw], (11)

where n is the unit vector of the exterior normal to the boundary ∂B of B.
Therefore, the expressions of growths α and m are of fundamental importance in the balance

of the mechanical energy. In particular, the theorem (11) suggests that it is certainly not modi-
fied by the production or destruction of mass and quantity of motion if we choosem equal to the
contribution due to the creation of mass α with the unweighted average speed of components,
i.e., in this context,

m = α
[
v −

(
2−1 − µ

)
w
] {

= 2−1α(v1 + v2)
}
, (12)

for which the corresponding variation of kinetic energy is exactly compensated by the power
supplied [5]; we observe that relations v1 = v − (1− µ)w and v2 = v + µw hold.

For a binary mixture of Euler fluids, we can choose a suitable expression for m, assuming
the cancellation of α [14]:

m = −ψµ (1− µ)w and α = 0, (13)

with ψ a production term due to the interchange of momentum between the two species, for
which the first integral on the right hand side of (11) becomes∫

B

ρ {b · v + µ (1− µ) (c− ψw) · w}

and the corresponding variation of kinetic energy due to the exchange of linear momentum
behaves as a modification of the power of external actions only due to the relative motion.

Obviously, the choices are certainly a constitutive question and Müller [10, 11] proposed to
take the sum of a quantity of the type αq, with q a velocity to be specified, plus an objective term
m̃. This proposal is therefore certainly respected by (12) with m̃ vanishing. More in general,
the author in [1] suggested to choose

m = α
[
v −

(
1

2
− µ

)
w
]

+ m̃; (14)

this choice includes, in addition to (12), also the most common case that occurs in the works on
superfluid helium, in which it is set

m = α(v + µw), (15)
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that corresponds to assume m̃ = 1
2
αw (see, e.g., [12] or equation (6.180)8 of [11], where the

helium is considered as a particular simple binary mixture).
Finally, we wish to present a further expression for m in contrast to the previous proposals,

and which concerns an immiscible mixture, the bubbly liquid: in fact, it shows a non-classical
expression for its kinetic energy due to the presence of terms, in addition to the translational
ones, which take into account the effects of virtual translation inertia, representing local non-
uniformities in the flow of constituents when they move relative to each other, and local micro-
variations of the volume of bubbles that move in the liquid environment, which is set in mo-
tion, giving origin to effects of expansional inertia. We do not present here those expressions,
which are analytically calculated in the conservative case in [6], nor the relative kinetic energy
theorem, but only precise that now, in absence of mass production (α = 0), the exchange term
between phases can be proportional also to the accelerations, differently from the proposal (14),
i.e.,

m = −ςẇ − ς̄(gradw)Tw, (16)

with coefficients depending on ρ and µ; moreover, another term of inviscid drag due to iner-
tia forces can be present and related to convective derivatives, following the liquid velocity,
of the bubbles radius and of the bulk mass density of the gas, as hypothesized in [3] during
experimental observations of the motion of bubbly fluids in a circular pipe.

4 SMALL PLANE VIBRATIONS IN BINARY MIXTURES

We want to test the constitutive expressions for growths, proposed in the previous section,
in a simple wave propagation problem in superfluid helium viewed as a binary mixture whose
superfluid component is not viscous and has no dynamic interactions with the normal compo-
nent, and in a two-phase mixture of Euler fluids, i.e. fluids that are neither viscous nor heat
conducting, and do not react chemically.

4.1 Superfluid Helium

In this first example we consider only mechanical waves and it is important to observe that
the distinction, in the superfluid helium, of two kinematically separated components is only of a
formal nature and, therefore, it seems difficult to imagine that on them there are distinct actions
at a distance that can be arbitrarily assigned, as do in [8]; here we will suppose, thus, that

b1 = b2 = b, λ1 = λ2 ⇒ c = 0, λ = λI = λ1 = λ2, (17)

for definitions (4)2 and (5)2. Furthermore, we must choose constitutive expressions for growth
terms: for m we use the expression (12)1, while, for α, we suppose a dependency on mass
density rates ρ̇ and µ̇:

ρα = βρ̇+ γµ̇ (β, γmaterial costants); (18)

at the end, we impose to stress tensors TI and S to be isotropic, as for ideal fluids, therefore we
have:

T = − [πI + ρ µ (1− µ)w ⊗ w] , S = −χI, (19)

where the pressures π and χ are scalar functions depending on ρ and µ.

Remark. Regarding some suggestions from statistical mechanics for eventual thermal de-
velopments [11], we observe that the specific entropy density for the superfluid component of
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the mixture and the internal drifting energy are usually supposed to vanish:

η2 = 0, ε1 = ε2 ⇒ η = µ η1, ξ = −η1, ζ = 0. (20)

Finally, for our purposes, the system of balance equations consists of (1)1,2, (7)1 and (8)
putting the total and relative mass forces b and c, respectively, at zero and replacing the consti-
tutive laws (12)1, (18) and (19):

ρ̇+ ρ divv = 0, (ρ− γ) µ̇ = div [ρµ(1− µ)w] + βρ̇, (21)
ρ v̇ = −πρ grad ρ− πµ gradµ− div [ρ µ (1− µ)w ⊗ w] , (22)
ρ µ (1− µ) {ẇ + grad [v − (1− 2µ)w]w} = −χρ grad ρ− χµ gradµ+

+π(gradµ) + ρ µ (1− µ)[w · (gradµ)]w −
(

1

2
− µ

)
(βρ̇+ γµ̇)w, (23)

where we used the dependency of pressures on ρ and µ and indicated partial derivatives as, e.g.,
πρ =

(
∂π
∂ρ

)
µ
, and so on.

Now we observe that there is a constant solution ν0 = (ρ0, µ0, v0, w0) of (21)-(23) and thus
we can investigate on the propagation of perturbations of small-amplitude near an undisturbed
state of equilibrium for the mixture characterized by:

ρ = ρ0 + ρ̃, µ = µ0 + µ̃, v = v0 + ṽ, w = w0 + w̃, (24)

where the quantities with the tilde will be thought small (for stability reasons); therefore, we
linearize the system of balance equations around the state ν0, disregarding the non-linear terms
with the tilde and in their partial derivatives, to obtain:

∂ρ̃

∂τ
+ v0 · grad ρ̃+ ρ0 div ṽ = 0, (25)

(ρ0 − γ)

(
∂µ̃

∂τ
+ v0 · grad µ̃

)
= β

(
∂ρ̃

∂τ
+ v0 · grad ρ̃

)
−

−µ0(1− µ0) [w0 · grad ρ̃+ ρ0div w̃]− ρ0(1− 2µ0)w0 · grad µ̃, (26)

ρ0

[
∂ṽ

∂τ
+ (grad ṽ)v0

]
= − (πρ)0 gradρ̃− (πµ)0 gradµ̃− µ0(1− µ0)(w0 · gradρ̃)w0 −

−ρ0(1− 2µ0)(w0 · grad µ̃)w0 − ρ0µ0(1− µ0) [(grad w̃)w0 + w0div w̃] , (27)

ρ0µ0(1− µ0)

{
∂w̃

∂τ
+ (grad w̃)v0 + [grad ṽ + (1− 2µ0)grad w̃ − w0 ⊗ grad µ̃]w0

}
=

=
(
µ0 −

1

2

) [
β

(
∂ρ̃

∂τ
+ v0 · gradρ̃

)
+ γ

(
∂µ̃

∂τ
+ v0 · gradµ̃

)]
w0 −

− (χρ)0 grad ρ̃−
[
(χµ)0 − π0

]
grad µ̃, (28)

where we introduced the perturbations π = π0 + π̃ and χ = χ0 + χ̃ for the pressures and
calculate quantities with the subscript 0 in ν0.

We look for plane wave solutions of the form:

ρ̃ = δρ φ(x, τ), µ̃ = δµ φ(x, τ), ṽ = δv φ(x, τ), w̃ = δw φ(x, τ), (29)
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where δρ and δµ are scalar wave amplitudes, while δv and δw are vector wave amplitudes;
moreover,

φ(x, τ) = exp[i(k · x− ωτ)], (30)

with k and ω are the wave vector and the frequency, respectively. Let us denote with n̂ the unit
vector normal to the wave front and with vf the phase velocity, such that

k = κn̂, vf =
ω

κ
, (31)

where κ is the length of k, and, besides, with a subscript n the normal component to the wave
of vectors, e.g., vn = v · n̂.

By replacing the waves (29) in (25)-(28) and operating the partial derivatives, we obtain the
following homogeneous linear algebraic system resulting:

(v0n − vf ) δρ+ ρ0 δvn = 0, (32)
−β (v0n − vf ) δρ+ (ρ0 − γ) (v0n − vf ) δµ+ ρ0µ0 (1− µ0) δwn = 0, (33)[
(πρ)0 δρ+ (πµ)0 δµ

]
n̂+ ρ0 (v0n − vf ) δv = 0, (34)[

(χρ)0 δρ+
(
(χµ)0 − π0

)
δµ
]
n̂+ ρ0µ0 (1− µ0) (v0n − vf ) δw = 0, (35)

where we supposed that, in the undisturbed state, the velocity is the same for all components,
i.e., w0 = 0.

Therefore, we have two different classes of waves:
1) Material waves. If the phase velocity vf = v0n, then we have

δvn = δwn = 0 (36)

from equations (32)-(33) and

δπ = (πρ)0 δρ+ (πµ)0 δµ = 0, (χρ)0 δρ+
[
(χµ)0 − π0

]
δµ = 0 (37)

from equations (34)-(35); this system has the non-trivial solution

δρ = −
(πµ)0

(πρ)0

δµ (38)

only if
(πρ)0

[
(χµ)0 − π0

]
= (χρ)0 (πµ)0 with (πρ)0 > 0. (39)

The wave propagates with phase velocity equal to the normal component of the undisturbed
speed vf = v0n, and the vector wave amplitudes δv e δw are tangent to the plane of the wave,
therefore we have two transverse waves of velocities, one mean and the other relative, and a
mass wave of amplitude (38) associated with that of concentration, while the material wave
does not carry perturbations of the total pressure, but only of drift pressure given by

δχ = −π0δµ. (40)

2) Acoustic waves. If the phase velocity vf 6= v0n, then we have from equations (34)-(35)
that δv and δw are parallel to n̂, so the wave is longitudinal and, by multiplying each of them
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scalarly by n̂, we obtain the homogeneous system in δρ, δµ, δvn and δwn:

(v0n − vf ) δρ+ ρ0 δvn = 0, (41)
−β (v0n − vf ) δρ+ (ρ0 − γ) (v0n − vf ) δµ+ ρ0µ0 (1− µ0) δwn = 0, (42)
(πρ)0 δρ+ (πµ)0 δµ+ ρ0 (v0n − vf ) δvn = 0, (43)

(χρ)0 δρ+
[
(χµ)0 − π0

]
δµ+ ρ0µ0 (1− µ0) (v0n − vf ) δwn = 0. (44)

From equations (41)-(43) we obtain

δvn = −ρ−1
0 (v0n − vf ) δρ, (45)

δµ = (πµ)−1
0

[
(v0n − vf )2 − (πρ)0

]
δρ, (46)

δwn =

{
β +

(γ − ρ0)

(πµ)0

[
(v0n − vf )2 − (πρ)0

]} (v0n − vf )
ρ0µ0 (1− µ0)

δρ, (47)

while the (44) has real non-trivial solutions for δρ only if

(vf − v0n)2 =
−b±

√
∆

2a
> 0, (48)

with

a = (γ − ρ0) 6= 0, b = β (πµ)0 − (γ − ρ0) (πρ)0 +
[
(χµ)0 − π0

]
,

c = (χρ)0 (πµ)0 − (πρ)0

[
(χµ)0 − π0

]
and ∆ = b2 − 4ac ≥ 0. (49)

Therefore, there are four waves moving with respect to the superfluid with speeds, respec-
tively, ±

√
−b±
√

∆
2a

; such sound waves are all longitudinal, and are characterized by variations
of total mass density, as well as of concentration, mean and relative velocities, other than pres-
sures, whose amplitudes are related to the total mass one and given by equations (45)-(46),
respectively.

The influence of the coefficients β and γ of the mass exchange term α on the longitudinal
phase velocities, as well as on the amplitude of the relative velocity perturbation, is evident in
(48) and (47), respectively, and so the response of the mixture is modified by α.

Finally, we observe that, if we impose to the normal component to behave as an isothermal
perfect gas with pressure p1 = σρ, while p2 = 0 and the constant σ := Bm−1

1 θ0, where m1 is
the atomic mass of the normal constituent, B is the Boltzmann constant and θ0 the temperature
in the unperturbed state, we have, from the expressions for TI and S, that

π := p1 + p2 = σρ and χ := µp2 − (1− µ)p1 = −(1− µ)σρ. (50)

In this case, c = 0 and ∆ = (ρ0−γ)2σ2 and only two solutions of (48) hold: vf = v0n±
√
σ,

that is the velocity of sound wave of the mixture is like the perfect gas despite the growths of
mass and linear momentum are different from zero.

4.2 Mixture of Euler fluids

In the second example we analyze the propagation of plane wave in a mixture of inviscid
fluids, that do not conduct heat and do not react chemically, as introduced in [13], i.e., a binary
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mixture of Euler fluids that obey the thermal equations of state of classical ideal gases for
which the total pressure π = Rρθ, while χ = 0, in constitutive laws (19) with R a constant
proportional to the Boltzmann constant B (see, also, constitutive relations (2.9) and (2.15)1,3 of
[14]).

Moreover, we suppose null the body actions at distance b and c and the radiation λ, while,
for the exchange terms, we use the proposal (16), with ς̄ = 0, and α = 0; thus, in addition to
the mechanical equations of the previous subsection, we also use the energy balance (1)4, and
so the system of balance equations becomes

ρ̇+ ρ divv = 0, ρ µ̇ = div [ρµ(1− µ)w], ρ v̇ = −gradπ − div [ρ µ (1− µ)w ⊗ w] ,

ρ µ (1− µ) {ẇ + grad [v − (1− 2µ)w]w} = −π(gradµ)− (51)
−ρ µ (1− µ)[w · (gradµ)]w + ρ ς ẇ,

ρε̇ = div h− π div v − ρ µ (1− µ) [(grad v)w] · w;

here we observe that, for definition (6), the heat flux vector of the mixture h is different from
zero even if the individual components do not conduct heat and S = 0.

The inner part and the drift of internal energy are given in [14] by:

εI = Γ̂(µ)Rθ, ζ := ΓRθ, with Γ̂ =
µ

γ1 − 1
− 1− µ
γ2 − 1

, Γ =
1

γ1 − 1
− 1

γ2 − 1
, (52)

respectively, where γi is the ratio of the specific heat of the constituent i = 1, 2; therefore, from
definitions (5)1 and (6), we have:

ε = Γ̂Rθ +
1

2
µ(1− µ)w2, h := ρ µ (1− µ)

[
ΓRθ +

1

2
(1− 2µ)w2

]
w, (53)

Now, in addition to perturbations (24) with w0 = 0, we consider also a perturbation of the
temperature

θ = θ0 + θ̃ = θ0 + δθ φ(x, τ), (54)

with φ given by (30). Again, we linearize the system of balance equations around the unper-
turbed state, disregarding the non-linear ‘tilde’ terms, to have:

∂ρ̃

∂τ
+ v0 · grad ρ̃+ ρ0 div ṽ = 0,

ρ0

(
∂µ̃

∂τ
+ v0 · grad µ̃

)
= −ρ0µ0(1− µ0)div w̃,

ρ0

[
∂ṽ

∂τ
+ (grad ṽ)v0

]
= −R

(
ρ0 grad θ̃ + θ0 grad ρ̃

)
, (55)

ρ0 [µ0(1− µ0)− ς]
[
∂w̃

∂τ
+ (grad w̃)v0

]
= −Rρ0 θ0 grad µ̃,

Γ̂0

(
∂θ̃

∂τ
+ v0 · grad θ̃

)
+ Γθ0

(
∂µ̃

∂τ
+ v0 · grad µ̃

)
= θ0 [Γµ0(1− µ0)div w̃ − div ṽ]

Inserting the plane wave solutions (29) and (54)2, we obtain the following algebraic system
for amplitudes:

(v0n − vf ) δρ+ ρ0 δvn = 0, (56)
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(v0n − vf ) δµ+ µ0 (1− µ0) δwn = 0, (57)
R (ρ0δθ + θ0δρ) n̂+ ρ0 (v0n − vf ) δv = 0, (58)

Rθ0 δµ n̂+
[
µ0(1− µ0)− ςκ−1

]
(v0n − vf ) δw = 0, (59)

Γ̂0 (v0n − vf ) δθ + Γθ0 (v0n − vf ) δµ+ θ0 [δvn − Γµ0(1− µ0)δwn] = 0. (60)

As in the previous example, we have two different classes of waves:
1) Material waves. If the phase velocity coincides with the normal component of the undis-

turbed speed, vf = v0n, then we have

δvn = δwn = δµ = 0 (61)

from equations (56), (57) and (59), moreover, from (58), we obtain

δπ = R (ρ0δθ + θ0δρ) = 0, or δθ = −ρ−1
0 θ0δρ; (62)

the amplitude of the vector waves δv e δw are tangent to the plane of the wave, therefore, we still
have two transverse waves of velocities, one mean and the other relative, and a thermal wave
of amplitude (62)2 associated with one of total mass, while the material wave does not carry
perturbations of the total pressure, nor of concentration. There is no influence of the growth
term of linear momentum m.

2) Sound waves. Instead, if the phase velocity vf 6= v0n, then we have two different solutions
of the system (56)-(60), in fact, from equations (58) and (59) we deduce that δv and δw are
parallel to n̂, so the wave is longitudinal and, by multiplying each of them scalarly by n̂, we can
obtain the following homogeneous system in δρ, δµ, δθ, δvn and δwn:

δvn = ρ−1
0 (vf − v0n) δρ, δwn = [µ0 (1− µ0)]−1 (vf − v0n) δµ, (63)

Rδθ = ρ−1
0

[
(vf − v0n)2 −Rθ0

]
δρ,

[
Rθ0 − (1− ς̄) (vf − v0n)2

]
δµ = 0, (64)

Γ̂0 δθ + 2Γ θ0 δµ− ρ−1
0 θ0 δρ = 0, (65)

with ς̂ = ς [µ0(1− µ0)κ]−1, and so, for equations (64)2, we must split it in two cases:
2.a) If δµ = 0, thus δwn = 0, δρ 6= 0, and, therefore, we can substitute relation (65) in (64)1

to get the two phase velocities

vf = v0n ± c1, with c2
1 := Rθ0

(
1 + Γ̂−1

0

)
> 0, (66)

and amplitudes
δθ =

(
ρ0 Γ̂0

)−1
θ0 δρ, δvn = ±ρ−1

0 c1δρ. (67)

2.b) If δµ 6= 0, from relation (64) we obtain the two phase velocities

vf = v0n ± c2, with c2
2 := Rθ0 (1− ς̂)−1 > 0, (68)

and amplitudes

δθ =
θ0ς̂

ρ0(1− ς̂)
δρ, δµ =

(
1− Γ̂0 ς̂

1− ς̂

)
δρ

2ρ0Γ
,

δvn = ±ρ−1
0 c2δρ, δwn =

±c2

2ρ0Γ [µ0 (1− µ0)]

(
1− Γ̂0 ς̂

1− ς̂

)
δρ. (69)
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Consequently, there are two types of longitudinal sound waves moving with respect to the
mean motion of the Euler mixture and which present also thermal effects: in the first case, the
velocities are, respectively, c1 and −c1 and such sound waves are marked by variations of total
mass, as well as of temperature and average velocity, while do not carry perturbations of the
concentration, nor of relative velocity. The speed c1 clearly depends on the temperature θ0 and
increases as it grows, like a single perfect gas; it also depends on the constituent ratios of the
specific heat through the coefficient Γ̂0, while the non-zero amplitudes are given by (67).

In the second instance, velocities are, respectively, c2 and −c2 and such acoustic waves are
characterized by perturbations of all quantities, whose amplitudes are given by equations (69).
Now the wave speed c2 depend not only on the temperature θ0, but also on the coefficient ς̂
of the exchange term of linear momentum m, therefore, only in these solutions, its expression
significantly changes the response of the mixture to perturbations.

5 CONCLUDING REMARK

In this paper we have studied a binary mixture of fluids viewed as a single fluid with new
fields describing the diffusion flux and the concentration of one constituent. In particular, we
have discussed some constitutive choices for the terms of mass and linear momentum growths
and verified the respect of Truesdell’s metaphysical principles; moreover, we have examined
small plane perturbations in a region where the mixture is in a state of rest (or uniform rectilinear
motion) and without diffusion flux, in order to verify the influence of the production terms on
the outcome.

The results we have obtained are in full agreement with the point of view put forward by the
model; in particular, we analyzed an isothermal superfluid helium, seen as a binary mixture of
a normal component and a superfluid component, and a mixture of Euler fluids.

In the first example, we have obtained the classical transverse solutions with phase velocity
equal to the normal component of the undisturbed speed which does not carry perturbations of
the total pressure; instead, the influence of the mass exchange term appears in the four phase
velocities of the longitudinal sound waves, as well as in the amplitude of the perturbation of the
relative speed.

Moreover, in the last example, for the transverse material solutions, we still have two clas-
sical waves, as for a single perfect gas, with a thermal wave associated with the mass one, but
again the growth coefficient disappears; regarding the longitudinal sound waves, the first two
solutions give small vibrations only in the mean motion of the whole mixture without growth
influence, which, instead, clearly appear in the last two types of acoustic waves with non-null
perturbations of all variables.
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