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ABSTRACT 

 
In this paper, we consider the problem of blind multicomponent 

image unmixing. Two mixing models are considered : the linear 

mixing model (LMM) and its extended version (ELMM) which 

take the spectral (i.e. endmember) variability into account. We 

introduce powerful unmixing algorithms utilizing these models 

of latest state-of-the-art, and compare their performance on 

endmember recovery and abundance estimation.  

 

Index Terms— spectral unmixing, multispectral image, 

hyperspectral image, evaluation assessment  

 

1. INTRODUCTION 

 
Due to limited spatial resolution, the pixel of multicomponent 

images  acquired by multicomponent (multi- or hyper-spectral) 

remote sensing systems (mounted on satellite, airborne or UAV 

platforms) is often a mixture of diffrent materials. Spectral 

unmixing aims at identifying the group of spectral signatures 

representing the constitutional materials (called endmembers) and 

estimating their corresponding proportions (called abundances) in 

every pixel. 

Depending on the mixing situation within every pixel, 

there exists two kinds of mixture model : linear and nonlinear [1]. 

The linear mixing model (LMM) assumes that the spectrum of each 

pixel is composed by a linear combination of endmembers weighted 

by their corresponding abundances [2]. However, in real scenarios, 

the mixture of endmembers could not always be described as linear 

(by reason of intimate mixing effects or multiple scattering etc.). The 

nonlinear model is thus introduced (a review can be found in [3]).In 

this paper, we will be focused in the approaches utilizing the linear 

model. 

A big drawback of LMM is that it undertakes every 

endmember could be properly represented by a single spectrum, 

which is unfortunately not always true in real life scenarios as there 

always exists an intra-class variability whthin each material. The 

spectral variability could be caused by multiple factors such as the 

variation of illumination conditions, the intrinsic variability of the 

materials and the topography of the imaged scene [4]. In the 

litterature, the spectral variability could be modeled by some 

probability distributions [5]. The endmembers are assumed to follow 

Gaussian, Beta or other parametric distributions. However, the 

choice of distribution model, which is considered as prior 

information, is empirical and varies from one multicomponent 

image to another. Another possibility to model the endmember 

variability is to use a collection of samples from a given spectral 

signature, the samples are called spectral bundles [6]. The variability 

is considered implicitly in this way but this strategy requires 

existence of at least one pure pixel for each endmember.  

Recently, the sepctral variability has been held by using extended 

linear mixing model (ELMM) [7]. The main advantage of this 

strategy is about preserving the framework of LMM.  

Both of the models (LMM and ELMM) have created plenty of 

spectral unmixing approaches. 

In this paper, we present a large-scale comparison 

between the unmixing algorithms employing the two mixing models 

described above. In the case of LMM, we will analyse the approache 

Spatial Group Sparsity Regularized Nonnegative Matrix 

Factorization (SGSNMF)[8], Rank-Deficient Non Negative Matrix 

Factorization (RDNMF) [9], Minimum volume (3 types of 

regularisation) Non Negative Matrix Factorization (MVNMF) [10], 

Minimum volume (3 types of regularisation) Non Negative Matrix 

Factorization with Parameter Selection (MV-PSNMF) [11] and  

Collaborative Nonnegative Matrix Factorization (3 types of 

regularisation) (CONMF) [12]. In the case of ELMM, we will study 

the behavior of the approaches using ELMM and its vairations : the 

approache employing ELMM [7] and the approache using 

Generalized linear mixing model (GLMM) [13]. 

This paper aims at analysing the performance of the 

aforementioned algorithms in respect of accuracy criteria and 

robustness to the noise. Different multicomponent (hyper/multi-

spectral) images, simulated or the real ones, have been used to 

evaluate the unmixing approaches. 

 The structure of the paper is organized as follows : 

Sect. 2 consists of a breif review of the above-mentioned unmixing 

approaches. Sect. 3 describes the test images and the criteria utilized 

to evaluate the approaches. The experiment results are discussed in 

Sect. 4 and finally, we present the conclusion of the paper in Sect. 5   

 

 

 2. REVIEW OF RELATED WORK 

 

2.1. LMM 
 

In the case of LMM, suppose that we have the mixing model as 

follows : 

Y=SA+ε. 
where Y∈RL×N represents the multicomponent image whithin L the 

number of spectral bands and N the total number of pixels; S∈RL×p 

is the matrix of endmembers with P the number of materials; 

A∈Rp×N  corresponds to the abundances fractions of S and 

ε∈RL×N represents the noise and other estimation errors. The 

unmixing process can be formulated by an constrained optimization 

problem as : 

 

C(S,A)=‖Y-SA‖2
2+βS×Reg(S)+βA×Reg(A) 

s.c. S≥0 and ∑ ai,j=1 

 



 

where  ‖𝑌 − 𝑆𝐴‖2
2  represents the data fitting term, the Frobenius 

norm is the most used model, other forms of like beta-divergence 

could be found in [14] . In this study, we will focus only on the 

Frobenius norm. The term 𝑅𝑒𝑔() corresponds to the regularization 

of S (resp A) and 𝛽𝑆  (resp 𝛽𝐴) is the associated hyper-parameter. 

𝑎𝑖,𝑗 represents the (i,j)th element of matrix A within i∈{1..L} and 𝑗 ∈

{1. . 𝑁}.The endmembers must respect the non-negativity constraint 

and the abundances should take the rule “sum-to-one” into account. 

In SGSNMF [8], the authors proposed to introduce a 

group-structured prior information of the image in assuming that the 

pixels of a local spatial group (named by « superpixel ») share the 

same sparse structure in the abundance matrix. The estimation is 

thereby achieved by the level of superpixel. The proposed novel 

regularisation of A is given by : 

 

𝑅𝑒𝑔(𝐴) = ∑ ∑ 𝑐𝑞

𝑞∈𝛳𝑔

‖𝑊𝑔𝛼𝑞‖
2

 

𝐺

𝑔=1

 

 

where 𝛳𝑔  is the gth super-pixel; 𝑎𝑞 ∈ 𝑅𝑁𝑔  , abundance of the qth  

pixel in 𝛳𝑔, within 𝑁𝑔 the number of the pixels in 𝛳𝑔; 𝑊𝑔 ∈ 𝑅𝑝×𝑝 

the weighted matrix and 𝑐𝑞  represents a pixel-wised coefficient 

defined by 𝑐𝑞 =
1

𝐷𝑞
𝑔 with 𝐷𝑞

𝑔
 measures the spectra-spatial distance 

between qth  pixel and the centroid of 𝛳𝑔.  

Other researchers tried to impose the regularization on the 

endmember. The most famous regularization corresponds to the 

minimum volume one. The proposition of a such regularization is 

inspired by the assumption that the endmembers of a 

multicomponent image are vertices of a minimum volume 

enclosing all of its pixels [15]. In CONMF [12], the authors have 

introduced three minimum-volume based regularisations named 

respectively by CONMF-VCA, CONMF-centerd and CONMF-

total variance. All of them are formulated in the quadratic form as 

below : 

 

𝑅𝑒𝑔(𝑆) =  ‖BS-O‖2
2 

 

where {B, O} is a set of parameters defining the regularization. In 

the case of CONMF-VCA, 𝐵 = 𝐼𝑝  and 𝑂 = estimation of 

endmembers obtained by the method vertex component analysis 

[16] where 𝐼𝑝  represents the identity matrix. In the case of 

CONMF-centerd, 𝐵 = 𝐼𝑝 and 𝑂 = �̅� where �̅� =
1

𝑁
∑ 𝑦 is the mean 

value of the data set. Finally, in the case of CONMF-total variance, 

𝐵 = 𝐼𝑝 − (
1

𝑃
)1𝑝1𝑝

𝑇  and 𝑂 = 0 . In addition to impose the 

regularisation on S, the authors of [12] proposed a mixed-norm type 

regularizer on A which is given by : ‖𝐴‖2,1 = ∑‖𝑎𝑖,‖2
 where 𝑎𝑖, 

represents the ith row of the matrix A. In [12], the regularizer 
‖𝐴‖2,1 is used as well to estimate the number of endmembers : the 

criteria ‖𝑎𝑖,‖2
 is considered to mesure the sparseness of each row in 

abundances matrix and ‖𝑎𝑖,‖2
= 0 if the ith  endmember dosen’t 

exist. The approach MV-PSNMF proposed in [11] used the same 

regularizer on S as [12], noted respectively by MV-PSNMF-VCA, 

MV-PSNMF-centered and MV-PSNMF-total variance. The main 

diffrence between the two approaches lies in the choice of 

hyperparameter 𝛽𝑆 : Instead of fixing an empirical value as done 

in [12], the authors of MV-PSNMF proposed to determine the 

value by minimizing the distance between the border pixels 

(obtained by method proposed in [17] ) and the hyperplan generated 

by the estimated endmembers. In method MVNMF [10], the authors 

utilised the minimum-volume based regularizers as well. Different 

from the quadratic ones introduced previously, the three volume 

regularisations used in the approach are based on the determinant of 

the Gramian matrix of S : 

 

MVNMF-det : 𝑅𝑒𝑔(𝑆) = det (𝑆𝑇𝑆) 

MVNMF-logdet : 𝑅𝑒𝑔(𝑆) = log[det (𝑆𝑇𝑆 + 𝛿𝐼)] 
MVNMF-nuclear : 𝑅𝑒𝑔(𝑆) = ‖S‖∗ 

 

Finally, the method RDNMF proposed in [9] takes the regularizer of 

MVNMF-logdet. A special situation is considered here : when the 

number of spectral bands is fewer than that of endmembers (i.e. 

L<p). 

 

2.2. ELMM 
 

The method ELMM presented in [7] consists of minimising a cost 

function as follows : 

MIN
𝐴∈△𝐾,𝑆,𝜑,S0

1

2
∑(‖𝑦𝑛 − 𝑎𝑛S𝑛‖2

2 + 𝛽𝑆‖𝑆𝑛 − 𝜑𝑛S0‖𝐹
2 )

𝑁

𝑛=1

+ 𝛽𝐴‖∇𝐴‖2,1 + Ι𝑅+
𝐾𝑥𝑃(𝐴) + 𝜇𝑇(𝐴𝑇1𝐾 − 1𝑃)

+
𝛽𝜑

2
‖∇𝜑‖𝐹

2  

 

where 𝑆 =  {𝐒𝒏} ∈ 𝑅𝐿×𝑃×𝐾 , and 𝐴 ∈△𝐾 implies that each 

abundance vector 𝑎𝑝  ∈ 𝑅𝐾 belongs to a unity simplex of K vertices. 

𝜑𝑝 ∈ 𝑅𝐾×𝐾 is a diagonal matrix of scale factors. 𝐒𝟎 corresponds to 

a reference endmember matrix. 𝜇 ∈ 𝑅𝑃  is the multiplier of the 

lagrange. The authors of GLMM [13] tried to generalise  ELMM in 

replacing 𝜑 by a three-dimensional scaling tensor such that  𝜑 ∈
𝑅𝐿×𝑝×𝑁. GLMM aims at affecting unevenly different wavelength 

intervals so that some complicated spectral perturbations could be 

taken into account.  

 

 

3. TEST IMAGES AND EVALUATION 

ASSESEMENTS 
 

This section shows different simulated/real multicomponent images 

and evaluation criteria used to achieve the comparison among the 13 

aforementioned unmixing methods. 

 

3.1. Synthetic and real data 

 
In the tests with simulated data, we consider both multispectral 

(L=12) and hyperspectral cases (L=30). The simulated images are 

generated by LMM and all of them comprise 256x256 pixels. 

To simulate the synthetic images, we used the spectral signatures 

from the United States Geological Survey (USGS) spectral library 

released in 2007 [18]. The abundance maps are generated by the 



Dirichlet distribution method [19]. In the multispectral case, 4 test 

 

 

 
 

Fig1 : 1rt line from left to right, simulated image with p=6 ;   

Urban ;Cuprite  

2nd line from left to right : the corresponding spectral signature  

 

images are simulated whithin respectively 3,6,12 and 15 

endmembers while 2 hypserspectral images are generated with 

corresponding 5 and 20 endmembers.  In each pixel of the simulated 

image, the maximal number of endmembers comprised is set to 3 

when p=3 and set to 5 for other cases. Finally, we make the maximal 

abundance fraction 0.8 so that no pure pixels would be present in the 

test images. For each of the simulated image, we add the zero-mean 

Gaussian noise of 3 levels (20,30 and 40dB) using Signal-to-Noise 

Ratio (SNR). Two real hyperspectral images are used in our 

comparative study : the first one is the wellknown Airborne Visible 

Infra-Red Imaging Spectrometer (AVIRIS) Cuprite data set [20]. 

The image comprise 12 endmembers and 188 spectral bands after a 

remouvement of the water absorption and the noisy ones. We take a 

subset of 250x191 in our experiments. The second real image 

corresponds to the famous Urban data set within 4 endmembers. 

There are 307x307 pixels and 162 spectral bands after 

remouvement. The reference spectral signatures and/or abundance 

maps are downloaded from the website as below : 
http://lesun.weebly.com/hyperspectral-data-set.html 

Fig 1 shows some of the tested images in RGB version with their 

corresponding spectral signals.  

 

3.2. Performance metrics 

 
We measure the quality of the estimated endmember 

�̂� by spectral angle distance (SAD) in degree as : 𝑐𝑜𝑠−1 [
〈𝑆,�̂�〉

‖𝑆‖‖�̂�‖
] 

The recovered abundance map �̂� will be compared with its reference 

through a Manhattan distance based criteria : 

 

 

‖𝐴 − �̂�‖
1
 

 

4. EXPERIMENT RESULTS 

 
For all of the experiments, we assume that the number of 

endmembers P is known and the other parameters (hyperparameters 

number of iterations and other parameters involved in optimisation 

process) are set as proposed by the authors. Moreover, we note that 

the endmembers estimated by the methods using ELMM could not 

be evaluated due to the spectral variability (the size of S and �̂� are 

not same) 

 

4.1. Using the simulated data 

 

4.1.1. Estimation of S 

 
In TABLE I, we show the the name of the approach (based on 

LMM) which achieved  the minimal value in SAD at each of the 

test case : 

 

LMM 
 Best approach in estimation S 

P 20dB 30dB 40dB 

L=12 

3 CONMF 

MV-PSNMF-

VCA and –

total variance 

CONMF 

6 SGSNMF SGSNMF 
MV-PSNMF- 

total variance 

12 SGSNMF 

MV-PSNMF-

VCA and –

total variance 

SGSNMF 

15 RDNMF 

 p 20dB 30dB 40dB 

L=30 
5 

MV-

PSNMF-

centered 

MV-PSNMF 

-total variance 

MV-PSNMF- 

total variance 

20 SGSNMF 

TABLE I  
4.1.2. Estimation of A 

 

In TABLE II, we introduce the name of the approach based on 

LMM which achieved the best value through  Mahattan distance at 

each of the test case : 

 

LMM 
 Best approach in estimation A 

P 20dB 30dB 40dB 

L=12 

3 
MV-PSNMF- 

total variance 

MV-PSNMF- 

total variance 

MV-PSNMF- 

total variance 

6 SGSNMF SGSNMF 
MV-PSNMF- 

total variance 

12 SGSNMF 

15 RDNMF 

 p 20dB 30dB 40dB 

L=30 
5 

MV-PSNMF-

total variance 
SGSNMF 

MV-PSNMF- 

total variance 

20 SGSNMF 

TABLE II  

 

http://lesun.weebly.com/hyperspectral-data-set.html


 
Among the ELMM-based approaches, the method GLMM 

outperformed ELMM in all of the experiments. Finally, we tried to 

compare the performance of GLMM with the best LMM based 

method. We present in TABLE III the most powerful algorithm in 

recovery of abundance maps  : 

 

LMM 

and 

ELMM 

 Best approach in estimation A 

P 20dB 30dB 40dB 

L=12 

3 GLMM GLMM 
MV-PSNMF- 

total variance 

6 GLMM 

12 GLMM SGSNMF GLMM 

15 RDNMF 

 p 20dB 30dB 40dB 

L=30 
5 GLMM 

20 SGSNMF SGSNMF SGSNMF 

TABLE III 
 
The results presented in TABLE I, II and III show the following : 

 Among the LMM based algorithms, the approach 

SGSNMF and the MV-PSNMF based ones (especially 

VCA and total variance versions) showed a better 

performance on estimation of S and A in most of the test 

cases and they are robust to different levels of noise. 

 In both multispectral and hyperspectral tests, the MV-

PSNMF based algorithms performed better when the 

number of endmembers is lower while SGSNMF 

outperformed all other LMM based methods in most of 

the cases when the value of P is larger. 

 The methode RDNMF is the only one who can handle 

the case where P>L, which means S is rank-deficient. 

However, its performance is poor in other full rank test 

cases. 

 The ELMM based method GLMM outeperformed most of 

the LMM based ones in recovery of A when the value of 

P is small but it’s poorer than SGSNMF when P is larger. 

 

 

4.2. Using the real data 

 
In TABLE IV and V, we show respectively the first three efficient 

methods in recovery of true S and A. We do not present the recovery 

of A in Cuprite case as we didn’t get its abundance map reference. 

 
LMM 

and 

ELMM 

 Top 3 approaches in estimation S 

P Top1 2 3 

Urban 

L=162 

4 

 

MVNMF-

det 
SGSNMF 

MV-PSNMF- 

total variance 

Cuprite 

L=188 
12 SGSNMF 

MVNMF-

det   

MVNMF-

nuclear  

TABLE IV 

 

 

 
LMM 

and 

ELMM 

 Top 3 approaches in estimation A 

P Top1 2 3 

Urban 

L=162 
4 

 
GLMM  

MV-

PSNMF- 

total 

variance 

SGSNMF 

TABLE V 

  
We could see from the two tables above that the method SGSNMF, 

MV-PSNMF (- total variance version) and GLMM outperformed 

the other unmixing algorithms in the tests of real hyperspectral 

images.  

 

5. CONCLUSION 

 
In this paper, we analyzed several recent proposed multicomponent 

image unmixing algorithms and we tried to compare their 

performance in estimation of endmembers and abundance fractions. 

The unmixing methods taking into comparison are divided into two 

types according to their mixing model : linear mixing model (LMM) 

and extended linear model (ELMM). Thanks to different 

experiments using simulated and real data, multispectral and 

hyperspectral, we found that the LMM based methods SGSNMF 

and MV-PSNMF (especially the total variance version) performed 

better in recovery of endmember S than other LMM type methods 

and they showed a robustness to the noise. In estimation of 

abundance maps A, the ELMM based method GLMM outperformed 

all other methods when the number of endmembers is small and 

SGSNMF is the most efficient one when this number is larger. 

Moreover, the MV-PSNMF based methods required the less prior 

information as their regularisation parameter is estimated. 

MVNMF based methods tried to include a process of estimation 

of endmember number, however, it’s always widely 

overestimated. Finally, although the methods GLMM and 

SGSNMF showed a very good performance in estimation of A, 

they are very time consuming due to the mixing model complexity 

and the « superpixel » segmentation procedure.   
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