

Fuzzy Relation on Fuzzy Topological TM-Systems

Anna Lakshmi

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

September 22, 2022

FUZZY RELATION ON FUZZY TOPOLOGICAL TM-SYSTEMS

M.ANNALAKSHMI

V.H.N.Senthikumara Nadar College (Autonomous) Virudhunagar - 626001. Tamilnadu, India. annalakshmi@vhnsnc.edu.in

ABSTRACT. In 2010, Tamilarasi and Megalai introduced a new class of algebras called as TM-algebras. In this paper, discuss the notion of fuzzy relation on fuzzy topological TM-systems .

AMS Classification: 08A72, 03E72, 03F55 Key words : BCK/BCI Algebra,TM-Algebra,Fuzzy Topology, Fuzzy Relations

1. INTRODUCTION

In 1996, Y.Imai and Iseki [20] introduced two classes of algebras originated from the classical and non-classical propositional logic. These algebras are known as BCK and BCI algebras. It is known that the notion of BCI-algebra is a generalization of BCK-algebras in such a way that the class of BCK algebras is a subclass of the class of BCI –algebras [21]. Recently in 2010, Tamilarasi and Manimegalai introduced a new class of algebras called TM-algebras [23].

In 1965, L.A.Zadeh [25] introduced the notion of fuzzy sets, to evaluate the modern concept of uncertainty in real physical world. Fuzzy relation was introduced by Zadeh (1971) as a generalization of bags classical relations and fuzzy set. The theory of fuzzy topological spaces is developed by Chang [18], Wong [24], Lowen [22] and others.

In [1], we studied Fuzzy Topological subsystem on a TM-algebra. In [2], we studied L-Fuzzy Topological TM-system. In [3], we studied L- Fuzzy Topological TM-subsystem. In [4], [5] we studied Fuzzy Supratopological TM-system, Fuzzy α - supracontinuous functions. In this paper, discuss the notion of an fuzzy relation on fuzzy topological TM-systems and investigate some simple properties

2. Preliminaries

In this section we recall some basic definitions that are required in the sequel.

Definition 2.1. Let X be a non-empty set. A mapping $\mu : X \to [0,1]$ is called a fuzzy set of X.

Example 2.2. For $i = \{1, 2, 3\}$ consider the fuzzy sets $\mu_i : \mathbb{Z} \to [0, 1]$ given below:

$$\mu_1(x) = \begin{cases} (4-x)/3 & \text{if } x = 1, 2\\ (5-x)/3 & \text{if } x = 3 \end{cases}$$

Definition 2.3. The union of two fuzzy sets A and B of a set X, denoted by, $A \cup B$ is defined to be a fuzzy set of X :

$$(A \cup B)(x) = max \{\mu_A(x), \mu_B(x)\} \text{ for all } x \in X.$$

Definition 2.4. The intersection of two fuzzy sets A and B of a set X, denoted by, $A \cap B$ is defined to be a fuzzy set of X:

$$(A \cap B)(x) = \min \{\mu_A(x), \mu_B(x)\} \text{ for all } x \in X.$$

Definition 2.5. Let A and B be two fuzzy sets of X. Then $A \subset B \Rightarrow A(x) \leq B(x)$ for all $x \in X$

Definition 2.6. Let A be a fuzzy set of X. Then the complement of A denoted by A' is defined to be

 $A'(x) = 1 - A(x) \text{ for all } x \in X$

Definition 2.7. A fuzzy topology is a family T of fuzzy sets in X which satisfies the following conditions

- (1) $\phi, X \in T$
- (2) If $A, B \in T$ then $A \cap B \in T$
- (3) If $A_i \in T$ for each $i \in I$ then $\cup_I A_i \in T$ where I is an indexing set.

Remark 2.8. If X is a set with a fuzzy topology T then (X,T) is called a fuzzy topological space and any element in T is called a T-open fuzzy set in X.

Definition 2.9. Let (X,T) be a fuzzy topological space.Let A be a fuzzy set in X. A fuzzy set $U \in T$ is said to a neighbourhood of A if there exists a T-open fuzzy set O such that $A \subset O \subset U$ ie $A(x) \leq O(x) \leq U(x)$ for all $x \in X$

Definition 2.10. Let A and B be fuzzy sets in a fuzzy topological space (X,T). Let $A \supset B$ Then B is called an interior of A if A is a neighbourhood of B. The union of all interior fuzzy sets of A is again a an interior of A and is denoted by A^0

Definition 2.11. Let f be a function from X to Y. Let σ be a fuzzy set in Y. The inverse image of σ under f is defined as $\sigma_{f^{-1}}(x) = \sigma(f(x)) \ \forall x \in X$. Let μ be a fuzzy set in X. The image of μ under f is defined as

$$\mu_f(y) = \begin{cases} sup_{z \in f^{-1}(x)} & \mu(z), \ f^{-1}(x) \ is \ not \ empty \\ 0 & otherwise \end{cases} \quad \forall y \in Y.$$

Definition 2.12. TM-Algebra

A TM-Algebra (X, *, 0) is a non-empty set X with a constant 0 and a binary operation * satisfying the following axioms:

(1) x * 0 = x(2) (x * y) * (x * z) = z * y for all $x, y, z \in X$.

Definition 2.13. Fuzzy TM-Subalgebra

A fuzzy subset μ of a TM-Algebra (X, *, 0) is called a fuzzy TM-Subalgebra of X if, for all $x, y \in X$, $\mu(x * y) \ge \min \{\mu(x), \mu(y)\}$

Definition 2.14. Fuzzy Relation

Consider the cartesian product $A \times B = \{(x, y) : x \in A, y \in B\}$ where A and B in universal sets U and V correspondingly. A fuzzy relation on $A \times B$ denoted by R or R(x, y) is defined as the set $R = \{(x, y), \mu_R(x, y) : (x, y) \in A \times B, \mu_R(x, y) \in [0, 1]\}$

Definition 2.15. The intersection of R_1 and R_2 is denoted by $R_1 \cap R_2$ is defined by $\mu_{R_1 \cap R_2}(x, y) = max \{\mu_{R_1}(x, y), \mu_{R_2}(x, y)\}$, $(x, y) \in A \times B$

Definition 2.16. The union of R_1 and R_2 is denoted by $R_1 \cup R_2$ is defined by $\mu_{R_1 \cup R_2}(x, y) = \min \{\mu_{R_1}(x, y), \mu_{R_2}(x, y)\}$, $(x, y) \in A \times B$

3. Fuzzy Relation Fuzzy Topological TM-Systems

Definition 3.1. Fuzzy Topological TM-System

Let X be a TM-Algebra. X is said to be a Fuzzy Topological TM-System if there is a family T of fuzzy subalgebra in X which satisfies the following conditions

- (1) $\phi, X \in T$
- (2) If $A, B \in T$ then $A \cap B \in T$
- (3) If $A_i \in T$ for each $i \in I$ then $\cup_I A_i \in T$ where I is an indexing set.

If X is TM-system with a fuzzy topology T then (X,T) is called a fuzzy topological TMsystem and any element in T is called a T-fuzzy open subalgebra in X. The complement of T-fuzzy open subalgebra in X is called a T-fuzzy closed subalgebra.

Example 3.2. Consider the set $X = \{0, 1, 2, 3\}$ with the following cayley table

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Let the fuzzy subalgebras $\mu_i: X \to [0,1], i = 1, 2, 3, 4, 5, 6, 7, 8$ be given by

$$\mu_1(x) = \begin{cases} .7 & if \ x = 0 \\ .4 & if \ x = 1, 2 \\ .5 & if \ x = 3 \end{cases} \begin{pmatrix} .3 & if \ x = 0 \\ 0 & if \ x = 1, 2 \\ .2 & if \ x = 3 \end{cases} \begin{pmatrix} .6 & if \ x = 0 \\ .2 & if \ x = 1, 2 \\ .4 & if \ x = 3 \end{cases}$$

$$\mu_4(x) = \begin{cases} .5 & if \ x = 0 \\ .1 & if \ x = 1, 2 \\ .4 & if \ x = 3 \end{cases} \xrightarrow{\mu_5(x)} = \begin{cases} .8 & if \ x = 0 \\ .5 & if \ x = 1, 2 \\ .7 & if \ x = 3 \end{cases} \xrightarrow{\mu_6(x)} = \begin{cases} .7 & if \ x = 0 \\ .3 & if \ x = 1, 2 \\ .4 & if \ x = 3 \end{cases}$$
$$\mu_7(x) = \begin{cases} .8 & if \ x = 0 \\ .5 & if \ x = 1, 2 \\ .6 & if \ x = 3 \end{cases} \xrightarrow{\mu_8(x)} = \begin{cases} .8 & if \ x = 0 \\ .3 & if \ x = 1, 2 \\ .7 & if \ x = 3 \end{cases}$$

Then the collection $T = \{\phi, X, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6\}$ is a fuzzy topology on X. Hence (X, T) is a fuzzy topological TM- system.

Definition 3.3. Fuzzy Relation on Fuzzy Topological TM-Systems

Let X, Y be a TM-Algebras. Let R_1 , R_2 be the fuzzy relations on X, Y are said to be Fuzzy Topological TM-System if there is a family T of fuzzy relation subalgebra in (X, Y)which satisfies the following conditions

- (1) $\phi, X \in T$
- (2) If $A, B \in T$ then $A \cap B \in T$
- (3) If $A_i \in T$ for each $i \in I$ then $\cup_I A_i \in T$ where I is an indexing set.

Example 3.4. Consider the set $X = \{0, 1, 2\}$ $Y = \{0, 1, 2\}$ with the cayley table

*	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Let $R_1(x, y)$ and $R_2(x, y)$ be the fuzzy relations on fuzzy subalgebras $\mu_i: X \to [0, 1], i = 1, 2, 3 \quad \nu_i: Y \to [0, 1], i = 1, 2, 3$ be given by

$\mu_1(x,y) = \begin{cases} .4\\ .2\\ 0 \end{cases}$	if (x, y) = (0, 0) if (x, y) = (0, 1) if (x, y) = (0, 2)	$\mu_2(x,y) = \begin{cases} .7\\ .5\\ .6 \end{cases}$	if (x, y) = (1, 0) if (x, y) = (1, 1) if (x, y) = (1, 2)
$\mu_3(x,y) = \begin{cases} .5\\ .2\\ 0 \end{cases}$	if (x, y) = (2, 0) if (x, y) = (2, 1) if (x, y) = (2, 2)	$ \nu_1(x,y) = \begin{cases} .5 \\ .3 \\ .1 \end{cases} $	if (x, y) = (0, 0) if (x, y) = (0, 1) if (x, y) = (0, 2)
$\nu_2(x,y) = \begin{cases} .3\\ .1\\ 0 \end{cases}$	if (x, y) = (1, 0) if (x, y) = (1, 1) if (x, y) = (1, 2)	$\nu_3(x,y) = \begin{cases} .4\\ .3\\ .1 \end{cases}$	if (x, y) = (2, 0) if (x, y) = (2, 2) if (x, y) = (2, 3)

Then the collection $T = \{\phi, X, \mu_1, \mu_2, \mu_3, \nu_1, \nu_2, \nu_3\}$ is fuzzy relation on fuzzy topology (X, Y) Hence fuzzy relations $R_1(x, y), R_2(x, y)$ on fuzzy topological TM- system (X, Y, T).

Definition 3.5. Fuzzy relation neighbourhood

Let the fuzzy relations $R_1(x, y)$, $R_2(x, y)$ on fuzzy topological TM- system (X, Y, T). Fuzzy relation subalgebra U in fuzzy topological TM-system, is an fuzzy relation neighbourhood of an fuzzy relation subalgebra A if there exist an T-open fuzzy relation subalgebra O such that $A \subset O \subset U$

ie $A(x,y) \leq O(x,y) \leq U(x,y)$ for all $x \in X, y \in Y$

Example 3.6. Let $\mu_i(x, y)$, i = 1, 2, 3 $\nu_i(x, y)$, i = 1, 2, 3 be fuzzy relation subalgebra of the TM-system given in example 3.4

 $T = \{\phi, X, \mu_1, \mu_2, \mu_3, \nu_1, \nu_2, \nu_3\}$ is fuzzy relation on Fuzzy Topological TM-system. $\mu_2(x, y)$ is fuzzy relation neighbourhood of a fuzzy relation subalgebra $\mu_1(x, y)$ for $\mu_1(x, y) \le \nu_2(x, y) \le \mu_2(x, y)$

Definition 3.7. Fuzzy relation interior

Let (X, *), (Y, *) be a TM-Algebra. Let the fuzzy relations $R_1(x, y)$, $R_2(x, y)$ on fuzzy topological TM- system (X, Y, T). Consider T-open fuzzy relation subalgebra $\mu^*(x, y)$ in (X, Y, T). Fuzzy relation interior of $\mu^*(x, y)$ is the union of all fuzzy relation open subalgebras contained in $\mu^*(x, y)$ and it is denoted by $(\mu^*)^{\circ}(x, y)$. That is $(\mu^*)^{\circ}(x, y) =$ $\cup \{\mu(x, y) : \mu(x, y) \subseteq \mu^*(x, y), \mu(x, y) \in (X, Y, T)\}$

Example 3.8. Let $\mu_i(x, y)$, i = 1, 2, 3, $\nu_i(x, y)$, i = 1, 2, 3 be fuzzy relation subalgebra of the TM-system given in example 3.4

 $(X, Y, T) = \{\phi, X, \mu_1, \mu_2, \mu_3, \nu_1, \nu_2, \nu_3\}$ is Fuzzy relation on Fuzzy Topological TM-system. Let $\mu^*(x, y) = \mu_3(x, y)$. $(\mu_3)^{\circ}(x, y) = \cup \{\mu_1, \nu_2, \nu_4\} = \mu_1(x, y)$

Definition 3.9. Let the fuzzy relations $R_1(x, y)$, $R_2(x, y)$ on fuzzy topological TM- system (X, Y, T). A sequence of fuzzy relation subalgebra, $\{A_n(x, y), n = 1, 2, 3, ...,\}$ in the TM-System is said to be eventually contained in fuzzy relation subalgebra A(x, y) iff there is an integer m such that for all $n \ge m \implies A_n(x, y) \subset A(x, y)$.

Definition 3.10. Let the fuzzy relations $R_1(x, y), R_2(x, y)$ on fuzzy topological TMsystem (X, Y, T). Let $\{A_n(x, y), n = 1, 2, 3, ..., \}$ be a sequence of fuzzy relation subalgebra. The sequence is said to converge to fuzzy relation subalgebra A(x, y) iff it is eventually contained in each fuzzy relation neighbourhood of A(x, y).

Theorem 3.11. Let the fuzzy relations $R_1(x, y), R_2(x, y)$ on fuzzy topological TMsystem (X, Y, T). Fuzzy relation subalgebra A(x, y) is T-open iff for each fuzzy relation subalgebra B(x, y) contained in A(x, y), A(x, y) is fuzzy relation neighbourhood of B(x, y).

Proof:

Suppose fuzzy relation subalgebra A(x, y) is T-open.

Let B(x,y) be any fuzzy relation subalgebra contained in A(x,y). Since A(x,y) is open,

M.ANNALAKSHMI

and $B(x,y) \subset A(x,y), \ B(x,y) \subset A(x,y) \subset A(x,y)$

 \therefore A(x,y) is fuzzy relation neighbourhood of B(x,y).

Conversely, for each fuzzy relation subalgebra B(x, y) contained in A(x, y), A(x, y) is fuzzy neighbourhood of B(x, y).

for $A(x,y) \subset A(x,y)$, by our assumption, A(x,y) is fuzzy relation neighbourhood of A(x,y).

Hence there exits an open fuzzy relation subalgebra O(x, y) such that $A(x, y) \subset O(x, y) \subset A(x, y)$

Hence A(x,y) = O(x,y) and A(x,y) is T - open.

Definition 3.12. Let the fuzzy relations $R_1(x, y), R_2(x, y)$ on fuzzy topological TMsystem (X, Y, T). Let A(x, y) be fuzzy relation subalgebra in (X, Y, T). The set $\mathfrak{U}_A(x, y)$ is defined to be fuzzy relation neighbourhood system of A(x, y).

Theorem 3.13. Let the fuzzy relations $R_1(x, y)$, $R_2(x, y)$ on fuzzy topological TM- system (X, Y, T). Let A(x, y) be fuzzy relation subalgebra in (X, Y, T) Let $\mathfrak{U}_A(x, y)$ be fuzzy relation neighbourhood system of fuzzy relation subalgebra A(x, y). then

- (1) The finite intersections of members of $\mathfrak{U}_A(x,y)$ belong to $\mathfrak{U}_A(x,y)$
- (2) Fuzzy relation subalgebra of (X, Y, T) which contain a member of $\mathfrak{U}_A(x, y)$ belong to $\mathfrak{U}_A(x, y)$

Proof:

- (1) Let the fuzzy relations $R_1(x, y), R_2(x, y)$ on fuzzy topological TM- system (X, Y, T).
 - Let A(x,y) be fuzzy relation subalgebra in (X,Y,T)

Let $\mathfrak{U}_A(x,y)$ be fuzzy relation neighbourhood system of A(x,y).

Let $R(x,y), S(x,y) \in \mathfrak{U}_A(x,y)$ Hence R(x,y) and S(x,y) are fuzzy relation neighbourhood of A(x,y).

Thus there exits open fuzzy relation subalgebras $R_0(x, y)$ and $S_0(x, y)$ Such that $A(x, y) \subset R_0(x, y) \subset R(x, y)$ and $A(x, y) \subset S_0(x, y) \subset S(x, y)$ respectively.

Hence $A(x,y) \subset R_0(x,y) \cap S_0(x,y) \subset R(x,y) \cap S(x,y)$

 \Rightarrow $R(x,y) \cap S(x,y)$ is fuzzy relation neighbourhood of A(x,y).

Hence the intersection of two members of $\mathfrak{U}_A(x, y)$ is again a member of $\mathfrak{U}_A(x, y)$ It automatically follows that the intersection of any finite number of members of $\mathfrak{U}_A(x, y)$ is again a member of $\mathfrak{U}_A(x, y)$

(2) Let R(x,y) be fuzzy relation subalgebra that contains a member of $\mathfrak{U}_A(x,y)$ say U(x,y).

Hence R(x,y) contains a neighbourhood U(x,y) of A(x,y), that is $U(x,y) \subset R(x,y)$, $U(x,y) \in \mathfrak{U}_A(x,y)$

since U(x,y) is fuzzy relation neighbourhood of A(x,y), there exists a T-open

fuzzy relation subalgebra O(x, y) such that $A(x, y) \subset O(x, y) \subset U(x, y) \subset R(x, y)$. Thus $A(x, y) \subset O(x, y) \subset R(x, y)$ $\Rightarrow R(x, y)$ is fuzzy relation neighbourhood of A(x, y). $\therefore R(x, y) \in \mathfrak{U}_A(x, y)$

Theorem 3.14. Let the fuzzy relations $R_1(x, y)$, $R_2(x, y)$ on fuzzy topological TM- system (X, Y, T). Let A(x, y) be fuzzy relation subalgebra in (X, Y, T).

(1) $A^0(x,y)$ is open and is the largest open fuzzy relation subalgebra contained in A(x,y).

(2) Fuzzy relation subalgebra A(x, y) is open iff $A(x, y) = A^0(x, y)$

Proof:

(1) Let the fuzzy relations R₁(x, y), R₂(x, y) on fuzzy topological TM- system (X, Y, T). Let A(x, y) be fuzzy relation subalgebra in (X, Y, T). By definition of fuzzy relation interior, A⁰(x, y) is again fuzzy relation interior subalgebra of A(x, y). Hence there exist an T- open fuzzy relation subalgebra O(x, y) such that A⁰(x, y) ⊂ O(x, y) ⊂ A(x, y). But O(x, y) is fuzzy relation interior subalgebra of A(x, y), O(x, y) ⊂ A⁰(x, y) Hence A⁰(x, y) = O(x, y). Thus A₀(x, y) is open and is the largest open fuzzy relation subalgebra contained in A(x, y).

(2) Suppose fuzzy relation subalgebra A(x, y) is open.
If A(x, y) is open, then A(x, y) ⊂ A⁰(x, y), for A(x, y) is fuzzy relation interior subalgebra of A(x, y).
Hence A(x, y) = A⁰(x, y)
Conversely, Suppose A(x, y) = A⁰(x, y)
By definition, The union of all fuzzy relation interior subalgebras of A(x, y) is called the interior of A(x, y) and is denoted by A⁰(x, y).
∴ A(x, y) is a fuzzy relation neighbourhood of A⁰(x, y).
By theorem 3.11, Fuzzy relation subalgebra A(x, y) is T - open.

Theorem 3.15. If fuzzy relation neighbourhood system of each fuzzy relation subalgebra in fuzzy topological TM-algebra (X, Y, T) is countable, then fuzzy relation subalgebra A(x, y) is open iff each sequence of fuzzy relation subalgebras, $\{A_n(x, y), n = 1, 2, 3, ..., \}$ which converges to fuzzy relation subalgebra B(x, y) contained in A(x, y) is eventually contained in A(x, y).

Proof:

Suppose A(x, y) is open.

Given each sequence of fuzzy relation subalgebras, $\{A_n(x,y), n = 1, 2, 3,\}$ which converges to fuzzy relation subalgebra B(x, y).

Since A(x, y) is open and B(x, y) contained in A(x, y).

 \therefore A(x,y) is a neighbourhood of B(x,y).

- Hence $\{A_n(x,y), n = 1, 2, 3....\}$ is contained in A(x,y).
- Conversely,

For each $B(x,y) \subset A(x,y)$, let U_1 , U_2 , ..., U_n ..., be the neighbourhood system of B(x,y).

Let $V_n = \bigcap_{i=1}^{n} \{U_i\}$ Then V_1 , V_2 V_n is a sequence which is eventually contained in each fuzzy relation neighbourhood of B(x, y).

- Hence there is an m such that for $n \ge m$, $V_n \subset A(x, y)$.
- \therefore V_n are fuzzy neighbourhood of B(x, y).
- \therefore By theorem 3.11, A(x,y) is T open.

References

- [1] Annalakshmi.M,Chandramouleeswaran.M, Fuzzy Topological subsystem on a TM-algebra, International Journal of Pure and Applied Mathematics,Vol.94,No.3 2014, 439-449
- [2] Annalakshmi.M,Chandramouleeswaran.M, On L- Fuzzy Topological TM-system, International Journal of Mathematical Science and Engineering Applications, Vol.8,No.IV (July 2014) PP. 135 -145.
- [3] Annalakshmi.M ,Chandramouleeswaran.M, On L- Fuzzy Topological TM- subsystem, Italian Journal of Pure and Applied Mathematics - N. 33 - 2014 (359-368)
- [4] Annalakshmi.M, Chandramouleeswaran.M, Fuzzy supratopological TM-system, International Journal of Pure and Applied Mathematics, Vol.98, No.5 2015, 55-61
- [5] Annalakshmi.M, Chandramouleeswaran.M, Fuzzy and L- Fuzzy compactness in a Fuzzy Topological TM-system, Global Journal of Pure and Applied Mathematics, Vol11, No.1 2015, PP491-498
- [6] Annalakshmi.M, Chandramouleeswaran.M, Fuzzy α- supracontiuous functions, International Journal of Mathematical Archive -6(5),2015,116-119.
- [7] Annalakshmi.M, Chandramouleeswaran.M, Interior and Closure of Fuzzy open sets in a Fuzzy Topological TM-system, Glopal Journal of Pure and Applied Mathematics, Vol.11, No.5 (2015), PP 3157-3164.
- [8] Annalakshmi.M, Chandramouleeswaran.M, Fuzzy Connected on Fuzzy Topological TM-system, International Journal of Pure and Applied Mathematics- Vol-112, No.5, pp.93-102
- [9] Annalakshmi.M, Chandramouleeswaran.M Fuzzy Supratopological TM-Subsystem, Mathematical Sciences International Research Journal, Vol 6, Spl Issue Dec 2017, PP 243-247
- [10] Annalakshmi. M, Chandramouleeswaran. M
 An L- Fuzzy $\alpha-$ Supratopological TM-Subsystem, International Journal of Computer Science, ISSN:2348-6600
- [11] Annalakshmi.M, Chandramouleeswaran.M,An L Fuzzy Connected on L Fuzzy Topological TMsystem, International Journal of Mathematical Archive- Vol-5, No.5, May 2018 pp.1-6
- [12] Annalakshmi.M, An L Fuzzy α supracontiuous in α supratopological TM-System, International Journal of Mathematical Archieve-10(11), 2019 ISSN 2229-5046 PP 1- 6
- [13] Annalakshmi.M, An L Fuzzy supratopological TM-System, International Journal of Computer Science, Jan 2018 ISSN 2348-6600 PP 410- 416
- [14] Annalakshmi.M, L-Fuzzy connected on L-Fuzzy Supratopological TM-Systems, Recent advances in Arts, Science and social sciences, ISBN:978-81-951746-3-8

- [15] Annalakshmi.M, An Intuitionistic L-Fuzzy topological TM-systems, Journal of Information and Computational Science - ISSN 1548-7741, vol.12,Issue.1-2022,pg 26-33.
- [16] Annalakshmi.M, An Intuitionistic Fuzzy Topological TM-Subsystems, International Journal of Research and Analytical Reviews, Vol 9, Issue 1,660-666
- [17] Annalakshmi.M, An Intuitionistic L-Fuzzy Topological TM-Subsystems, International Journal of All Research Education and Scientific Methods, Vol 10,Issue2
- [18] Chang C.L., Fuzzy Topological Spaces, Journal of Mathematical Analysis and Applications, Vol.24, (1968), pp. 182-190.
- [19] Gyanendra kumar panda, On the theory of fuzzy relations, Technical research organisation ,India, ISSN:2395-7786,vol 2,Issue4.
- [20] Imai.Y and Iseki.K., On axiom systems of Propositional Calculi, XVI Proc. Japan Acad. Ser A. Math. Sci., 42 (1966), 19-22.
- [21] Iseki. K. On BCI-algebras, Math. Seminar Notes., 11(1980), pp.313-320.
- [22] Lowen.R, Fuzzy topological spaces and fuzzy compactness, J.Math.Anal.Appl.56(1976), 621-633.
- [23] Tamilarasi. A and Megalai. K, TM algebra an introduction, CASCT .,(2010).
- [24] Wong.C.K ,Fuzzy Topology:Product and quotient theorems,J.Math. Anal.Appl.45(1974),512-521.
- [25] Zadeh.L.A , Fuzzy sets, Inform.control 8 (1965),338-353

M.Annalakshmi, V.H.N.Senthikumara Nadar College (Autonomous), Virudhunagar - 626001. India. Annalakshmi@vhnsnc.edu.in