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Abstract

This article is concerned with a discrete time Geo/G/1 retrial queue with
general retrial times, Bernoulli feedback and the server subject to starting failures and
a vacation. In this article we generalize the previous works in discrete time retrial
queue with unreliable serverm due to starting failures in the sense that we consider
general service with Bernoulli feed back and general rtrial times with single vacation.
In this model arrival time follows geometrical distribution and vacation times are
generally distributed. In this model the PGF is derived by using generaing function
technique and also we obtain the analytical expression for mean queue length in
performance measure. In numerical examples we analyzed the effectis of mean queue

length in several possible ways.
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1.INTRODUCTION

In Queuing models many researchers have found a lot of application in computer
communications and manufacturing systems. Currently many researchers are
interested in discrete queue, due to applications in a various slotted digital
communicated systems and other related areas. The analysis of discrete queuing
model has received considerable attention in the scientific literature over the past

years because of its applications which are widely used in the real life.



In telecommunication and computer systems the role of retrial queues in very
important and are characterized by the fact that a customer who leaves the service
area and joins a retrial group ( orbit) when the server is busy. In the customers in the
orbit can not receive service immediately, when the server is idle but, it is not so
standard queues this is the main difference between retrial and standard queues. Falm
(1990), Falm and Templation (1997), Kulkarni and Liang (1997), yangand
Templation (1987) have discussed on retrial queues and analyzed the fundamental

methods on retrial queues .in brief,

In most of literature the researchers analyzes continuous queuing model, but
only some of the authors concentrate on discrete queues since in practice it is applied
many systems which shows an inherent genetic slotted time scale ( time shared
computing system). Initially the discrete queues are discussed by Meisling( 1958),
Bindsall, Ristenbatt, and Weinstein (1962) and also by powell and Avi — Lizha
(1967).. In modelling computers and telecommunications the role of discrete queuing
models are most important when compared with continuous time models. The concept
feedback is initiated by Takacs (1963) which have been widely investigated in
continuous time [5-8,14-16,20] whereas they have been rarely analyzes in discrete
time[1].Takacs think about that the number of services needed by a customer is
geometrically distributed, that is, after receiving each service a customers quits the
system with probability 1-o or rejoins the end of the queue for another service with
probability a. This phenomenon o feed back has many practical applications. Also,
Atencia, Fortes, and Sanchez (2009) has analyzed a discrete queue with Bernouli

feedback and starting failures.

In this article we have developed a new concept in discrete retrial queue deals
with Bernoulli feedback, starting failures and a vacation. Since the role of vacation in
discrete queue with feedback and starting failures has wide application in many real

situations of our life, which is motivated me to develop this article.

The aim of this article is to discuss the problem like that arises in
telecommunication systems where messages that produce errors at the destination are
sent again in a call centre, where customer may call again ( repeat their service ) if
their problems are completely solved after the service. Also, in the telecommunication

system the starting failures occurred and at the time of starting failures no service is



produced to customers and the server also takes a vacation of random time. This

process is most suitable for our model under consideration. .

2 MODEL DESCRIPITION

This model is concerned with a discrete time Geo/G/1 retrial queue with
general retrial times, Bernoulli feedback and the server subject to starting failures and
a vacation. In this model a previous work is generalized in discrete time retrial queue
with unreliable server due to starting failures in the sense that general service with
Bernoulli feedback and general rtrial times with single vacation are considered.
Herearrival time follows geometric distribution and service time and vacation time are
generally distributed. The PGF is derived by using generaing function technique
and also it is obtained an analytical expression for expected queue length in
performance measure. In numerical illustrations the effectis of expected queue
length is analyzed in several possible ways.

In this model a discrete time queueing system is considered, where the
time axis is splitted into constant length interval of one unit called slots. In
continuous queue the probability of an arrival and a departure occurring
simultaneously is zero, whereas it is not so in discrete queues. Also, in this
discrete retrial queue all the queueing activities occur around the slot boundary.
The time axis be marked by 0,1,2,...,m consider the epoch m and assume that
departures and the end of repair times takes place just before the slot boundary

m i.e.,in the interval (m‘,m) and arrivals, retrials, beginning of repairs and
vacation takes place just after the slot boundary i.e., in the interval (m,m*)i.e.,

an early arrival system or departure first policy is followed.
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Figure 6.1 Schematic representation of the queueing model
Q: Queue length

The assumptions are as follows,
(1) Customers arrival times follows geometric distribution with
probability A.
(2) The server starts its service successfully with probability p and the

server starts its service unsuccessfully with probability p=1—p

(3) Inter retrial times {a;} are generally distributed and identically

independent random variable with cdf A(x) and probability 6

(4) Service times {s;} are generally distributed and identically
independent random variable with cdf S(x).
(5) Repair times {r;} are generally distributed and identically

independent random variable with cdf R(x).

Q>0



(6) Vacation times {v;} are generally distributed and

independent random variable with cdf V(x).
2.1 NOTATIONS

In this chapter the following notations are used

A
S()
V()
AC)
R()
s(x)
v(x)
a(x)
r(x)

Ok

: Arrival rate

: Cdf of service time

: Cdf of vacation time

: Cdf of retrial time

. Cdf of repair time

- Pdf of service time

: Pdf of vacation time

: Pdf of retrial time

: Pdf of repair time

: State of the system at time m*

: Number of repeated customers in retrial at time m*
: Remaining vacation time

: Remaining retrial time

: Remaining service time

: Remaining repair time

: PGF of system size at an arbitrary epoch
. Limiting probability of vacation period
: Limiting probability of idle period

- Limiting probability of busy period

- Limiting probability of busy period

= P(X=K).

State of the system is defined as follows,

P .. =0, the server is on vacation

=1, the server is on idle

= 2, the server is on busy

identically



= 3, the server is under repair
3 SYSTEM EQUATIONS
The Kolmogorov equations for the stationary distribution is

To10 =Ao10 + z”0,01 i>1 (6.1)
70,i k :Zﬂ'o,iﬂ,k + W Toa + Vi Toggs i1 (6.2)
11,0 :717[0,0 + g’;“”1,1,0’ 1>1 6.3)

Tyix =048 7o g + 08701 + Ay jia + 08T a0 + O3 750 + A8, 75,

21 k>1 (6.4)

Tk =A8i00x PToo + APSi o1 + Zpsi ook T Zpsi Tiaky t (1‘ o )pﬂ“si _zl”l,j,k + (1‘ o )ﬂ)ﬂ'siﬁz,l,k—l
j=
+ (ep/lsi +04pa,s; )”2,1,k +08,PSi Ty g + (1_ Ook )”2,i+1,k—1 + AT ik

+(1- 6y, )p2s, +Aps;a " i>1, k>0
( Ok)p 31k PSi@p731 Kk ’ (6.5)

Tyix = AN POy oy + AN Prrgy ey + AN Py + (1_51k )/1 pr; jz_:lﬂl,j,k—l + pALTy, + (1_50k )L%ri P75k
+ (g’_p/“i + SZaO pr; )772,1,|<71 + grpﬁao 7y t (1 — Ok )ﬂ’_pri T31k-1+ _pzao”e,,i,k

i>1L k>1
(6.6)

To solveabove Kolmogorov equations, define generating function’s and

auxiliary generating function’s as follows

¢0(X1Z):i i”o,i,kxiZk , B, (X’Z):i Zﬂl,i,kxizk

0
i=1 k=0 =1 k=l



4 STEADY STATE ANALYSIS

In this section the probability generating function of a system size at
anarbitrary epoch is obtained by using generating function technique and by
using this PGF ananalytical expression for expected queue length is derived.
The limiting probabilities are defined as follows

Tore =im PP, =0,&, =i, L, =k}
which means that the server is under vacation at time m*, remaining vacation

time &, isiand number of repeated customersL,, in the orbit is k.

Similarly, define
ﬂl,i,k = imn—>ooP{Pm :Lgl,m = i’ I-m = k}

”Z,i,k = imn—mP{Pm = 2’é'gz,m = i’ Lm = k}
7[3,i,k = imn»ooP{Pm :3’§3,m = i' I—m = k}

Multiply equation (6.2) both sides by z*and taking summation over k

and using (6.1) and on some algebraic simplifications,

/14;/12}_&7[00 (6-7)

z

" (z)=z¢om(z>+vi¢m<z{

Multiply equation (6.7) both sides by x'and taking summation over i

andafter some algebraic simplifications,

¢o<x,z)(%qufm(z{@v(x)—ﬂ—mﬁ 6.8)

z
Multiply equation (6.4) both sides by z* and taking summation over k
and using (6.3),
4(2) = (2o, 20+ )+ 7, 2) + 9@ 20e +0)+ G gy (2) - Aaymyy (6.9)
Multiply equation (6.9) both sides by x'and taking summation over i

and after some algebraic simplifications,

02 | a0 )T )+ 00+ 22

+¢31(Z)(A(X)_ao) — Ao, (A(X)_ao) (6.10)



Multiply Equation (6.5) both sides by z*and taking summation over k
and using (6.3),

Poi (Z)= psi¢01(z)(Z + /12)4‘@@1(2)‘*‘ (Z + Az 2i+1(2)+ pﬂsi¢l(1’ Z)+ PS; ﬁé-l—_@lém%l(z)

T Aps, ( : ‘Zao jnoo (6.11)

Multiply equation (6.11) both sides by x'and taking summation over i

and after some algebraic simplifications,

st LB st 5 0 st 2452 )

X z

z

Mps(xm(l,z)+[(5+6’1)(a°mz> ps<x>—(1+zz)}¢m<z>

+71(z—a0) "
- pS( ) 00 (6.12)

In equation (6.6) multiply both sides by z*and taking summation over k

andusing (6.3)

s (2)= P 1+ 2y (2) + (1+ A2 )0 (2) + 22 0. 2)+ g + 22 (2)

+ (A3, + 420+ 6 )pr by, (2)pr g, (2)+ (23, + 22 )0 + 62 )pr 6 (6.13)
Multiply equation (6.13) both sides by x'and taking summation over i

and after some algebraic simplifications,

25 (% Z){ﬂﬂ)} - (Z n zz)BR(x)¢01(z)+ Azp (1, 2)R(x)+ [_p(Zao + ﬂ,z)R(x) - (Z + /tz)]%(z)

X
(6.14)

put x = 1 in (6.10) and on some algebraic simplifications,

#(Lz)A= /_1(5 + &Xl_ 2o o (2) - Z¢11(Z)+ ¢21(Z)}L(5 + HZXJ-_ a,)+ 71(1_ ag ) (2) — AL -2 g
(6.15)

using (6.15) in (6.12) and on some algebraic simplifications,

é,(x, Z{ﬂﬁ;_ﬂz)} = pS(x)[(Z + /12)+ 71(5 + &Xl ~a, )](p(,l(z) + ZS(X{l_TZj@l(z)



Ja,(1-2)

S
. p (X)”oo

+ 2z zao L-2) pS(X):|¢31(Z)+

z

[ e+ 22,0 2)0 + ) pS(x)— (2 + /12)}1521(2)

z

(6.16)

using (6.15) in (6.14) and on some algebraic simplifications,

05 (x, z){ﬂ/_ﬂ)} = [(E + ﬂz)+ 21(5+_6'2X1— a, )]BR(X)¢01(Z)+ [[z +Aa,(1- z)]BR(x)— (Z + /12)]

X

+ |2+ 280 (- 2)]0 + A PR (XM (2) + PAR(XNL— 2, (2)

(6.17)
put x = 4 in (6.8) and solving for ¢, (2),
(7)
Pu\2)= 1= =Y 51700
i PRV pi iy 6.1

put x = Zin (6.8) and on simplification,

g, (2)= 71(5 + HZXA(Z)— a, )(pOl(Z)+ 71(5 + HZXA(Z)— a, )(le(z) + Z(A(Z)— a, )(p3l(2)72'00
~ AA(2)-2,)(6.19)
in equation (6.16) putx =4 + Az and solving for @, , (z),
2pS(a+ 22)(2+ 22)+ 2(0 + @)1 - ag ou(2) + pS(2 + 22 )1 - 2)pa 2)
+ [z + payz —1]88(71 + /12_)¢31(E)+ ps(ﬁ + /Iz_)/lao (z :1)7700_
15(2+ 22)- [z + pa, - 2))ps(z + 22 )6 + e ||

¢21(Z):

(6.20)
in equation (6.17) put x =2 + 4zand solving for @,,(z),
[(71 + ﬂ,z)+ ZZ(E + &Xl— a, )]BR(E + 22 o, (2) + _pR(Z + ﬂzX@ + 9212 + Aa,(1- z)]¢21(z)

P (Z): + EZR(Z + ﬂle_ Z)¢11(Z)_+ ER(E + ﬂZX_Z —l)aoﬂoo _ )
31 {(/1 + /12)— |_(Z + Aa, (1— Z))_pR(/l + ZZ)H

(6.21)

using (6.21) in (6.20) and after some algebraic calculations,



) G (VR (2 + 72 [ A2) + B(2)}roo
24+ 42)- pS(i + 22)6 + & [ (2)]- [D(2)]
E(A(z)— a, Xl— z)ps(ﬁ + /12)(1+ 7+ Aa,(1- z))_pR(Z + /IZIE(Z)]

#(2)=

(6.22)
where

pS(Z + /121(1 + /12)— pR(l + 12)1(71 + /12)— (1- z)Z(A(Z)— a, )]

ool an | 1 ) }]

+ 712(5+ &Xl— a,)

[22 +Aa,(1- z)]
((Z + /‘tz)— (z + A8 (1- z)))Z(l— z))(@ + 492)
(Al2)-2)

E(A(z)— a, Xl— z)pS(Z + /12)(1+ z+ Aa,(1- z))ER(Z + /12)

+ [(Z + ﬂ,z)+ z2a,(1- z))(g? + Hz)]+

(z —1)[/1 +z %ao (1- z))]p_s(ﬁ + ﬂz)BR(Z + ﬂflaoj Z(A(z)— a, )]

[(E + /12)— pR(/I + /‘Lz)lz +Aay(1- z)]— (1- z)/‘L(A(A)— ao))

+ pR(Z + 22)z - 1)2(A(7) - ao_)+ Z(A_(Z): a, [z -1) . o

[(Z + /12)— (z + Aa,(1— z))]ps(ﬂ + /Iz)pR(ﬂ + /Iz)(1+ 7+ Aa,(1-2)) pR(/l + /12)

~ (z +Aa,(1—- Z)X1+ ER(E + iz)Xz + Aa,(1- z))+ Z(A(?t)— ao)
(1—z2)1+z+ 3, (1— z))_pR(Z + /12)

D(z)=[pR(Z + 12)6 + & )1 - 2)A(A(2) - a, )1

E(z):[(ﬁ+lz)—(z+za(l—z) )+l(1+iz)—(z +Ap(-2z) )]BR(Z+12XZ+_pa(1—z) )

using (6.19) and (6.22) in (6.21) and after some algebraic simplifications,

) [BIF @ 4, XE I
e 152 o el



pR(ﬂwz{(mxz)uz(ewz)(l a7 + 12)- (2 + 22, - 2)|JpR(7 + 22 )1 - 2)
((9+6?ZXA() aolz(/1+/12) (z+/1a0(1 z))pS(/1+/Iz) (9+Hz)]

+ A0+ )A(Z)-a, )z-2)+

[(/1+/12) (z+/1a 1- z)z+/1a 1- z))pS(/1+/12)]
[(/1+/12)+/1(9+er1 a,)|

6(2)-= {Zps(ji + ﬂzXl— z)_pR(/_l + iZXé + sz(l— Z)E(A(E)— a, )+ Z(A(?L)— a, )}

BR(Z+ 22)(z + 2o (1- 2)0 + & (A7) - a, )

H(Z):{/_IS(%+AZ)BR(Z_+EZX5+HZX1 K- 2)2(A(2)-a )+[(/_1+/12)—(z+/_1a0(1—2))]}}
pR(/1+/lzXz+/1ao(1—z Iao - ( ( ) )]

__[(Z+/12) (Z+Za0(1 z))]((z+/1a0(1 z)) (1-z)alA ( () ao))}

_z(ﬁ,+/1z) (z+/1a0(1 z))pS(/1+/12) (6? Hz)

_pS(Z+Az)BR(i+AzX1—Z ( ( ) ) (1+iz) (Z+/130 )TR(1+AZXZ+Aa° 1- Z))}

| 7(A(2)-a, Jfo + @]

from equations (6.8), (6.10), (6.12) and (6.14) the PGF of the system size of
the model under consideration is obtained from
0(z2) —9o1(1,2) + 91:(1,2) + ¢,1(1,2) + ¢3,(1,2)

P(2)= s (2)P.(2) + $1.(2)P, (2) + +1 (2)Py (2) + s (2)Py (2) = Py (2)m6o
(6.24)

P(z)= AL-z)? +z[1+ 71(5 + &X(l— aN2—-2)+ z)]} P,(2)= P(l— Zp)}

Az(1-2) y)

5 (Z):_jl(l—ao)Jr [Z+Za0(1— Z)KE+HZXB+ pz)_ (/_1+/12)}
! Az(1-2) Al-2)

Al-a,) (z+23,0-2)\p+pz) (2+4z
P“(Z):_ P +( ﬂ,z(l—zx)p p)_(i(l—z)):l

P, (2)= a°(p“_"z)‘1—(1—ao)}

Az

and @, (2), ©11(2) , ©,1(2) , p3,(2) are respectively given by the



equations (6.18), (6.19) , (6.22) and (6.23).

4.1 Particular case
When the vacation time is zero then the PGF (6.24) of the model
under consideration is reduced into

s0)- [ AN+ az)i-2h-s(i+azlp|

vS{2 + 42 )0+ 6 )+ viR(1 + 2 )|z + (- 2)pAlA )| - 2(2 + 22)

oo

which is the PGF of discrete time retrial queue with starting failures, Bernoulli

feedback and general retrial times.by Atencia et al. [13].
5. STEADY STATE CONDITION

The steady state condition for the model under consideration is given
below
) 22 M7)- 2, [ (2)- 2] —V(E)[zﬁ(u 0)+(pp)f A1) 2|+ 21 Za, _z)}
" 2fala)- 2, [ 3)- 23 -v @ 23 p) (o AG)- 2o+ -7 - 7))
{av (22 - ag - 7, )+ a,220- p Ja[A(2)-a, [+ [2-v (2]

v (1)%2(1)2 (A7)~ 2, [pf (27 + 2+ 22p)+ 2(2 v (1)1 - &, ) [AZ) - aoﬁ

(2P @~ 2, )ppl2-7a, - a,)

T

which is obtained from PGF by substituting z =1 and to equating to one and it

is clearly less than one.
6 PERFORMANCE MEASURE
6.6.1 Expected queue length

Performance measure of the queue length distribution that is predictable
queue length is attained below. The expected of the queue length is attained by
differentiating the PGF (6.24) with respect to z and then put z=1,



[olaf ) o [of o+ 2+ 20)s(apulai- 2 (a0E)- )

[E-v{e] lF- a0 bl 7oy o) 2ale)- 2| 22+ p) (B [al2)- o
e -2l lorle)- e asken +5)- -2

R 1 Yy e s ¥ o T
2w (2)- 1[21(1+ 0)+(ppf[Al2)-2,)+ 21~ 72, —z)ﬂ

e Akl

Hafa-a,)pplo-a, - a)

SR LR S LR R

+ 2 Ta,

]

EQ)=

in following manner.

1. The result on expected queue length when the arrival rate is increases

2. The result on expected queue length when the service rate is increases

Case 7.7.1

In this case customer arrival time, service time and vacation time are all
geometrically distributed. When the customer arrival rate increases the

result on expected queue length is investigated below with the following

figure with table and assumed values given in the table.

[ -v{iJ (Z)—Z{Zi[A(Z)—a{ZZ(H )+ (o f[Al2)- 2y ¢ 2L~ 7a, _z)ﬂ
7 NUMERICAL ILLUSTRATION

This section has numerical illustrations are briefly analyzed in two
different cases. In both of thesetwo cases expected queue length is investigated

Table 7.1 Arrival rate () Vs.Expected queue length E(Q)

™) ® | (&) | me | EQ
02 | 04 | 06 | 016 | 0.231
04 | 04 | 06 | 033 | 0456
06 | 04 | 06 | 048 | 0837
08 | 04 | 06 | 063 | 1558
10 | 04 | 06 | 086 | 2130
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Figure 7.2 Arrival rate Vs. Expected queue length

It is noticed that expected queue length increases when arrival rate
increaseswhich is inferred by above figure and table.
When the service rate increases the result on expected queue length is
investigated below with the following figure with table.

Table7.2 Service rate (p) Vs.Expected queue length E(Q)

() ) (@) | oo E(Q)
0.2 0.4 0.6 0.74 0.178
0.4 0.4 0.6 0.61 0.142
0.6 0.4 0.6 0.42 0.044
0.8 0.4 0.6 0.32 0.031
1.0 0.4 0.6 0.21 0,004
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Figure 7.3 Service rate Vs. Expected queue length

It is noticed that expected queue length decreases when service rate

increases which is inferred by above figure and table.

Case 7.7.2

Here customer arrival time obeys geometric distribution and. service

time and vacation time are obeys poisson distribution.

When the customer arrival rate increases the result on expected queue

length is investigated below with the following table with figure.

Table 7.3 Arrival rate (o) Vs.Expected queue lengthE(Q)

@ | ® | (@) | mo | EQ
02 | 04 | 06 | 032 | 0.086
04 | 04 | 06 | 048 | 0.294
06 | 04 | 06 | 068 | 0.792
08 | 04 | 06 | 073 | 1470
10 | 04 | 06 | 0.86 | 2.260
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Figure 7.4 Arrival rate Vs. Expected queue length

It is noticed that expected queue length increases when

increases which is inferred by above figure and table.

arrival rate

When the service rateincreases the result on expected queue length is

investigated below with the following table with figure.

Table 7.4 Service rate (p) Vs.Expected queue length E(Q)

(p) *) (as) Ttoo EQ)
0.2 04 0.6 0.92 0.298
0.4 0.4 0.6 0.75 0.293
0.6 0.4 0.6 0.61 0.290
0.8 0.4 0.6 0.45 0.267
1.0 0.4 0.6 0.27 0,158




Expected queue length
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Figure 7.5 Service rate Vs. Expected queue length

It is noticed that expected queue length decreases when service rate

increases which is inferred by above figure and table.

8.CONCLUSION

In this article a discrete time retrial queuing system with starting failures, Bernoulli
feedback, general retrial times and a vacation has been analyzed in brief. In this model
an analytical expression for PGF is derived by using generating function technique. In
performance measure an expected queue length is derived in analytical expression
form and by using this expression we investigate the length of the queue in several

ways. In many real life situation this model is most applicable.
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