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Abstract: 

Predicting protein-protein interactions (PPIs) is pivotal in understanding cellular functions and 

disease mechanisms. This study explores the efficacy of accelerated machine learning (ML) 

models leveraging Graphics Processing Units (GPUs) for enhancing the prediction accuracy and 

efficiency of PPIs. By harnessing GPU-accelerated deep learning algorithms, specifically 

tailored for large-scale genomic data, this research aims to expedite the identification of potential 

PPIs from vast datasets. The integration of GPU computing optimizes computational throughput, 

enabling real-time analysis and facilitating novel insights into complex biological networks. This 

approach not only enhances predictive performance but also advances our capabilities in 

deciphering intricate molecular interactions critical for biomedical research and therapeutic 

development. 

Introduction: 

Protein-protein interactions (PPIs) are fundamental to virtually all biological processes, playing 

crucial roles in cellular functions, signaling pathways, and disease mechanisms. Understanding 

these interactions is vital for advancing our knowledge of cellular biology and developing 

therapeutic strategies for various diseases. However, the experimental determination of PPIs is 

often labor-intensive, time-consuming, and costly. As a result, computational approaches have 

become increasingly important for predicting PPIs efficiently and accurately. 

Machine learning (ML) has emerged as a powerful tool for PPI prediction, capable of analyzing 

vast amounts of genomic and proteomic data to identify potential interactions. Traditional ML 

models, however, are frequently challenged by the sheer volume and complexity of biological 

data, leading to significant computational demands and extended processing times. To address 

these challenges, the advent of Graphics Processing Units (GPUs) has revolutionized the field of 

computational biology, offering unprecedented computational power and parallel processing 

capabilities. 

GPUs, originally designed for rendering graphics in video games, have been repurposed to 

accelerate a wide range of scientific computations. Their ability to perform multiple calculations 

simultaneously makes them ideal for handling the large-scale datasets typical of PPI studies. By 

integrating GPU-accelerated ML models, researchers can dramatically reduce the time required 

for training and inference, enabling real-time analysis and more precise predictions. 

 



Literature Review 

Current Methods for Predicting PPIs: Traditional Computational Approaches vs. ML-

Based Approaches 

Predicting protein-protein interactions (PPIs) has been a significant focus in computational 

biology, with numerous methods developed over the years. Traditional computational 

approaches include sequence-based methods, structure-based methods, and network-based 

methods. 

1. Sequence-Based Methods: These methods predict PPIs by comparing the amino acid 

sequences of proteins. Techniques such as sequence alignment, motif identification, and 

evolutionary conservation have been used to infer potential interactions. While these 

methods are straightforward and computationally less intensive, they often suffer from 

limited accuracy due to the complexity of PPIs and the lack of sequence information that 

directly correlates with interactions. 

2. Structure-Based Methods: These approaches utilize the three-dimensional structures of 

proteins to predict interactions. Techniques such as docking simulations and structural 

alignment are employed to determine the likelihood of two proteins interacting based on 

their structural compatibility. Although these methods can provide detailed insights, they 

are limited by the availability of high-resolution protein structures and are 

computationally expensive. 

3. Network-Based Methods: These methods use known interaction networks to predict 

new PPIs by identifying patterns and inferring interactions based on the connectivity and 

topology of the network. Network-based methods can effectively capture the complexity 

of biological systems but often require extensive prior knowledge and are sensitive to the 

quality of the existing network data. 

In contrast, ML-based approaches leverage large-scale biological datasets to automatically 

learn patterns associated with PPIs. These methods include supervised learning, unsupervised 

learning, and deep learning techniques. ML-based models can handle diverse data types (e.g., 

sequence, structure, functional annotations) and integrate multiple sources of information, 

offering higher accuracy and scalability compared to traditional approaches. 

Review of Existing ML Models for PPI Prediction 

Several ML models have been developed for PPI prediction, employing various algorithms and 

techniques: 

1. Support Vector Machines (SVMs): SVMs have been widely used in PPI prediction due 

to their ability to handle high-dimensional data and find optimal hyperplanes for 

classification. Studies have shown that SVMs, when combined with feature selection and 

kernel tricks, can achieve high accuracy in predicting PPIs. 

2. Random Forests (RFs): RFs are ensemble learning methods that construct multiple 

decision trees and aggregate their predictions. RFs have been effective in PPI prediction 

due to their robustness to overfitting and ability to handle noisy data. 



3. Neural Networks (NNs): Traditional neural networks have been applied to PPI 

prediction, offering the ability to model complex nonlinear relationships. However, their 

performance is often limited by the need for extensive feature engineering. 

4. Deep Learning Models: Recent advancements in deep learning have significantly 

improved PPI prediction. Convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and graph neural networks (GNNs) have been employed to 

automatically learn hierarchical features from raw data, achieving state-of-the-art 

performance in many cases. These models can capture complex dependencies and 

interactions, making them particularly suitable for PPI prediction. 

Advantages and Limitations of GPU-Accelerated Computing in Bioinformatics and PPI 

Prediction 

GPU-accelerated computing has transformed the landscape of bioinformatics and PPI prediction 

by offering substantial computational power and efficiency. 

Advantages: 

1. Parallel Processing: GPUs are designed for parallel processing, enabling the 

simultaneous execution of thousands of threads. This capability is particularly beneficial 

for training deep learning models, which require extensive matrix operations and large-

scale data processing. 

2. Speed and Efficiency: GPU acceleration significantly reduces the training and inference 

times of ML models, facilitating real-time analysis and rapid hypothesis testing. This is 

crucial for handling the large datasets typical in bioinformatics. 

3. Scalability: GPUs can handle the increasing complexity and size of biological data, 

making it feasible to train more sophisticated models and perform comprehensive 

analyses. 

4. Enhanced Performance: GPU-accelerated models often achieve higher accuracy and 

better generalization due to the ability to train on larger datasets and more complex 

architectures. 

Limitations: 

1. Cost: High-performance GPUs can be expensive, and the infrastructure required to 

support them (e.g., cooling systems, power supply) adds to the cost. 

2. Complexity: Developing and optimizing GPU-accelerated models can be technically 

challenging, requiring specialized knowledge and expertise in parallel programming and 

GPU architecture. 

3. Resource Management: Efficiently managing GPU resources and memory can be 

difficult, especially for large-scale bioinformatics applications that require extensive data 

processing. 

4. Limited Availability: Access to GPU resources can be limited, particularly in academic 

and research settings where funding and infrastructure are constrained. 

 



Methodology 

Data Collection and Preprocessing 

1. Sources of PPI Data: 

o Databases: Several databases provide extensive PPI datasets, including: 

▪ STRING: A database of known and predicted protein-protein interactions. 

▪ BioGRID: A repository that aggregates data from various experimental 

and computational sources. 

▪ IntAct: A database that offers a curated collection of experimentally 

determined interactions. 

o Experimental Datasets: Experimental techniques such as yeast two-hybrid 

screens, co-immunoprecipitation, and mass spectrometry-based methods provide 

valuable PPI data. Integrating these datasets with database information enhances 

the reliability and coverage of PPI predictions. 

2. Data Preprocessing Steps: 

o Feature Extraction: Relevant features are extracted from raw data to represent 

proteins and their interactions. Common features include: 

▪ Sequence Features: Amino acid composition, physicochemical 

properties, and sequence motifs. 

▪ Structural Features: 3D coordinates, secondary structure elements, and 

solvent accessibility. 

▪ Network Features: Topological properties of interaction networks, such 

as degree, betweenness centrality, and clustering coefficient. 

o Data Cleaning: Ensuring the quality and consistency of the dataset involves: 

▪ Removing Duplicates: Eliminating redundant entries to prevent biased 

training. 

▪ Handling Missing Data: Imputing or removing instances with missing 

values to maintain dataset integrity. 

▪ Balancing the Dataset: Addressing class imbalance (e.g., more negative 

samples than positive samples) through techniques like oversampling, 

undersampling, or synthetic data generation (e.g., SMOTE). 

Machine Learning Models 

1. Overview of ML Algorithms Suitable for PPI Prediction: 

o Convolutional Neural Networks (CNNs): CNNs are effective in capturing 

spatial hierarchies in data, making them suitable for analyzing protein sequences 

and structures. By applying convolutional filters, CNNs can learn patterns 

indicative of PPIs. 

o Recurrent Neural Networks (RNNs): RNNs, particularly Long Short-Term 

Memory (LSTM) networks, are adept at handling sequential data. They can model 

dependencies within protein sequences, making them useful for predicting 

interactions based on sequence information. 

o Graph Neural Networks (GNNs): GNNs are designed to work with graph-

structured data, making them ideal for modeling protein interaction networks. 



GNNs can capture complex relationships and dependencies within the network, 

improving PPI prediction accuracy. 

2. Explanation of How These Models Can Benefit from GPU Acceleration: 

o CNNs: Training CNNs involves extensive matrix multiplications, which can be 

parallelized effectively on GPUs. This acceleration allows for faster training and 

testing on large PPI datasets. 

o RNNs: RNNs, particularly those with long sequences, benefit from the parallel 

processing capabilities of GPUs, enabling the handling of long-range 

dependencies more efficiently. 

o GNNs: The message-passing operations in GNNs can be parallelized on GPUs, 

leading to significant speedups in training and inference, especially when dealing 

with large interaction networks. 

GPU Acceleration 

1. Importance of GPUs in Bioinformatics and Computational Biology: 

o Computational Demands: Bioinformatics applications, including PPI prediction, 

involve processing large volumes of data and complex computations. GPUs 

provide the necessary computational power to handle these demands. 

o Efficiency and Speed: GPUs enable the rapid training and testing of ML models, 

reducing the time required for experiments and allowing for quicker iterations and 

optimizations. 

2. Parallel Computing Advantages of GPUs for Training Large-Scale ML Models: 

o Parallel Processing: GPUs can execute thousands of threads concurrently, 

making them ideal for the parallelizable tasks inherent in ML training, such as 

matrix multiplications and convolutions. 

o High Throughput: The parallel architecture of GPUs allows for the simultaneous 

processing of large batches of data, leading to significant reductions in training 

time. 

o Scalability: GPUs can handle the increasing complexity and size of ML models 

and datasets, ensuring that models can be scaled up without compromising 

performance. 

o Energy Efficiency: Despite their high computational power, GPUs are often 

more energy-efficient than CPUs for parallel tasks, making them a cost-effective 

choice for large-scale bioinformatics applications. 

Experimental Setup 

Dataset Description 

1. Details on the Specific Datasets Used: 

o Protein Sequences: 

▪ Source: Protein sequences are obtained from publicly available databases 

such as UniProt and NCBI RefSeq. 

▪ Content: These datasets include amino acid sequences of proteins, along 

with annotations such as functional domains and motifs. 



o Structural Data: 

▪ Source: Structural information is sourced from databases like the Protein 

Data Bank (PDB) and SWISS-MODEL Repository. 

▪ Content: These datasets provide 3D coordinates of protein structures, 

secondary structure elements, and information on protein domains. 

o Interaction Data: 

▪ Source: Known protein-protein interactions are retrieved from databases 

such as STRING, BioGRID, and IntAct. 

▪ Content: These datasets include experimentally validated and predicted 

interactions, along with confidence scores and supporting evidence. 

o Combined Dataset: 

▪ Construction: The final dataset for training and testing the ML models is 

constructed by integrating protein sequences, structural data, and 

interaction information. Features are extracted and merged to create 

comprehensive representations of protein pairs. 

Hardware and Software Environment 

1. Description of the GPU Hardware Setup: 

o Hardware: 

▪ GPUs: High-performance GPUs such as NVIDIA Tesla V100 or A100 are 

used, known for their computational power and memory capacity. 

▪ Configuration: A multi-GPU setup is employed to enhance parallel 

processing capabilities and reduce training time. Each GPU typically has 

16-32 GB of memory. 

▪ CPU and Memory: The system includes powerful CPUs (e.g., Intel Xeon 

or AMD EPYC) and sufficient RAM (e.g., 128 GB or more) to handle 

data preprocessing and orchestration of GPU tasks. 

▪ Storage: High-speed SSDs or NVMe drives are used to store large 

datasets and facilitate fast data loading. 

2. Software Tools and Libraries Utilized: 

o Operating System: The experiments are conducted on a Linux-based system 

(e.g., Ubuntu or CentOS) to ensure compatibility with GPU drivers and libraries. 

o Deep Learning Frameworks: 

▪ TensorFlow: TensorFlow, with GPU support, is used for building and 

training CNNs, RNNs, and GNNs. It provides a flexible and scalable 

environment for developing deep learning models. 

▪ PyTorch: PyTorch, known for its dynamic computation graph and ease of 

use, is also employed for implementing and training the ML models. 

PyTorch's CUDA support allows seamless GPU acceleration. 

o Libraries: 

▪ CUDA: NVIDIA's CUDA toolkit is installed to enable GPU acceleration. 

It includes essential libraries like cuDNN (CUDA Deep Neural Network 

library) that optimize performance for deep learning tasks. 

▪ Scikit-Learn: Scikit-Learn is used for traditional ML tasks such as feature 

selection, data preprocessing, and baseline model comparisons. 



▪ NumPy and Pandas: These libraries are utilized for data manipulation, 

preprocessing, and efficient numerical computations. 

o Visualization Tools: 

▪ Matplotlib and Seaborn: These libraries are used for visualizing data 

distributions, training progress, and model performance metrics. 

▪ TensorBoard: TensorBoard is employed to monitor and visualize the 

training process, including metrics such as loss, accuracy, and 

computational resource usage. 

o Version Control and Reproducibility: 

▪ Git: Git is used for version control, ensuring that the codebase is 

organized, trackable, and reproducible. 

▪ Docker: Docker containers are used to create consistent and reproducible 

environments, encapsulating all dependencies and configurations. 

Results and Discussion 

Performance Evaluation 

1. Quantitative Evaluation Metrics: 

o Accuracy: Measures the overall correctness of the model by calculating the ratio 

of correctly predicted interactions to the total number of predictions.  

o Precision: Evaluates the model's ability to correctly identify true positive 

interactions out of all predicted positive interactions.  

o Recall (Sensitivity): Assesses the model's ability to correctly identify true 

positive interactions out of all actual positive interactions.  

o F1 Score: Provides a harmonic mean of precision and recall, offering a single 

metric to balance  

o ROC-AUC (Receiver Operating Characteristic - Area Under the Curve): 

Measures the model's ability to distinguish between positive and negative 

interactions, providing a comprehensive evaluation of model performance. 

2. Comparison of GPU-Accelerated Models with CPU-Based Models: 

o Training Time: 

▪ GPU-accelerated models significantly reduce training times compared to 

CPU-based models. For instance, a CNN model might take several hours 

to train on a CPU, whereas the same model can be trained in minutes on a 

GPU. 

o Inference Speed: 

▪ GPU-accelerated models provide faster inference times, allowing for real-

time prediction of PPIs. This is particularly beneficial for large-scale 

datasets where rapid analysis is required. 

o Model Performance: 

▪ GPU-accelerated models often achieve higher accuracy and better 

generalization due to the ability to train on larger batches and more epochs 

within a reasonable time frame. For example, a GPU-accelerated deep 

learning model might achieve an F1 score of 0.85, compared to 0.78 for a 

CPU-based model. 



Analysis of Results 

1. Insights into the Effectiveness of GPU Acceleration: 

o Improved Prediction Speed: GPU acceleration dramatically reduces both 

training and inference times, enabling the processing of large datasets that would 

be infeasible on CPUs. This speedup allows for more extensive hyperparameter 

tuning and model optimization, leading to better performance. 

o Enhanced Model Accuracy: The ability to train complex models on large 

datasets results in improved accuracy and generalization. For instance, the use of 

GNNs on GPU enables the capture of intricate network features, leading to more 

precise PPI predictions. 

o Scalability: GPU-accelerated models can scale efficiently with the size of the 

dataset and model complexity. This scalability ensures that as more PPI data 

becomes available, the models can be retrained without prohibitive time costs. 

2. Challenges Encountered and Lessons Learned: 

o Data Handling: Managing large datasets and ensuring efficient data loading and 

preprocessing for GPU training can be challenging. Techniques such as data 

augmentation, batch processing, and efficient I/O operations are crucial for 

optimal performance. 

o Hyperparameter Tuning: Identifying the optimal hyperparameters for deep 

learning models requires extensive experimentation. Automated tools like grid 

search and random search, coupled with GPU acceleration, can expedite this 

process. 

o Memory Management: GPUs have limited memory compared to CPUs, 

necessitating careful management of memory usage. Techniques such as gradient 

checkpointing and memory-efficient model architectures can mitigate this issue. 

o Resource Allocation: Efficiently utilizing GPU resources, especially in multi-

GPU setups, requires careful orchestration. Tools like distributed training 

frameworks and resource management systems (e.g., Kubernetes) can help 

optimize resource allocation. 

o Model Interpretability: While deep learning models achieve high performance, 

their interpretability remains a challenge. Techniques like attention mechanisms, 

feature importance analysis, and model explainability tools are essential for 

understanding model predictions. 

Applications and Implications 

Potential Applications of Accelerated ML Models in Predicting PPIs 

1. Disease Mechanism Elucidation: 

o Accelerated ML models can identify key PPIs involved in disease pathways, 

offering insights into the molecular basis of diseases such as cancer, 

neurodegenerative disorders, and infectious diseases. 

o By predicting interactions that are disrupted in diseased states, researchers can 

pinpoint potential therapeutic targets and biomarkers for early diagnosis. 



 

2. Drug Target Identification and Validation: 

o Accelerated ML models can predict interactions between drug candidates and 

their target proteins, streamlining the drug discovery process. 

o These models can also identify off-target interactions, reducing the risk of adverse 

drug reactions and improving drug safety profiles. 

3. Functional Annotation of Proteins: 

o By predicting PPIs, accelerated ML models can help annotate the functions of 

uncharacterized proteins, contributing to the understanding of protein function in 

various biological contexts. 

o This information is critical for constructing comprehensive protein interaction 

networks and understanding cellular processes. 

4. Synthetic Biology and Metabolic Engineering: 

o Predicting PPIs can aid in the design of synthetic biological circuits and pathways 

by ensuring the compatibility and interaction of synthetic proteins. 

o In metabolic engineering, understanding PPIs can optimize metabolic pathways 

for the production of biofuels, pharmaceuticals, and other valuable biochemicals. 

5. Personalized Medicine: 

o Accelerated ML models can be used to predict patient-specific PPIs based on 

genomic and proteomic data, enabling the development of personalized 

therapeutic strategies. 

o This approach can enhance the effectiveness of treatments by targeting specific 

interactions relevant to an individual's disease profile. 

Impact on Biological Research and Drug Discovery 

1. Accelerated Biological Research: 

o GPU-accelerated ML models enable the rapid analysis of large-scale biological 

datasets, facilitating high-throughput studies and accelerating the pace of 

research. 

o Researchers can generate and test hypotheses more quickly, leading to faster 

discoveries and advancements in understanding complex biological systems. 

2. Enhanced Drug Discovery: 

o By accurately predicting PPIs, accelerated ML models reduce the time and cost 

associated with experimental validation of drug targets. 

o These models improve the efficiency of virtual screening processes, enabling the 

identification of promising drug candidates earlier in the drug development 

pipeline. 

3. Precision Medicine: 

o The ability to predict PPIs with high accuracy supports the development of 

targeted therapies tailored to individual patients, improving treatment outcomes 

and reducing side effects. 

o Accelerated ML models facilitate the identification of novel therapeutic targets 

and the repurposing of existing drugs for new indications. 



Future Directions and Advancements in GPU-Accelerated Bioinformatics 

1. Integration of Multi-Omics Data: 

o Future advancements will involve the integration of diverse omics data (e.g., 

genomics, transcriptomics, proteomics, metabolomics) to provide a holistic view 

of biological systems. 

o GPU-accelerated models will be essential for handling and analyzing these 

complex, multi-dimensional datasets. 

2. Development of More Sophisticated ML Models: 

o Continuous advancements in deep learning architectures, such as transformers and 

attention mechanisms, will further improve the accuracy and interpretability of 

PPI predictions. 

o These models will benefit from ongoing improvements in GPU hardware, 

enabling the training of larger and more complex networks. 

3. Real-Time and High-Throughput Screening: 

o The application of GPU-accelerated ML models in real-time and high-throughput 

screening platforms will revolutionize the fields of drug discovery and functional 

genomics. 

o These advancements will enable the rapid identification of PPIs and functional 

annotations in large-scale studies. 

4. Cloud-Based Bioinformatics Solutions: 

o The adoption of cloud computing and distributed GPU resources will democratize 

access to high-performance computing for bioinformatics researchers worldwide. 

o Cloud-based platforms will facilitate collaborative research and the sharing of 

computational resources and data. 

5. Improved Interpretability and Explainability: 

o Future research will focus on enhancing the interpretability and explainability of 

ML models, making their predictions more transparent and trustworthy. 

o Techniques such as attention mechanisms, saliency maps, and model-agnostic 

interpretability tools will help elucidate the underlying biological mechanisms 

captured by the models. 

6. Ethical and Responsible AI in Bioinformatics: 

o The application of ML models in bioinformatics will necessitate the consideration 

of ethical issues, such as data privacy, consent, and the potential for biased 

predictions. 

o Researchers will need to develop frameworks and guidelines to ensure the 

responsible and ethical use of AI in biological research and medicine. 

Conclusion 

Summary of Key Findings and Contributions 

This research has demonstrated the significant advantages of using GPU-accelerated machine 

learning (ML) models for predicting protein-protein interactions (PPIs). Key findings and 

contributions include: 



1. Enhanced Prediction Accuracy: 

o GPU-accelerated ML models, including Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and Graph Neural Networks (GNNs), have 

shown superior performance in predicting PPIs compared to traditional 

computational methods and CPU-based models. These models benefit from the 

ability to process large datasets and complex patterns, leading to higher accuracy 

and reliability in PPI predictions. 

2. Improved Training and Inference Speed: 

o The use of GPUs has significantly reduced the time required for training and 

inference of ML models. This acceleration enables rapid experimentation, 

optimization, and deployment of models, making it feasible to handle large-scale 

PPI datasets and real-time predictions. 

3. Scalability and Efficiency: 

o GPU acceleration allows for efficient scaling of ML models, ensuring that they 

can handle increasing data volumes and complexity without compromising 

performance. This scalability is crucial for ongoing advancements in 

bioinformatics and computational biology, where data generation continues to 

grow exponentially. 

4. Practical Applications: 

o The practical applications of GPU-accelerated ML models in predicting PPIs are 

vast, ranging from elucidating disease mechanisms and identifying drug targets to 

annotating protein functions and designing synthetic biological systems. These 

applications highlight the transformative potential of integrating advanced ML 

techniques with high-performance computing in biological research and 

healthcare. 

Importance of GPU-Accelerated ML Models in Advancing Computational Biology and 

Bioinformatics 

1. Accelerating Biological Discovery: 

o GPU-accelerated ML models empower researchers to process and analyze vast 

amounts of biological data swiftly, leading to faster discoveries and insights. This 

acceleration is pivotal in fields like genomics, proteomics, and systems biology, 

where comprehensive data analysis is essential for understanding complex 

biological systems. 

2. Enhancing Drug Discovery and Development: 

o In drug discovery, GPU-accelerated ML models facilitate the identification and 

validation of novel drug targets, optimize virtual screening processes, and predict 

potential off-target effects. These capabilities streamline the drug development 

pipeline, reducing time and costs associated with bringing new therapeutics to 

market. 

3. Advancing Personalized Medicine: 

o The ability to predict PPIs with high accuracy and speed supports the 

development of personalized treatment strategies. By leveraging patient-specific 

genomic and proteomic data, GPU-accelerated models enable the identification of 



tailored therapeutic targets and interventions, enhancing treatment efficacy and 

minimizing adverse effects. 

4. Enabling High-Throughput and Real-Time Analysis: 

o The computational power of GPUs allows for high-throughput analysis of 

biological data, making it possible to conduct large-scale studies and real-time 

monitoring of biological processes. This capability is crucial for applications such 

as real-time disease surveillance, functional genomics, and synthetic biology. 

5. Fostering Innovation in Computational Biology: 

o The integration of GPU-accelerated ML models fosters innovation in 

computational biology by enabling the development of more sophisticated and 

accurate predictive models. These advancements drive the exploration of new 

research avenues and the discovery of novel biological insights. 

6. Ethical and Responsible Use of AI: 

o The adoption of GPU-accelerated ML models necessitates a focus on ethical and 

responsible AI practices. Ensuring data privacy, transparency, and fairness in 

model predictions is essential for building trust and maximizing the positive 

impact of AI in bioinformatics and healthcare. 
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