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Abstract. Video recordings of lectures are no longer a rarity in the con-
ditions of distance learning. Videos may be in an inconvenient format for
students or contain different artifacts due to compression, camera quality,
and other factors. It is useful to have a presentation of the study mate-
rial, which contains only the text from the board because such a view of
the material is most similar to the compendium. Moreover, some of the
text may not be visible due to occlusions from people. To address these
issues, we employ a neural network that removes people from video via
content-aware-inpainting. To reduce duplication of slides due to camera
shaking, we perform video-stabilization as a preprocessing step. Finally,
we create slides by comparing changes in the frames, color correcting,
and binarizing them. As a result, we get slides with the extracted text
or drawings from the board, which will help to simplify the creation of
e-learning materials for both new and existing lecture recordings. Teach-
ers will also be able to quickly provide lecture material to students even
if they teach several complex subjects.

Keywords: Video lecture · Slides from video · Removing a person from
video · Video stabilization · Binarization

1 Introduction

Students and teachers have a great need to simplify the learning process and
bring the lecture material as close as possible to the usual form of the synopsis.
Since we live in a time when almost everyone has a smartphone at hand, a
lecturer will need a phone or a webcam on a computer to record a lecture.
The average student will not have to worry about the syllabus, as he receives
the already processed and digitized text from the lecture in a comfortable slide
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format. This paper describes an algorithm for creating slides based on a video
lecture (fig. 1). A neural network is used to obtain the video without a lecturer.
To avoid duplicated slides and better cleaning quality, we stabilize the video
with a homography. Our slide creation algorithm uses Laplace operator, Otsu
binarization, and mask extension. At the end of the program we have slides of
the board (black- or whiteboard) in the form of a slideshow.

Two frames

Homography
estimation

Human Removal Binarization Denoising

Dividing Board
into sections

Slide

Fig. 1: Pipeline

2 Related Works

2.1 Whiteboard Scanning and Image Enhancement

This work describes the system of whiteboard edges detection, determination
of the position of the board and reproduction of digitized material from pho-
tographs containing parts of the boards from different angles [12]. The method’s
aim is to scan the whiteboard and give its content with a rectangular shape.
The algorithm works only with photos without obstacles while ours works with
videos. Our program can process video lectures with different board color, while
it’s not known whether this method can handle chalkboards.

2.2 Whiteboard Disclosure Using Background Subtraction and
Object Tracking

The work [4] processes the video recording, detects the teacher and removes him
from the video. The authors emphasize that their program can also detect boards
that are divided into parts. This implementation works good with different video
resolutions and board conditions. In comparison with our work, this one does
not include the creation of a slideshow and whiteboard digitizing.

2.3 Real-Time Whiteboard Capture and Processing Using a Video
Camera for Teleconferencing

The work [6] presents an algorithm that analyzes a video, detects pen strokes
and foreground objects. The big plus of this work is real-time video whiteboard
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digitizing. They use contour stability analysis to detect a lecturer from the back-
ground, while we experiment with a neural network. The quality of result images
represented in this work is quite low, so the whiteboard content is not readable.
Also, we do not know how this algorithm behaves if the camera is shaking.

2.4 Whiteboard Video Summarization via Spatio-Temporal Conflict
Minimization

The work [2] is most similar to ours. The authors present a method that creates
image summaries(analog of ours slideshow) of handwritten whiteboard content
from lecture videos recorded with still cameras. Their algorithm generates a
Spatio-temporal index for table content. It helped for creating a temporal seg-
mentation to detect key-frames. Also, they use a random forest algorithm, Otsu
binarization for getting lecture summarization. The main question to this work
is the output quality under the shaking camera conditions.

3 Video Stabilization

Shaking camera is not a surprising factor for video lectures. The camera may
shake accidentally when it’s attached to a desk where students write the lecture.
Intentional camera movements should be considered as well: in order to track a
big board with a low-resolution camera you need to point it to areas of interest.
These situations are very natural and they may obstruct the lecture perception.
We propose to estimate the image distortion with a homography in coarse-to-fine
manner.

3.1 Homography Estimation

The board is assumed to be flat. Transformation of a projection of the board to a
matrix of a moving pinhole camera (camera that produces no radial distortions)
can be described with homography [5]. Camera movements during the lecture
may vary from insignificant subpixel shifts to flicks. Our aim is to produce the
video where the camera behaves like a static one.

Given two frames P and N (Previous and Next), we can get four pairs of
corresponding points from them

M =
{⟨

xP
i ,x

N
i

⟩
: i = 1, 4

}
, xP

i ∈ R2 × {1} . (1)

Corresponding points are those ones which are projections of the same point
in space. If these points are points of a flat board, they are connected by the
relation

H · xN
i ≈ c · xP

i , ∀i = 1, 4. (2)

Note that the points are from the homogeneous space, so to calculate coordi-
nates of their projections onto the image we need to divide the first and second
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coordinates by the third. We assume that none of the points are at the infinity
and the third coordinate never turns in zero.

The equation (2) can be easily solved with respect to unknown homography
H. This matrix can be used to stabilize the video — we apply it to entire N and
it fits the P and ready for further processing.

3.2 Coarse-to-Fine Image Registration

Finding the set of points M for (1) is a difficult task. Image coordinates are
discrete, so it’s impossible to achieve absolutely accurate correspondence. We
need a subpixel accuracy for further procedures to work well. For this purpose
we propose the coarse-to-fine image registration pipeline.

Initial Matching As the first homography estimation (which can be enough)
we can use feature descriptors like SIFT, SURF or ORB [1,7,10] to find feature
points and RANSAC [3] to estimate the homography. Let’s now denote the M ′

as a set of all correspondences found by a feature matcher. The problem we
would like to solve is∑

⟨xP ,xN ⟩∈M

t∥∥∥∥∥ H · xN
i(

H · xN
i

)
z

− xP
i

∥∥∥∥∥ < ε

|
→ max

H∈R3×3

detH ̸=0

, ε > 0. (3)

It’s intractable in general, so the common approach is to choose four random
pairs from M ′, solve the (2) and check the sum (3). We repeat the procedure
as many times as we want and choose the homography that suits this penalty
better than others.

Pyramidal Homography Estimation We want to achieve subpixel accuracy
of images matching. If it doesn’t happen with the previous matching, we go
to the next step. This step is another coarse-to-fine method in this coarse-to-
fine approach. To distinguish them we call this one “pyramidal homography
estimation”. The idea is to find exactly four pairs of corresponding points for (1).
Let us introduce a function T that takes an image N and a set of corresponding
points M , calculates homography H, applies it to N and returns a transformed
image. Given a loss function L : Rw×h × Rw×h → R (for example, L2 norm in
Rw×h-dimensional Euclidean space), we can formulate the problem of finding M
as

L (P, T (N,M)) → min
M

.

The problem is very hard in general too, so we should use brute-force-like ap-
proach here. We have already improved the P and N match with the previous
coarse step, so now we can use brute-force search with a relatively small number
of steps. For example, we get four corner points on the P image and find their
correspondences in square of size 2 with step 0.5 on the N image. This needs
8

2
0.5 = 212 calls of L and T functions. The number looks small but the L may
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be a sum of squares of pixelwise differences. Thus, for 1′000 × 1′000 images we
need to transform nearly four billions pixels to find the best M for one pair of
frames. This takes a very long time so we use the pyramidal approach: instead of
iteration over all possible combinations we start with only three offsets for each
corrdinate: −2, 0, 2. Then, after finding the best ones of them, we start again
with new three offsets bi−1, bi, bi+1 (where bi is different for each coordinate).
And so on as long as we need.

Brute-force search needs 8
ℓ
s steps, where ℓ is a square size and s is the step

size. Pyramidal approach needs 83·
ℓ
s , which is 86 for our example with ℓ = 2 and

s = 0.5.

4 Removing a Person from Video

In this section we describe how a person is removed from video frames. Removing
a person from a frame is essential because it resolves the problem of occlusion,
providing frames with only content of the board thus making later stages of the
pipeline simpler.

For this task we employ a neural network for human detection, which is one
of possible choices to tackle this problem.

4.1 Neural Network Architecture

For neural network we chose a pretrained network from YOLO (You-Only-Look-
Once) [8,9] family of neural network architectures. Specifically YOLOv5s, which
is an incremental improvement both in accuracy and in performance over clas-
sical YOLOv3 architecture.

The reason for this, is because we wanted to process videos in near real-time
fashion and this network is able to run at 30 FPS even on mobile devices.

This neural network frames the problem of object detection as a regression
problem to spatially separated bounding boxes and associated class probabili-
ties. Thus, it predicts both bounding boxes and class probabilities directly from
images in one evaluation.

The architecture of this neural network is separated into two parts, the back-
bone and the head. The backbone consists of convolutional layers followed by
bottleneck layers used for feature extraction, while the head consists of convo-
lution and upsampling layers for the prediction of bounding boxes and its class
probabilities.

Output of the neural network is additionally processed by a Non-Maximum-
Supression module for bounding box filtering.

4.2 Person Removal

To remove a person we need to first detect it and then inpaint or replace it
without modifying the content on the board behind it. Each frame F we detect
all possible humans and mark those regions as regions to inpaint Ri ⊆ F .
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Fig. 2: Simplified YOLOv5 architecture diagram. Credits: Ayoosh Kathuria

Additionally, we keep a buffer B of unoccluded regions from previous frames.
When a region is marked as a region to inpaintRi ⊆ F , we retrieve corresponding
unoccluded regions from previous frames in that buffer and replace it with them

Ri = BB∩Ri ,

where B ∩Ri is the corresponding region in the buffer B for the Ri.

We update the buffer B from the new frames using unoccluded regions, this
way we retain the most recent information. Update rule for the buffer

BRi
= Ri,

where Ri = F \ Ri is the unoccluded region in current frame F .

This simple technique allows us to keep the original content of the board
without any modifications, compared to other inpainting methods. The only
drawback of this method is when video stabilization fails to completely eliminate
motion of the camera, the whole frame shifts w.r.t previous frames and the buffer
can no longer be used for precise inpainting. This results in small artifacts near
the edges of the regions.

Another important moment is lighting condition. As it changes over time, for
example due to camera refocus or simply due to changes in light sources, content
in the buffer will differ slightly in color when used to inpaint newer frames.

In the result we get a relatively clean image of the board, that is used for
the next stages in the pipeline. As a further improvement we can additionally
track all moving objects, not necessarily humans, using techniques like optical
flow and remove them, since we can safely assume that the board is static.

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
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Fig. 3: Comparison of the raw frame from camera and the result of removing a
human. Source: https://youtu.be/a7TUp4p-pIk

5 Creating Slides from Video

After removing the lecturer and stabilization, the video is processed to create
the slides. We iteratively take two frames: Previous and Next (fig. 4), hereinafter
referred to as P and N , respectively. The frames are taken from the video with a
certain distance (number of frames) between them. We set the distance because
there is no need to check every frame because there is almost no change of
content on the board between adjacent frames.

(a) Previous frame

(b) Next frame

Fig. 4: Example of Previous and Next frames

5.1 Slides Comparison

Images are converted from RGB to grayscale format. We used the Laplace op-
erator [11] of finding edges and denoising for the frames. We use this operator

https://youtu.be/a7TUp4p-pIk
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because it gives better results than other differential operators, based on our
observations of the input material. This operator reduces the noise level and
emphasizes the contents with suitable quality (fig. 5).

L (x, y) = ∇2f (x, y) =
∂2f (x, y)

∂x2
+

∂2f (x, y)

∂y2
(4)

(a) Previous frame

(b) Next frame

Fig. 5: Previous and Next frames after laplace operator processing

We use the Otsu binarization method [11] to obtain a mask of the contents
of the board (fig. 6). It is fast and gives good binarization quality. As we can see
on the image mask, the binarization divides the contents of the board into two
classes on the example frames.

We use the average of pixelwise XORs to measure the relative difference
between the frames P and N (binary analog of the mean squared error). We
compare the difference with a threshold provided by a user. This constant plays
a significant role in the decision to treat frame N as a new slide or not. Let’s
introduce the following notation: h — height of the frame, w — width of the
frame, t ∈ [0; 1] — the threshold given by the user, Pi,j , Ni,j — values of pixel
from the i-th row and j-th column in frames P and N respectively. To measure
the relative changes between frames P and N we use

k (P,N) =

h∑
i=1

w∑
j=1

Pi,j ⊕Ni,j

h · w
. (5)

We say that the frame N is a new slide if its mean XOR from the frame P is
more than t

s (h,w, t, P,N) =

{
yes, t > k (P,N) ,

no, otherwise.
(6)
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(a) Previous frame

(b) Next frame

Fig. 6: Previous(a) and Next(b) frames after Otsu binarizating

Then we take a new frame as a N and the old N becomes the new P , and
the procedure starts again.

5.2 Slide Processing

We use the binary dilation [11] for the noise reduction with a circle mask with
radius 2px. Then, we use the original RGB frame (the origin of the binary
contents mask) and remove all the background using the dilated mask. Then we
fill the background by its average color to achieve more aesthetic results (fig. 7).

5.3 Dividing Board into Sections

It’s good to have slides of the whole board, but what if the board is divided into
sections? It means that you will get slides where some parts of the board didn’t
change. It would be great to have slides that contain only those sections that
changed. We created a possibility to get slides if a user indicates board dividing
(fig. 8).

Let’s define number of slides as d, number of divided sections as q, height of
divided parts as g and width of divided part as b. We have H — a matrix of
labels with size |d| × |q|, where each element equal 1 if content of this section
has changed and 0 otherwise. We have S — a matrix of divided slides with size
|d| × |q| × |g| × |b|. A constant t is a treshold of changes between Si,j,·,· and
Si+1,j,·,· sections. We only take sections where Di,j = 1 and get new slides

Di,j =

{
1 t > k (Si,j,·,·, Si+1,j,·,·) ,

0 otherwise.
(7)
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(a) Previous frame

(b) Next frame

Fig. 7: Previous(a) and Next(b) frames after applying dilated mask on RGB
slides

Fig. 8: Divided slides

6 Conclusions and Further Work

We have implemented a working pipeline, that transforms a video lecture to a
slide show. On the first stage, we apply stabilization based on pyramidal homog-
raphy estimation. After that, we remove all detected humans from the frame by
inpainting them with the content they are occluding, utilizing a neural network
for human detection. Finally, we create slides from the processed frames, using
Laplace operator and Otsu binarization to filter out background and retain only
board drawings. Additionally, our algorithm is able to create slides, when the
board is divided into several parts as is often common in lecture halls.

Our further steps are as follows:

– use more efficient and accurate method of obstacles removing: contours anal-
ysis like in [2] or motion tracking instead of artificial neural network;

– use more suitable binarization method to fight shadows and low-quality video
(strokes on a board can be 1px wide);
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– use vectorization of the resulting writings to add scaling ability, which is
helpful for aesthetics and clarity.
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