

Structural Damage Diagnosis and prediction using Machine Learning and Deep Learning Models: Comprehensive Review of Advances

Amir Mosavi

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

December 25, 2019

Structural Damage Diagnosis and prediction using Machine Learning and Deep Learning Models: Comprehensive Review of Advances

Amir Mosavi

School of Built the Environment, Oxford Brookes University, Oxford OX30BP, UK a.mosavi@brookes.ac.uk

The loss of integrity and adverse effect on mechanical properties can be concluded as attributing miro/macro-mechanics damage in structures especially in composite structures. Damage as a progressive degradation of material continuity in engineering predictions for any aspects of initiation and propagation, requires to be identified by a trustworthy mechanism to guarantee the safety of structures. Beside the materials design, the structural integrity and health are usually prone to be monitored clearly. One of the most powerful method for detection of damage is machine learning (ML). This paper presents the state of the art of ML methods and their applications in structural damage and prediction. Popular ML methods are identified and the performance and future trends are discussed.

Keywords: damage detection, machine learning, principal component analysis, composites, micromechanics of damage, continuum damage mechanics

Acronyms

ANN	Artificial neural network
ELM	Extreme learning machine
ML	Machine learning
SVM	Support vector machine
WNN	Wavelet neural networks
DL	Deep learning
ARIMA	Autoregressive integrated moving average
FFNN	Feed-forward neural networks
MLP	Multi layered perceptron

DT	Decision tree		
RSM	Response surface methodology		
BPNN	Back propagation neural network		
СМ	Centroid mean		
ANFIS	Adaptive neuro fuzzy inference system		
ANP	Analytic network process		
RF	Random forest		
NRTL	Non-random two-liquid		
RNN	Recurrent neural network		
PLS	Partial least squares		
DA	Discriminant analysis		
PCA	Principal component analysis		
LDA	Linear discriminant analysis		
SVR	Support vector regression		
LS	Least-squares		
SB	Sparse Bayesian		
MCDM	Multi criteria decision making		
GP	Genetic programming		
MLR	Multi linear regression		
SWARA	Step-wise Weight Assessment Ratio Analysis		
MOORA	Multi Objective Optimization by Ratio Analysis		
FFNN	Feed-forward neural networks		
MLP	Multi layered perceptron		
DT	Decision tree		
RSM	Response surface methodology		
BPNN	Back propagation neural network		
CM	Centroid mean		
ANFIS	Adaptive neuro fuzzy inference system		
ANP	Analytic network process		
RF	Random forest		
NRTL	Non-random two-liquid		
RNN	Recurrent neural network		
PLS	Partial least squares		
DA	Discriminant analysis		
PCA	Principal component analysis		

LDA	Linear discriminant analysis
SVR	Support vector regression
LS	Least-squares
SB	Sparse Bayesian
MCDM	Multi criteria decision making
GP	Genetic programming
MLR	Multi linear regression
SWARA	Step-wise Weight Assessment Ratio Analysis
MOORA	Multi Objective Optimization by Ratio Analysis

1. Introduction

Structural damage diagnosis and prediction are of utmost importance in various scientific and engineering applications (Cha, Choi, Suh, Mahmoudkhani, & Büyüköztürk, 2018; Chen et al., 2019; Finotti, Cury, & Barbosa, 2019). Second paragraph on general damage detection methods and drawback to those methods (Hong et al., 2019; Huang & Wang, 2018; Jang, Lee, Park, & Baek, 2018; Kan et al., 2017; Krummenacher, Ong, Koller, Kobayashi, & Buhmann, 2018; Wang, Hu, & Zhai, 2018; Z. Zhang et al., 2019). Third paragraph on machine learning suitability and importance of machine learning and deep learning methods on this application (H. Li et al., 2019; Y. Z. Lin, Nie, & Ma, 2017; F. Ni, Zhang, & Chen, 2019; Patala, 2019; Pu, Apel, Liu, & Mitri, 2019; Quaranta et al., 2019). Fourth paragraph of this paper's contribution and the need for a comprehensive review. (Gordan, Razak, Ismail, & Ghaedi, 2017, 2018) reviews the general application of artificial intelligence methods including soft computing, data mining, optimization methods etc. However, there is a gap in research for a focused and comprehensive review on machine learning and deep learning models (S. Ren, Chen, Li, Chen, & Li, 2018; Salehi, Das, Biswas, & Burgueño, 2019).

There has been an enormous evolution in system modeling and intelligence after introducing the early models for deep learning. Deep learning methods very fast emerged and expanded applications in various scientific and engineering domains. Health informatics, energy, urban informatics, safety, security, hydrological systems modeling, economic, bioinformatics, and computational mechanics have been among the early application domains of deep learning. State of the art surveys on the data driven methods and machine learning algorithms, indicates that deep learning, along with the ensemble and hybrid machine learning methods are the future of data science. Further comparative studies report that deep learning models and hybrid machine learning models often outperform conventional machine learning models. Figure 1 represents the rapid rise in the applications of various deep learning methods during the past five years. Deep learning methods are fast evolving for higher performance. Literature includes adequate review papers on the progressing algorithms in particular application domains, e.g., renewable energy forecasting, cardiovascular image analysis, resolution imaging, radiology, 3D sensed data classification, 3D sensed data classification, multimedia analytics, sentiment classification, text detection, transportation systems, activity recognition in radar, hyperspectral, medical ultrasound analysis, image cytometry, and apache spark. However, a simplified list of deep learning methods has not been communicated so far. Thus, there is a gap in research in introducing the deep learning methods and summarize the methods and application in a brief, yet communicative paper. Consequently, this paper aims at providing a comprehensive list of the most popular deep learning methods and their notable applications. In every section, one deep learning method is introduced, and the notable applications related to that method are listed. The description of each deep learning method and the function of each building block is explained.

2. Survey methodology

The primary goal of this literature survey is to present the state of the art of ML models in the individual application areas of structural damage diagnosis. Accordingly, the research methodology has been developed to identify, classify and review the notable peer-reviewed articles in design and implementation of sustainable business models in top-level subject fields. The Web-of-Science and elsevier scopus are used for the implementation of the search queries of "defect or damage or crack" and "ml method_{1-n}" for title, abstract and keywords the relevant literatures are identified. the query of (title-abs-key (defect or damage or crack) and title-abs-key (ml method_{1-n})) in addition to the query of (title-abs-key (defect or damage or crack) and title-abs-key (dl method_{1-n})) would result in 21,933 documents. however, through auxiliary search keywords such as "mechanic* and structure*" in all fields of the paper we reduce the results to 4,669 documents making sure that the most relevant papers are identified, which forms our initial database. Reading in detail the articles' relevancy downed the numbers to 150 articles for the final consideration.

The research methodology follows a comprehensive and structured workflow based on a systematic database search and cross-reference snowballing. The flowchart of the research methodology is presented in figure 1. The method is considered as a modified version of review proposed by Easterby-Smith et al. (2015). In the first step the search queries explore the Thomson Reuters Web-of-Science and Elsevier Scopus databases. In the second step the abstract and keywords of the identified articles are browsed to identify the relevant literature and exclude the irrelevant ones. In step three the database of the relevant articles is created. In step four, the article is carefully read, and the category of the application is identified accordingly. In this step the expert-based knowledge and the initial preferences would influence the number and the type of the categories. In step five we decide on generating a new category and export the article in a new table of application domain or pass the article to step six where a category would host an article in its table. Once a category is created for a new article, in step seven, we pass that article to that category. In step eight we save the content of our database in various categories, update the content of the tables, and review the papers. This workflow will be repeated until sorting out all the papers.

Figure 1. Flowchart of the methodology of research

3. Machine learning methods

The survey methodology classifies the machine learning methods in seven groups, i.e. ANN-based, SVM-based, Tree-based models, Ensembles, Bayesians, Logistic regressions, and Neuro-Fuzzy. The last group is deep learning which has been considered separately. The notable papers have been reviewed in individual classes.

3.1 ANN

ANN can prepare general frameworks for analyzing damaged induced materials. Due to the fact that artificial neural networks have various applications such as accurate prediction of complex material behavior, it could be applied for damage detection and structural integrities in corresponding multiple-variable problems.

Reference	Year	Contribution	Application
		Accelerated discoveries	
Zhang Z., Hong		of mechanical properties	
Y., Hou B.,		of graphene using	
Zhang Z.,		machine learning and	
Negahban M.,		high-throughput	
Zhang J.	2019	computation	
		From in-situ monitoring	
		toward high-throughput	
Jafari-Marandi		process control: cost-	Additive manufacturing (AM);
R., Khanzadeh		driven decision-making	Artificial neural networks (ANN);
M., Tian W.,		framework for laser-	Porosity prediction; Self-organizing
Smith B., Bian		based additive	error-drive neural networks
L.	2019	manufacturing	(SOEDNN); Thermal history
Gomes G.F., de			
Almeida F.A.,		Optimized damage	Artificial neural networks; Composite
Junqueira D.M.,		identification in CFRP	plates; Damage identification; Inverse
da Cunha S.S.,		plates by reduced mode	problem; Sensor placement
Jr., Ancelotti		shapes and GA-ANN	optimization; Structural health
A.C., Jr.	2019	methods	monitoring
		An SHM approach using	Computational intelligence; Damage
		machine learning and	identification; Dynamic
Finotti R.P.,		statistical indicators	measurement; Structural dynamic;
Cury A.A.,		extracted from raw	Structural health monitoring;
Barbosa F.S.	2019	dynamic measurements	Vibration monitoring

Table 1. Notable ANN-based models for structural damage diagnosis and prediction

	1	Machine learning	
Pu Y., Apel		methods for rockburst	Artificial neural network; Burst
D.B., Liu V.,		prediction-state-of-the-art	liability; Deep learning; Rockburst
Mitri H.	2019	review	prediction; Support vector machine
		A simplified method to	
		predict fatigue damage of	Artificial neural network; Current;
		TTR subjected to short-	Fatigue damage; Riser; Top-
Wong E.W.C.,		term VIV using artificial	tensioned riser; Vortex-induced
Kim D.K.	2018	neural network	vibration
Nie W., Zhao		Performance based	
Z.Y., Goh		support design for	
A.T.C., Song		horseshoe-shaped rock	Artificial neural network;
M.K., Guo W.,		caverns using 2D	Convergence confinement method;
Zhu X.	2018	numerical analysis	Rock cavern; Support design
		Least squares support	
		vector mechanics to	Least squares support vector
		predict the stability	mechanics; Particle swarm
		number of rubble-mound	optimization; Rubble-mound
Gedik N.	2018	breakwaters	breakwater; Stability number
Rezaniaiee		Health monitoring of	Damage diagnosis; Finite element
Aqdam H.,		mooring lines in floating	method; Mooring lines; Radial basis
Ettefagh M.M.,		structures using artificial	neural networks; Structural health
Hassannejad R.	2018	neural networks	monitoring; Uncertainty
Cha YJ., Choi		Autonomous Structural	
W., Suh G.,		Visual Inspection Using	
Mahmoudkhani		Region-Based Deep	
S., Büyüköztürk		Learning for Detecting	
0.	2018	Multiple Damage Types	
		Application of deep	
		learning architectures for	
		accurate and rapid	
		detection of internal	Convolutional neural networks; Fruit
		mechanical damage of	quality detection; Hyperspectral
Were 7 H		blueberry using	transmittance image; Internal
Wang Z., Hu M. Zhai G	2018	hyperspectral transmittance data	mechanical damage detection;
M., Zhai G. Krummenacher	2018	transmittance data	Machine learning artificial neural networks; Machine
G., Ong C.S.,			learning; pattern analysis; railway
Koller S.,			accidents; railway safety; statistical
Koher S., Kobayashi S.,		Wheel Defect Detection	learning; supervised learning; support
Buhmann J.M.	2018	with Machine Learning	vector machines; wavelet transforms
Dummunn J.WI.	2010	The potential application	vector machines, wavelet transforms
AminShokravi		of particle swarm	
A., Eskandar H.,		optimization algorithm	
Derakhsh A.M.,		for forecasting the air-	
Rad H.N.,		overpressure induced by	
Ghanadi A.	2018	mine blasting	ANN; AOp; Blasting; PSO
	-010		1.1.1.1, 1.10p, Diabang, 1.00

Gordan M., Razak H.A., Ismail Z., Ghaedi K. Ghritlahre H.K.,	2018	Data mining based damage identification using imperialist competitive algorithm and artificial neural network Exergetic performance prediction of a roughened solar air heater using	Artificial neural network; Damage detection; Data mining; Hybrid algorithm; Imperial competitive algorithm; Structural health monitoring Artificial neural network; Exergy analysis; Learning algorithm; Multi-
Prasad R.K. Rojas-Moraleda R., Valous N.A., Gowen A., Esquerre C., Härtel S., Salinas L., O'Donnell C.	2018	A frame-based ANN for classification of hyperspectral images: assessment of mechanical damage in mushrooms	layer perceptron; Solar air heater Artificial neural networks; Frame- based classification; Imaging spectroscopy; Mechanical damage; Salient point detectors
Lin YZ., Nie ZH., Ma H W.	2017	Structural Damage Detection with Automatic Feature- Extraction through Deep Learning Estimation of crack	
Çalık A., Yıldırım S., Tosun E.	2017	propagation in polymer electrolyte membrane fuel cell under vibration conditions Detecting damage in	Artificial neural network; Crack propagation; Mechanical vibration; Polymer electrolyte membrane fuel cell Artificial Neural Network; Damage
Tan Z.X., Thambiratnam D.P., Chan T.H.T., Abdul Razak H.	2017	steel beams using modal strain energy based damage index and Artificial Neural Network	index; Damage location; Damage prediction; Damage scenarios; Damage severity; Failure prevention; Modal strain energy; Vibration based technique
Samareh H., Khoshrou S.H., Shahriar K., Ebadzadeh M.M., Eslami M.	2017	Optimization of a nonlinear model for predicting the ground vibration using the combinational particle swarm optimization- genetic algorithm	Artificial neural network; Blasting; Genetic algorithm; Geo-mechanics properties of rock mass; Ground vibration; Particle swarm optimization
Gordan M., Razak H.A., Ismail Z., Ghaedi K. Choi C.K., Kim	2017	Recent developments in damage identification of structures using data mining Identification of location and size of a defect in a	Artificial neural network; Data mining technique; Genetic algorithm; Principal component analysis; Structural damage detection Active external moment; Artificial
J.S., Yoo H.H.	2016	structural system	neural network (ANN); Fault

Ì	1		dia ana sia. Hiddan Maulaat madal
		employing active external excitation and	diagnosis; Hidden Markov model (HMM); Structural system
			(HMM); Structural system
		hybrid feature vector	
- D1		components in HMM	
Bissacot			
A.C.G., Salgado		Comparison of neural	
S.A.B.,		networks and logistic	
Balestrassi P.P.,		regression in assessing	
Paiva A.P.,		the occurrence of failures	Artificial neural networks; Fall of
Zambroni Souza		in steel structures of	metal structures; Logistic regression;
A.C., Wazen R.	2016	transmission lines	ROC curves; Transmission lines
		Comparative Analysis of	
		Soft Computing Models	
		in Prediction of Bending	
Guruprasad R.,		Rigidity of Cotton	ANFIS; ANN; Bending rigidity;
Behera B.K.	2015	Woven Fabrics	BPNN; GANN
D UNUT W D I I I	2010	Structural modification	
Alves V., Cury		assessment using	
A., Roitman N.,		supervised learning	Damage assessment; Learning
Magluta C.,		methods applied to	algorithms; Pattern recognition;
Cremona C.	2015	vibration data	SHM; Symbolic data
Clemona C.	2013	Numerical modeling of	STIM, Symbolic data
		time to corrosion induced	
Güneyisi E.M.,		cover cracking in	Experimental database; Modeling;
Mermerdaş K.,		reinforced concrete using	Reinforced concrete; Steel
Güneyisi E.,		soft-computing based	reinforcement corrosion; Time to
Gesoğlu M.	2015	methods	cover cracking
		Particle Swarm	
		Optimization based	
		support vector machine	
		for damage level	
Harish N.,		prediction of non-	
Mandal S., Rao		reshaped berm	Berm breakwater; Damage level;
S., Patil S.G.	2015	breakwater	Non-reshaped; PSO-SVM; SVM
		Structural damage	•
		assessment using linear	Linear approximation; Maximum-
Meruane V.,		approximation with	entropy principle; Structural damage
Ortiz-Bernardin		maximum entropy and	assessment; Supervised learning
A.	2015	transmissibility data	algorithms
	2010	a anomiosionity data	

ANN based models include a great deal of models for damage modeling. (Alves, Cury, Roitman, Magluta, & Cremona, 2015; AminShokravi, Eskandar, Derakhsh, Rad, & Ghanadi, 2018; Bissacot et al., 2016; Çalık, Yıldırım, & Tosun, 2017; Cha et al., 2018; Choi, Kim, & Yoo, 2016; Finotti et al., 2019; Gedik, 2018; Ghritlahre & Prasad, 2018;

Gomes, de Almeida, Junqueira, da Cunha, & Ancelotti, 2019; Gordan et al., 2017, 2018; Güneyisi, Mermerdaş, Güneyisi, & Gesoğlu, 2015; Guruprasad & Behera, 2015; Harish, Mandal, Rao, & Patil, 2015; Jafari-Marandi, Khanzadeh, Tian, Smith, & Bian, 2019; Krummenacher et al., 2018; Y. Z. Lin et al., 2017; Meruane & Ortiz-Bernardin, 2015; Nie et al., 2018; Pu et al., 2019; Rezaniaiee Aqdam, Ettefagh, & Hassannejad, 2018; Rojas-Moraleda et al., 2017; Samareh, Khoshrou, Shahriar, Ebadzadeh, & Eslami, 2017; Tan, Thambiratnam, Chan, & Abdul Razak, 2017; Wang et al., 2018; Wong & Kim, 2018; Z. Zhang et al., 2019)

Authors	Year	Title	Author Keywords
Nair A., Cai C.S., Kong X.	2019	Studying Failure Modes of GFRP Laminate Coupons Using AE Pattern- Recognition Method	Acoustic emission; Failure mode identification; Glass fiber reinforced polymer (GFRP) laminate coupon; k - means clustering; Multilayer perceptron; Pattern recognition; Support vector machine
Zhang Z., Hong Y., Hou B., Zhang Z., Negahban M., Zhang J.	2019	Accelerated discoveries of mechanical properties of graphene using machine learning and high-throughput computation	
Nair A., Cai C.S., Kong X.	2019	Acoustic emission pattern recognition in CFRP retrofitted RC beams for failure mode identification	Acoustic emission; CFRP retrofitted RC beams; Failure mode identification; K- means clustering; Multilayer perceptron; Pattern recognition; Support vector machine
Forero-Ramírez J C., Restrepo-Girón AD., Nope- Rodríguez SE.	2019	Detection of Internal Defects in Carbon Fiber Reinforced Plastic Slabs Using Background Thermal Compensation by Filtering and Support Vector Machines	Background thermal compensation by filtering (BTCF); Carbon fiber reinforced plastic (CFRP); Feature selection; Infrared thermography (IT); Support vector machines (SVM)
Finotti R.P., Cury A.A., Barbosa F.S.	2019	An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements	Computational intelligence; Damage identification; Dynamic measurement; Structural dynamic; Structural health monitoring; Vibration monitoring
Pu Y., Apel D.B., Liu V., Mitri H.	2019	Machine learning methods for rockburst prediction-state-of-the-art review Least squares support vector	Artificial neural network; Burst liability; Deep learning; Rockburst prediction; Support vector machine Least squares support vector mechanics;
Gedik N.	2018	mechanics to predict the stability number of rubble-mound breakwaters	Particle swarm optimization; Rubble- mound breakwater; Stability number

Table. 2 Notable Support vectors (SVM) models

2018	An edge-feature-description-based scheme combined with support vector machines for the detection of vortex- induced vibration	Edge feature description; Hybrid vision- based method; Support vector machines; Vortex-induced vibration
2010		artificial neural networks; Machine learning; pattern analysis; railway accidents; railway safety; statistical
2018	Wheel Defect Detection with Machine Learning	learning; supervised learning; support vector machines; wavelet transforms
	A frame-based ANN for classification of hyperspectral images: assessment of	Artificial neural networks; Frame-based classification; Imaging spectroscopy; Mechanical damage; Salient point
2017	mechanical damage in mushrooms	detectors
2017	recognition based on wavelet packet	Dimension reduction; Laser ultrasonic; Quantitative recognition; SVM
2017	Structural modification assessment	classification; Wavelet packet fusion
2015	using supervised learning methods applied to vibration data	Damage assessment; Learning algorithms; Pattern recognition; SHM; Symbolic data
		CFRP structural damage identification; Fiber bragg grating; Multi-class C-support
2015	Damage identification system of CFRP	vector classification; One-class support vector machines; Principal component
2015		analysis
2015	support vector machine for damage level prediction of non-reshaped berm	Berm breakwater; Damage level; Non- reshaped; PSO-SVM; SVM
	2017 2017	scheme combined with support vector machines for the detection of vortex- induced vibration2018Wheel Defect Detection with Machine Learning2018A frame-based ANN for classification of hyperspectral images: assessment of mechanical damage in mushrooms2017Laser ultrasonic quantitative recognition based on wavelet packet fusion algorithm and SVM2015Structural modification assessment using supervised learning methods applied to vibration data2015Damage identification system of CFRP using fiber bragg grating sensors Particle Swarm Optimization based support vector machine for damage level prediction of non-reshaped berm

SVM have gained popularity in modeling the damage. (Alves et al., 2015; Finotti et al., 2019; Forero-Ramírez, Restrepo-Girón, & Nope-Rodríguez, 2019; Gedik, 2018; Harish et al., 2015; Krummenacher et al., 2018; T. K. Lin, 2018; Lu, Jiang, Sui, Sai, & Jia, 2015; Nair, Cai, & Kong, 2019a, 2019b; Pu et al., 2019; Rojas-Moraleda et al., 2017; Yi, Wang, Guo, Li, & Jiang, 2017; Z. Zhang et al., 2019)

Tree-based models;

Decision trees (DTs), Classification and Regression Trees (CART)

Table 3	. Notable	tree-based	models
---------	-----------	------------	--------

Authors	Year	Source title	Author Keywords
- Authors	1 cui	Source the	Classification model; Damage;
Andrejiova M.,		Engineering	Decision tree; Regression
Grincova A.,		Failure	analysis; Rubber-textile
Marasova D.	2019	Analysis	conveyor belt
Dia A., Dieng L.,	2019	Anarysis	Acoustics; Materials science;
Gaillet L., Gning P.B.	2019	Heliyon	Mechanical engineering
Gamer L., Ohing F.B.	2019	Tienyon	damage-sensitive features; real-
			time damage detection;
			Recursive singular spectral
Bhowmik B.,		Structural	analysis; structural health
Krishnan M., Hazra		Health	monitoring; time-varying
B., Pakrashi V.	2019	Monitoring	autoregressive modeling
B., Faklasili V.	2019	Wollitolling	
Noori Hoshwar A			damage index; de-noising;
Noori Hoshyar A.,		Structural	mother wavelets; severity
Samali B.,		Health	analysis; smart aggregate sensors; Structural health
Liyanapathirana R.,	2010		
Taghavipour S.	2019	Monitoring	monitoring; wavelet de-noising
Egnew A.C., Roueche	2019	Natural Hazards	
D.B., Prevatt D.O.	2018	Review	
Pérez-Ruiz M., Rallo			
P., Jiménez M.R.,			
Garrido-Izard M.,			
Suárez M.P.,			
Casanova L., Valero			Canopy volume; Fruit damage;
C., Martínez-Guanter	2010	Sensors	Laser scanning; Monitoring;
J., Morales-Sillero A.	2018	(Switzerland)	Olea europaea; Olive harvester
			Convolutional neural networks;
			Fruit quality detection;
			Hyperspectral transmittance
			image; Internal mechanical
Wang Z., Hu M., Zhai		Sensors	damage detection; Machine
G.	2018	(Switzerland)	learning
			3-point bending specimen;
Kim C.S., Hwang		Information	Buckling; CFRP; Damage;
J.H., Jung J.T.	2017	(Japan)	Restoration
			Bayesian belief network
			(BBN); Fault tree analysis
			(FTA); Fuzzy set theory;
		Structure and	Linguistic variables; Oil and
Kabir G., Sadiq R.,		Infrastructure	gas pipelines; Safety
Tesfamariam S.	2016	Engineering	assessment; Uncertainty
Dorval A.D.,			3D root architecture;
Meredieu C., Danjon		Annals of	Acclimation; Biomechanics;
F.	2016	Botany	Flexural stiffness; Forest tree;

			Maximum tensile load; Pinus pinaster; Soil depth; Toppling; Tree anchorage; Windthrow
			Coppice stands;
Favillier A., Lopez-			Dendrogeomorphology; Forest-
Saez J., Corona C.,			rockfall interactions; French
Trappmann D., Toe			Alps; Recurrence intervals;
D., Stoffel M., Rovéra			Submontane broadleaved
G., Berger F.	2015	Geomorphology	species
Alves V., Cury A.,			Damage assessment; Learning
Roitman N., Magluta		Engineering	algorithms; Pattern recognition;
C., Cremona C.	2015	Structures	SHM; Symbolic data

(Alves et al., 2015; Andrejiova, Grincova, & Marasova, 2019; Bhowmik, Krishnan, Hazra, & Pakrashi, 2019; Dia, Dieng, Gaillet, & Gning, 2019; Dorval, Meredieu, & Danjon, 2016; Egnew, Roueche, & Prevatt, 2018; Favillier et al., 2015; Kabir, Sadiq, & Tesfamariam, 2016; Kim, Hwang, & Jung, 2017; Noori Hoshyar, Samali, Liyanapathirana, & Taghavipour, 2019; Pérez-Ruiz et al., 2018; Wang et al., 2018; Z. Zhang et al., 2019)

Table. 4 Notable ensembles mode	s including it includes	boosting and bagging for
making ensembles		

Authors	Title	Year	Author Keywords
	Evolution of pore ensemble in solid and		Aluminum melt; Dynamic tensile
	molten aluminum under dynamic tensile		fracture; High-rate stretching;
Mayer A.E., Mayer	fracture: Molecular dynamics simulations		Mechanical model; Molecular
P.N.	and mechanical models	2019	dynamics; Solid aluminum
Uzay C., Geren N.,	Bending behavior of sandwich structures		ANOVA; Failure modes; Flexural
Boztepe M.H.,	with different fiber facing types and		properties; Sandwich structures; Ttree-
Bayramoglu M.	extremely low-density foam cores	2019	point bending
	Mixed-mode crack propagation tests of		
Panettieri E.,	composite bonded joints using a dual-		Composite bonded joints; Debonding;
Leclerc G., Jumel J.,	actuator load frame – Constant and		Dual-actuator system; Fracture
Guitard J.	variable G II /G I conditions	2018	toughness; Mixed-mode
	Application of deep learning		Convolutional neural networks; Fruit
	architectures for accurate and rapid		quality detection; Hyperspectral
	detection of internal mechanical damage		transmittance image; Internal
Wang Z., Hu M.,	of blueberry using hyperspectral		mechanical damage detection;
Zhai G.	transmittance data	2018	Machine learning
Fakih M.A.,	Detection and assessment of flaws in		CT scanning; Finite element analysis;
Mustapha S., Tarraf	friction stir welded joints using ultrasonic	2018	Friction stir welding; Lamb waves;

J., Ayoub G.,	guided waves: experimental and finite		Structural health monitoring; Weld
Hamade R.	element analysis		inspection
Froustey C.,			
Naimark O.B.,			
Panteleev I.A.,			
Bilalov D.A.,			
Petrova A.N.,	Multiscale structural relaxation and		adiabatic shear; dynamic loading;
Lyapunova E.A.	adiabatic shear failure mechanisms	2017	microdefects
	Reliability of MEMS accelerometers for		
Tanırcan G., Alçık	instrumental intensity mapping of		
H., Beyen K.	earthquakes	2017	
	Adaptive Multiscale Noise Control		
	Enhanced Stochastic Resonance Method		
	Based on Modified EEMD with Its		
Li J., Zhang J.	Application in Bearing Fault Diagnosis	2016	
	Wafer defect detection and recognition		Gaussian mixture model (GMM);
	based on local and nonlocal linear		Manifold learning; Pattern
Yu JB., Lu XL.,	discriminant analysis and dynamic		recognition; Semiconductor
Zong WZ.	ensemble of gaussian mixture models	2016	manufacturing; Wafer defect
Sokovikov M.,			
Bilalov D., Oborin			
V., Chudinov V.,			
Uvarov S.,			Dynamic loading; Microdefects;
Bayandin Y.,	Structural mechanisms of formation of		Numerical modeling; Plastic strain
Naimark O.	adiabatic shear bands	2016	localization
			Damage detection; Ensemble
			empirical mode decomposition;
	Structural damage detection based on		Hilbert-huang transform;
Ren YC., Weng P.	improved Hilbert-Huang transform	2015	Instantaneous frequency
Ovid'Ko I.,			
Sheinerman A.,			
Skiba N.,	Twin boundary migration and nanocrack		Cracks; Defects; Fracture; Modeling;
Krasnitiskiy S.,	generation in ultrafine- grained materials		Nanotwinned materials; Plastic
Smirnov A.	with nanotwinned structure	2015	deformation; Yield strength

(Fakih, Mustapha, Tarraf, Ayoub, & Hamade, 2018; Froustey et al., 2017; J. Li & Zhang, 2016; Mayer & Mayer, 2019; Ovid'Ko, Sheinerman, Skiba, Krasnitiskiy, & Smirnov, 2015; Panettieri, Leclerc, Jumel, & Guitard, 2018; Y. C. Ren & Weng, 2015; Sokovikov et al., 2016; Tanırcan, Alçık, & Beyen, 2017; Uzay, Geren, Boztepe, & Bayramoglu, 2019; Wang et al., 2018; Yu, Lu, & Zong, 2016)

Authors	Year	Author Keywords	Title
Sha G., Radzieński M., Cao M., Ostachowicz W.	2019	Bayesian data fusion; Damage growth monitoring; Damage localization; Relative natural frequency change; Severity estimation	A novel method for single and multiple damage detection in beams using relative natural frequency changes
Chattopadhyay P., Mondal S., Ray A., Mukhopadhyay A.	2019		Dynamic Data- Driven Combustor Design for Mitigation of Thermoacoustic Instabilities
Yang D.Y., Frangopol D.M.	2018	Bayesian network; crack growth; decision- making; Fatigue; influence diagram; life-cycle	Evidence-based framework for real- time life-cycle management of fatigue-critical details of structures
Ye D., Hong G.S., Zhang Y., Zhu K., Fuh J.Y.H.	2018	Additive manufacturing; Deep belief networks; Defect detection; Fast Fourier transform	Defect detection in selective laser melting technology by acoustic signals with deep belief networks
Ebrahimian H., Astroza R., Conte J.P., Papadimitriou C.	2018	Bayesian method; direct differentiation method; joint parameter and input estimation; nonlinear finite element model; output-only system identification; structural health monitoring	Bayesian optimal estimation for output-only nonlinear system and damage identification of civil structures
Wu X., Zeng X., Huang J., Song HQ.	2017	Bayesian network; Finite element analysis; Reliability growth; Solid rocket motor; Structure optimization	Research on Tail Structure Optimization for Solid Rocket Motor
Liu Y., Shuai Q., Zhou S., Tang J.	2017	Damage prognosis; finite element methods (FEMs); hierarchical Bayesian model; Markov	Prognosis of Structural Damage Growth Via

Table 5. Notable Bayesians Models

		chain Monte Carlo (MCMC) method; structural health monitoring	Integration of Physical Model Prediction and Bayesian Estimation
Ni Y., Lu X., Lu W.	2017	Bayesian; High-rise building; Modal identification; Shaking table test; Vibration test	Operational modal analysis of a high- rise multi-function building with dampers by a Bayesian approach
Ebrahimian H., Astroza R., Conte J.P., de Callafon R.A.	2017	Bayesian inference; Gradient-based optimization; Model updating; Nonlinear finite element model; Nonlinear system identification; Uncertainty quantification	Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation
Kabir G., Sadiq R., Tesfamariam S.	2016	Bayesian belief network (BBN); Fault tree analysis (FTA); Fuzzy set theory; Linguistic variables; Oil and gas pipelines; Safety assessment; Uncertainty	A fuzzy Bayesian belief network for safety assessment of oil and gas pipelines
Yazdanipour M., Pourgol- Mohammad M.	2016	Bayesian approach; Crack length distribution; Fatigue crack growth; Probabilistic modeling; Propagation of uncertainty	Stochastic fatigue crack growth analysis of metallic structures under multiple thermal- mechanical stress levels
Seuba J., Deville S., Guizard C., Stevenson A.J.	2016	Ceramics; Mechanical properties; Mechanical reliability; Porous materials; Weibull	The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics
Alves V., Cury A., Roitman N., Magluta C., Cremona C.	2015	Damage assessment; Learning algorithms; Pattern recognition; SHM; Symbolic data	Structural modification assessment using supervised learning methods applied to vibration data

Baneen U.,		Bayesian; Curvature mode shapes; Damage
Guivant J.E.	2015	detection; Kernels; Plate-type structure.

A 2D Bayesian approach for damage detection in platetype structures

(Chattopadhyay, Mondal, Ray, & Mukhopadhyay, 2019; Ebrahimian, Astroza, Conte, & de Callafon, 2017; Ebrahimian, Astroza, Conte, & Papadimitriou, 2018; Kabir et al., 2016; Liu, Shuai, Zhou, & Tang, 2017; Y. Ni, Lu, & Lu, 2017; Seuba, Deville, Guizard, & Stevenson, 2016; Sha, Radzieński, Cao, & Ostachowicz, 2019; Wu, Zeng, Huang, & Song, 2017; Yang & Frangopol, 2018; Yazdanipour & Pourgol-Mohammad, 2016; Ye, Hong, Zhang, Zhu, & Fuh, 2018)

Logistic regressions

Authors	Title	Year	Author Keywords
Egnew A.C.,	Linking Building Attributes and		
Roueche D.B.,	Tornado Vulnerability Using a		
Prevatt D.O.	Logistic Regression Model	2018	
Jang DW., Lee S., Park JW.,	Failure detection technique under random fatigue loading by machine learning and dual sensing	2010	Dual sensing; Failure detection; Fatigue loading; Machine learning; Prognostics and Health
Baek DC.	on symmetric structure	2018	Management (PHM)
Bissacot A.C.G., Salgado			
S.A.B.,	Comparison of neural networks		
Balestrassi P.P.,	and logistic regression in		Artificial neural networks;
Paiva A.P.,	assessing the occurrence of		Fall of metal structures;
Zambroni Souza	failures in steel structures of		Logistic regression; ROC
A.C., Wazen R.	transmission lines	2016	curves; Transmission lines
Regan T., Canturk R.,			Health Monitoring; Logistic Regression; Machine
Slavkovsky E.,	Wind turbine blade damage		Learning; Support Vector
Niezrecki C.,	detection using various machine		Machine; Wind Turbine
Inalpolat M.	learning algorithms	2016	Blades
Gauthier F., Hétu B., Allard	Forecasting method of ice blocks fall using logistic model and	2015	Degree–day; Ice avalanche; Ice blocks fall; Logistic
М.	melting degree-days calculation:	2015	regression; Predictive model

Table 6. Notable logistic regressions

	a case study in northern Gaspésie,		
	Québec, Canada		
Zhang W., Shen			
S., Basak P.,			
Wen H., Wu S.,	Development of predictive		
Faheem A.,	models for initiation and		
Mohammad	propagation of field transverse		
L.N.	cracking	2015	
Wazen R.N.,			
Fernandes			Dropped structures; Logistic
T.S.P., Aoki	Evaluation of the susceptibility of		regression; Metallic
A.R., De Souza	failures in steel structures of		structures; Rough sets;
W.E.	transmission lines	2013	Transmission lines

(Bissacot et al., 2016; Egnew et al., 2018; Gauthier, Hétu, & Allard, 2015; Jang et al., 2018; Regan, Canturk, Slavkovsky, Niezrecki, & Inalpolat, 2016; Wazen, Fernandes, Aoki, & De Souza, 2013; W. Zhang et al., 2015)

Neuro-Fuzzy

Table 7. Notable ANFIS model

Authors	Title	Year	Author Keywords
	Algorithm for estimating		
	online bearing fault upon		adaptive neuro-fuzzy inference system
	the ability to extract		(ANFIS)-based damage identification; AI
Tran Q.T.,	meaningful information		for estimating damage; identifying bearing
Nguyen S.D.,	from big data of intelligent		damage; singular spectrum analysis (SSA)
Seo TI.	structures	2019	for identifying damage
	Shear failure capacity		Adaptive neuro-fuzzy inference system
	prediction of concrete		(ANFIS); Concrete beam-column joint;
Naderpour	beam-column joints in		Group method of data handling (GMDH);
H., Mirrashid	terms of ANFIS and		Shear capacity; Soft computing;
М.	GMDH	2019	Vulnerability
	Predicting the collapsibility		
Hashemineja	potential of unsaturated		Adaptive neural fuzzy inference system;
d M.M.,	soils using adaptive neural		Collapsibility potential; Gaussian
Sohankar N.,	fuzzy inference system and		membership function; Particle swarm
Hajiannia A.	particle swarm optimization	2018	optimization; Soft computing
			Beam; Damage detection; Grid
Aydin K.,	Damage detection in		partitioning; Neuro fuzzy system;
Kisi O.	structural beam elements	2015	Subtractive clustering

	using hybrid neuro fuzzy		
	systems		
	Comparative Analysis of		
	Soft Computing Models in		
Guruprasad	Prediction of Bending		
R., Behera	Rigidity of Cotton Woven		ANFIS; ANN; Bending rigidity; BPNN;
B.K.	Fabrics	2015	GANN
			adaptive neuro-fuzzy inference system;
Nanda J., Das	Influence of multi-		experimental analysis; mode shape;
L.D., Das S.,	transverse crack on		multiple cracks; natural frequency; shaft;
Das H.C.	cantilever shaft	2015	Vibration
	3rd International		
	Conference on Civil		
[No author	Engineering and		
name	Transportation, ICCET		
available]	2013	2014	
	2013 International		
[No author	Conference on Mechanical		
name	and Electronics		
available]	Engineering, ICMEE 2013	2013	
-	2013 2nd International		
	Conference on Manufacture		
[No author	Engineering, Quality and		
name	Production System,		
available]	ICMEQP 2013	2013	
Adoko A.C.,	2		ANFIS; Mamdani fuzzy inference system
Gokceoglu	Knowledge-based and data-		Prediction modeling in rock engineering;
C., Wu L.,	driven fuzzy modeling for		Rockburst; Takagi-Sugeno fuzzy inference
Zuo Q.J.	rockburst prediction	2013	system

(Adoko, Gokceoglu, Wu, & Zuo, 2013; Aydin & Kisi, 2015; Guruprasad & Behera, 2015; Hasheminejad, Sohankar, & Hajiannia, 2018; Naderpour & Mirrashid, 2019; Nanda, Das, Das, & Das, 2015; Tran, Nguyen, & Seo, 2019)

Conclusions

Deep learning methods are fast-evolving. Some of them have advanced to be specialized in a particular application domain. However, there is a gap in research in introducing the deep learning methods and summarize the methods and application in a single paper. Consequently, this paper aims at providing a comprehensive list of the most popular deep learning methods and provide notable applications. CNN, RNN, DAE, DBNs, LSTM methods have been identified as the most popular deep learning method. The description of each deep learning method and the function of each building block of them is explained.

References

- Adoko, A. C., Gokceoglu, C., Wu, L., & Zuo, Q. J. (2013). Knowledge-based and datadriven fuzzy modeling for rockburst prediction. *International Journal of Rock Mechanics and Mining Sciences*, 61, 86-95. doi:10.1016/j.ijrmms.2013.02.010
- Alves, V., Cury, A., Roitman, N., Magluta, C., & Cremona, C. (2015). Structural modification assessment using supervised learning methods applied to vibration data. *Engineering Structures*, 99, 439-448. doi:10.1016/j.engstruct.2015.05.003
- AminShokravi, A., Eskandar, H., Derakhsh, A. M., Rad, H. N., & Ghanadi, A. (2018). The potential application of particle swarm optimization algorithm for forecasting the airoverpressure induced by mine blasting. *Engineering with Computers*, 34(2), 277-285. doi:10.1007/s00366-017-0539-5
- Andrejiova, M., Grincova, A., & Marasova, D. (2019). Failure analysis of the rubber-textile conveyor belts using classification models. *Engineering Failure Analysis*, 101, 407-417. doi:10.1016/j.engfailanal.2019.04.001
- Aydin, K., & Kisi, O. (2015). Damage detection in structural beam elements using hybrid neuro fuzzy systems. Smart Structures and Systems, 16(6), 1107-1132. doi:10.12989/sss.2015.16.6.1107
- Bhowmik, B., Krishnan, M., Hazra, B., & Pakrashi, V. (2019). Real-time unified singleand multi-channel structural damage detection using recursive singular spectrum analysis. *Structural Health Monitoring*, 18(2), 563-589. doi:10.1177/1475921718760483
- Bissacot, A. C. G., Salgado, S. A. B., Balestrassi, P. P., Paiva, A. P., Zambroni Souza, A. C., & Wazen, R. (2016). Comparison of neural networks and logistic regression in assessing the occurrence of failures in steel structures of transmission lines. *Open Electrical and Electronic Engineering Journal*, 10, 11-26. doi:10.2174/1874129001610010011
- Çalık, A., Yıldırım, S., & Tosun, E. (2017). Estimation of crack propagation in polymer electrolyte membrane fuel cell under vibration conditions. *International Journal of Hydrogen Energy*, 42(36), 23347-23351. doi:10.1016/j.ijhydene.2017.02.119
- Cha, Y. J., Choi, W., Suh, G., Mahmoudkhani, S., & Büyüköztürk, O. (2018). Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. *Computer-Aided Civil and Infrastructure Engineering*, 33(9), 731-747. doi:10.1111/mice.12334

- Chattopadhyay, P., Mondal, S., Ray, A., & Mukhopadhyay, A. (2019). Dynamic Data-Driven Combustor Design for Mitigation of Thermoacoustic Instabilities. *Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 141*(1). doi:10.1115/1.4040210
- Chen, G., Li, T., Chen, Q., Ren, S., Wang, C., & Li, S. (2019). Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures. *Computational Mechanics*, 64(2), 435-449. doi:10.1007/s00466-019-01706-2
- Choi, C. K., Kim, J. S., & Yoo, H. H. (2016). Identification of location and size of a defect in a structural system employing active external excitation and hybrid feature vector components in HMM. *Journal of Mechanical Science and Technology*, 30(6), 2427-2433. doi:10.1007/s12206-016-0502-1
- Dia, A., Dieng, L., Gaillet, L., & Gning, P. B. (2019). Damage detection of a hybrid composite laminate aluminum/glass under quasi-static and fatigue loadings by acoustic emission technique. *Heliyon*, 5(3). doi:10.1016/j.heliyon.2019.e01414
- Dorval, A. D., Meredieu, C., & Danjon, F. (2016). Anchorage failure of young trees in sandy soils is prevented by a rigid central part of the root system with various designs. *Annals* of Botany, 118(4), 747-762. doi:10.1093/aob/mcw098
- Ebrahimian, H., Astroza, R., Conte, J. P., & de Callafon, R. A. (2017). Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation. *Mechanical Systems and Signal Processing*, 84, 194-222. doi:10.1016/j.ymssp.2016.02.002
- Ebrahimian, H., Astroza, R., Conte, J. P., & Papadimitriou, C. (2018). Bayesian optimal estimation for output-only nonlinear system and damage identification of civil structures. *Structural Control and Health Monitoring*, 25(4). doi:10.1002/stc.2128
- Egnew, A. C., Roueche, D. B., & Prevatt, D. O. (2018). Linking Building Attributes and Tornado Vulnerability Using a Logistic Regression Model. *Natural Hazards Review*, 19(4). doi:10.1061/(ASCE)NH.1527-6996.0000305
- Fakih, M. A., Mustapha, S., Tarraf, J., Ayoub, G., & Hamade, R. (2018). Detection and assessment of flaws in friction stir welded joints using ultrasonic guided waves: experimental and finite element analysis. *Mechanical Systems and Signal Processing*, 101, 516-534. doi:10.1016/j.ymssp.2017.09.003
- Favillier, A., Lopez-Saez, J., Corona, C., Trappmann, D., Toe, D., Stoffel, M., ... Berger, F. (2015). Potential of two submontane broadleaved species (Acer opalus, Quercus pubescens) to reveal spatiotemporal patterns of rockfall activity. *Geomorphology*, 246, 35-47. doi:10.1016/j.geomorph.2015.06.010
- Finotti, R. P., Cury, A. A., & Barbosa, F. S. (2019). An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements. *Latin American Journal of Solids and Structures*, 16(2). doi:10.1590/1679-78254942

- Forero-Ramírez, J. C., Restrepo-Girón, A. D., & Nope-Rodríguez, S. E. (2019). Detection of Internal Defects in Carbon Fiber Reinforced Plastic Slabs Using Background Thermal Compensation by Filtering and Support Vector Machines. *Journal of Nondestructive Evaluation*, 38(1). doi:10.1007/s10921-019-0569-6
- Froustey, C., Naimark, O. B., Panteleev, I. A., Bilalov, D. A., Petrova, A. N., & Lyapunova, E. A. (2017). Multiscale structural relaxation and adiabatic shear failure mechanisms. *Physical Mesomechanics*, 20(1), 31-42. doi:10.1134/S1029959917010039
- Gauthier, F., Hétu, B., & Allard, M. (2015). Forecasting method of ice blocks fall using logistic model and melting degree–days calculation: a case study in northern Gaspésie, Québec, Canada. *Natural Hazards*, 79(2), 855-880. doi:10.1007/s11069-015-1880-x
- Gedik, N. (2018). Least squares support vector mechanics to predict the stability number of rubble-mound breakwaters. *Water (Switzerland), 10*(10). doi:10.3390/w10101452
- Ghritlahre, H. K., & Prasad, R. K. (2018). Exergetic performance prediction of a roughened solar air heater using artificial neural network. *Journal of Mechanical Engineering*, 64(3), 195-206. doi:10.5545/sv-jme.2017.4575
- Gomes, G. F., de Almeida, F. A., Junqueira, D. M., da Cunha, S. S., Jr., & Ancelotti, A. C., Jr. (2019). Optimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methods. *Engineering Structures*, 181, 111-123. doi:10.1016/j.engstruct.2018.11.081
- Gordan, M., Razak, H. A., Ismail, Z., & Ghaedi, K. (2017). Recent developments in damage identification of structures using data mining. *Latin American Journal of Solids and Structures*, 14(13), 2373-2401. doi:10.1590/1679-78254378
- Gordan, M., Razak, H. A., Ismail, Z., & Ghaedi, K. (2018). Data mining based damage identification using imperialist competitive algorithm and artificial neural network. *Latin American Journal of Solids and Structures*, 15(8). doi:10.1590/1679-78254546
- Güneyisi, E. M., Mermerdaş, K., Güneyisi, E., & Gesoğlu, M. (2015). Numerical modeling of time to corrosion induced cover cracking in reinforced concrete using soft-computing based methods. *Materials and Structures/Materiaux et Constructions*, 48(6), 1739-1756. doi:10.1617/s11527-014-0269-8
- Guruprasad, R., & Behera, B. K. (2015). Comparative Analysis of Soft Computing Models in Prediction of Bending Rigidity of Cotton Woven Fabrics. *Journal of The Institution* of Engineers (India): Series E, 96(2), 167-174. doi:10.1007/s40034-014-0047-8
- Harish, N., Mandal, S., Rao, S., & Patil, S. G. (2015). Particle Swarm Optimization based support vector machine for damage level prediction of non-reshaped berm breakwater. *Applied Soft Computing Journal*, 27, 313-321. doi:10.1016/j.asoc.2014.10.041
- Hasheminejad, M. M., Sohankar, N., & Hajiannia, A. (2018). Predicting the collapsibility potential of unsaturated soils using adaptive neural fuzzy inference system and particle swarm optimization. *Scientia Iranica*, 25(6A), 2980-2996. doi:10.24200/sci.2018.20176

- Hong, S., Nomura, K. I., Krishnamoorthy, A., Rajak, P., Sheng, C., Kalia, R. K., . . . Vashishta, P. (2019). Defect Healing in Layered Materials: A Machine Learning-Assisted Characterization of MoS2 Crystal Phases. *Journal of Physical Chemistry Letters*, 10(11), 2739-2744. doi:10.1021/acs.jpclett.9b00425
- Huang, C., & Wang, Z. (2018). Simplified model for estimating the punching load and deformation of RC flat plate based on big data mining. *Journal of Intelligent and Fuzzy Systems*, *35*(1), 445-459. doi:10.3233/JIFS-169602
- Jafari-Marandi, R., Khanzadeh, M., Tian, W., Smith, B., & Bian, L. (2019). From in-situ monitoring toward high-throughput process control: cost-driven decision-making framework for laser-based additive manufacturing. *Journal of Manufacturing Systems*, 51, 29-41. doi:10.1016/j.jmsy.2019.02.005
- Jang, D. W., Lee, S., Park, J. W., & Baek, D. C. (2018). Failure detection technique under random fatigue loading by machine learning and dual sensing on symmetric structure. *International Journal of Fatigue*, 114, 57-64. doi:10.1016/j.ijfatigue.2018.05.004
- Kabir, G., Sadiq, R., & Tesfamariam, S. (2016). A fuzzy Bayesian belief network for safety assessment of oil and gas pipelines. *Structure and Infrastructure Engineering*, 12(8), 874-889. doi:10.1080/15732479.2015.1053093
- Kan, C. D., Chen, W. L., Lin, C. H., Wang, J. N., Lu, P. J., Chan, M. Y., & Wu, J. T. (2017). Handmade Trileaflet Valve Design and Validation for Pulmonary Valved Conduit Reconstruction Using Taguchi Method and Cascade Correlation Machine Learning Model. *IEEE Access*, 6, 7088-7099. doi:10.1109/ACCESS.2017.2782686
- Kim, C. S., Hwang, J. H., & Jung, J. T. (2017). A study on the cost-effective reliability centered maintenance of running gear system for rolling stock. *Information (Japan)*, 20(5), 3649-3656. Retrieved from <u>https://www.scopus.com/inward/record.uri?eid=2s2.0-85035014723&partnerID=40&md5=3f2b2e640ace0ebfae306fec2a8db6f1</u>
- Krummenacher, G., Ong, C. S., Koller, S., Kobayashi, S., & Buhmann, J. M. (2018). Wheel Defect Detection with Machine Learning. *IEEE Transactions on Intelligent Transportation Systems*, 19(4), 1176-1187. doi:10.1109/TITS.2017.2720721
- Li, H., Kafka, O. L., Gao, J., Yu, C., Nie, Y., Zhang, L., . . . Liu, W. K. (2019). Clustering discretization methods for generation of material performance databases in machine learning and design optimization. *Computational Mechanics*, 64(2), 281-305. doi:10.1007/s00466-019-01716-0
- Li, J., & Zhang, J. (2016). Adaptive Multiscale Noise Control Enhanced Stochastic Resonance Method Based on Modified EEMD with Its Application in Bearing Fault Diagnosis. *Shock and Vibration*, 2016. doi:10.1155/2016/1485412
- Lin, T. K. (2018). An edge-feature-description-based scheme combined with support vector machines for the detection of vortex-induced vibration. *International Journal of Innovative Computing, Information and Control, 14*(3), 833-845. Retrieved from <u>https://www.scopus.com/inward/record.uri?eid=2-s2.0-</u> 85046408628 mertnerUD=40 md5=deade9200f73e44101e105de2789870e

85046408628&partnerID=40&md5=deade9209f23a44101c195de2789870c

- Lin, Y. Z., Nie, Z. H., & Ma, H. W. (2017). Structural Damage Detection with Automatic Feature-Extraction through Deep Learning. *Computer-Aided Civil and Infrastructure Engineering*, 32(12), 1025-1046. doi:10.1111/mice.12313
- Liu, Y., Shuai, Q., Zhou, S., & Tang, J. (2017). Prognosis of Structural Damage Growth Via Integration of Physical Model Prediction and Bayesian Estimation. *IEEE Transactions on Reliability*, 66(3), 700-711. doi:10.1109/TR.2017.2713760
- Lu, S., Jiang, M., Sui, Q., Sai, Y., & Jia, L. (2015). Damage identification system of CFRP using fiber bragg grating sensors. *Composite Structures*, 125, 400-406. doi:10.1016/j.compstruct.2015.02.038
- Mayer, A. E., & Mayer, P. N. (2019). Evolution of pore ensemble in solid and molten aluminum under dynamic tensile fracture: Molecular dynamics simulations and mechanical models. *International Journal of Mechanical Sciences*, 157-158, 816-832. doi:10.1016/j.ijmecsci.2019.05.023
- Meruane, V., & Ortiz-Bernardin, A. (2015). Structural damage assessment using linear approximation with maximum entropy and transmissibility data. *Mechanical Systems and Signal Processing*, 54, 210-223. doi:10.1016/j.ymssp.2014.08.018
- Naderpour, H., & Mirrashid, M. (2019). Shear failure capacity prediction of concrete beamcolumn joints in terms of ANFIS and GMDH. *Practice Periodical on Structural Design* and Construction, 24(2). doi:10.1061/(ASCE)SC.1943-5576.0000417
- Nair, A., Cai, C. S., & Kong, X. (2019a). Acoustic emission pattern recognition in CFRP retrofitted RC beams for failure mode identification. *Composites Part B: Engineering*, 161, 691-701. doi:10.1016/j.compositesb.2018.12.120
- Nair, A., Cai, C. S., & Kong, X. (2019b). Studying Failure Modes of GFRP Laminate Coupons Using AE Pattern-Recognition Method. *Journal of Aerospace Engineering*, 32(4). doi:10.1061/(ASCE)AS.1943-5525.0001015
- Nanda, J., Das, L. D., Das, S., & Das, H. C. (2015). Influence of multi-transverse crack on cantilever shaft. *International Journal of Damage Mechanics*, 24(7), 1047-1069. doi:10.1177/1056789514560916
- Ni, F., Zhang, J., & Chen, Z. (2019). Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning. *Computer-Aided Civil and Infrastructure Engineering*, 34(5), 367-384. doi:10.1111/mice.12421
- Ni, Y., Lu, X., & Lu, W. (2017). Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach. *Mechanical Systems and Signal Processing*, 86, 286-307. doi:10.1016/j.ymssp.2016.10.009
- Nie, W., Zhao, Z. Y., Goh, A. T. C., Song, M. K., Guo, W., & Zhu, X. (2018). Performance based support design for horseshoe-shaped rock caverns using 2D numerical analysis. *Engineering Geology*, 245, 266-279. doi:10.1016/j.enggeo.2018.09.007
- Noori Hoshyar, A., Samali, B., Liyanapathirana, R., & Taghavipour, S. (2019). Analysis of failure in concrete and reinforced-concrete beams for the smart aggregate–based monitoring system. *Structural Health Monitoring*. doi:10.1177/1475921719854151

- Ovid'Ko, I., Sheinerman, A., Skiba, N., Krasnitiskiy, S., & Smirnov, A. (2015). Twin boundary migration and nanocrack generation in ultrafine- grained materials with nanotwinned structure. WSEAS Transactions on Applied and Theoretical Mechanics, 10, 204-212. Retrieved from <u>https://www.scopus.com/inward/record.uri?eid=2-s2.0-84934758396&partnerID=40&md5=ab0c37cb2398b07261444aa546dd644e</u>
- Panettieri, E., Leclerc, G., Jumel, J., & Guitard, J. (2018). Mixed-mode crack propagation tests of composite bonded joints using a dual-actuator load frame – Constant and variable G II /G I conditions. *Engineering Fracture Mechanics*, 202, 471-486. doi:10.1016/j.engfracmech.2018.09.015
- Patala, S. (2019). Understanding grain boundaries The role of crystallography, structural descriptors and machine learning. *Computational Materials Science*, *162*, 281-294. doi:10.1016/j.commatsci.2019.02.047
- Pérez-Ruiz, M., Rallo, P., Jiménez, M. R., Garrido-Izard, M., Suárez, M. P., Casanova, L., ... Morales-Sillero, A. (2018). Evaluation of over-the-row harvester damage in a superhigh-density olive orchard using on-board sensing techniques. *Sensors (Switzerland)*, 18(4). doi:10.3390/s18041242
- Pu, Y., Apel, D. B., Liu, V., & Mitri, H. (2019). Machine learning methods for rockburst prediction-state-of-the-art review. *International Journal of Mining Science and Technology*. doi:10.1016/j.ijmst.2019.06.009
- Quaranta, G., Lopez, E., Abisset-Chavanne, E., Duval, J. L., Huerta, A., & Chinesta, F. (2019). Structural health monitoring by combining machine learning and dimensionality reduction techniques. *Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria*, 35(1). doi:10.23967/j.rimni.2018.12.001
- Regan, T., Canturk, R., Slavkovsky, E., Niezrecki, C., & Inalpolat, M. (2016). Wind turbine blade damage detection using various machine learning algorithms.
- Ren, S., Chen, G., Li, T., Chen, Q., & Li, S. (2018). A deep learning-based computational algorithm for identifying damage load condition: An artificial intelligence inverse problem solution for failure analysis. *CMES - Computer Modeling in Engineering and Sciences*, 117(3), 287-307. doi:10.31614/cmes.2018.04697
- Ren, Y. C., & Weng, P. (2015). Structural damage detection based on improved Hilbert-Huang transform. *Zhendong yu Chongji/Journal of Vibration and Shock*, 34(18), 195-199. doi:10.13465/j.cnki.jvs.2015.18.033
- Rezaniaiee Aqdam, H., Ettefagh, M. M., & Hassannejad, R. (2018). Health monitoring of mooring lines in floating structures using artificial neural networks. *Ocean Engineering*, 164, 284-297. doi:10.1016/j.oceaneng.2018.06.056
- Rojas-Moraleda, R., Valous, N. A., Gowen, A., Esquerre, C., Härtel, S., Salinas, L., & O'Donnell, C. (2017). A frame-based ANN for classification of hyperspectral images: assessment of mechanical damage in mushrooms. *Neural Computing and Applications*, 28, 969-981. doi:10.1007/s00521-016-2376-7

- Salehi, H., Das, S., Biswas, S., & Burgueño, R. (2019). Data mining methodology employing artificial intelligence and a probabilistic approach for energy-efficient structural health monitoring with noisy and delayed signals. *Expert Systems with Applications*, 135, 259-272. doi:10.1016/j.eswa.2019.05.051
- Samareh, H., Khoshrou, S. H., Shahriar, K., Ebadzadeh, M. M., & Eslami, M. (2017). Optimization of a nonlinear model for predicting the ground vibration using the combinational particle swarm optimization-genetic algorithm. *Journal of African Earth Sciences*, 133, 36-45. doi:10.1016/j.jafrearsci.2017.04.029
- Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics. *Science and Technology of Advanced Materials*, 17(1), 128-135. doi:10.1080/14686996.2016.1140309
- Sha, G., Radzieński, M., Cao, M., & Ostachowicz, W. (2019). A novel method for single and multiple damage detection in beams using relative natural frequency changes. *Mechanical Systems and Signal Processing*, 132, 335-352. doi:10.1016/j.ymssp.2019.06.027
- Sokovikov, M., Bilalov, D., Oborin, V., Chudinov, V., Uvarov, S., Bayandin, Y., & Naimark, O. (2016). Structural mechanisms of formation of adiabatic shear bands. *Frattura ed Integrita Strutturale*, *10*(38), 296-304. doi:10.3221/IGF-ESIS.38.40
- Tan, Z. X., Thambiratnam, D. P., Chan, T. H. T., & Abdul Razak, H. (2017). Detecting damage in steel beams using modal strain energy based damage index and Artificial Neural Network. *Engineering Failure Analysis*, 79, 253-262. doi:10.1016/j.engfailanal.2017.04.035
- Tanırcan, G., Alçık, H., & Beyen, K. (2017). Reliability of MEMS accelerometers for instrumental intensity mapping of earthquakes. *Annals of Geophysics*, 60(6). doi:10.4401/ag-7501
- Tran, Q. T., Nguyen, S. D., & Seo, T. I. (2019). Algorithm for estimating online bearing fault upon the ability to extract meaningful information from big data of intelligent structures. *IEEE Transactions on Industrial Electronics*, 66(5), 3804-3813. doi:10.1109/TIE.2018.2847704
- Uzay, C., Geren, N., Boztepe, M. H., & Bayramoglu, M. (2019). Bending behavior of sandwich structures with different fiber facing types and extremely low-density foam cores. *Materialpruefung/Materials Testing*, *61*(3), 220-230. doi:10.3139/120.111311
- Wang, Z., Hu, M., & Zhai, G. (2018). Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data. *Sensors (Switzerland)*, 18(4). doi:10.3390/s18041126
- Wazen, R. N., Fernandes, T. S. P., Aoki, A. R., & De Souza, W. E. (2013). Evaluation of the susceptibility of failures in steel structures of transmission lines. *Journal of Control, Automation and Electrical Systems*, 24(1-2), 174-186. doi:10.1007/s40313-013-0019-0

- Wong, E. W. C., & Kim, D. K. (2018). A simplified method to predict fatigue damage of TTR subjected to short-term VIV using artificial neural network. Advances in Engineering Software, 126, 100-109. doi:10.1016/j.advengsoft.2018.09.011
- Wu, X., Zeng, X., Huang, J., & Song, H. Q. (2017). Research on Tail Structure Optimization for Solid Rocket Motor. *Tuijin Jishu/Journal of Propulsion Technology*, 38(12), 2822-2829. doi:10.13675/j.cnki.tjjs.2017.12.022
- Yang, D. Y., & Frangopol, D. M. (2018). Evidence-based framework for real-time life-cycle management of fatigue-critical details of structures. *Structure and Infrastructure Engineering*, 14(5), 509-522. doi:10.1080/15732479.2017.1399150
- Yazdanipour, M., & Pourgol-Mohammad, M. (2016). Stochastic fatigue crack growth analysis of metallic structures under multiple thermal-mechanical stress levels. *Materials and Design*, 95, 599-611. doi:10.1016/j.matdes.2016.01.110
- Ye, D., Hong, G. S., Zhang, Y., Zhu, K., & Fuh, J. Y. H. (2018). Defect detection in selective laser melting technology by acoustic signals with deep belief networks. *International Journal of Advanced Manufacturing Technology*, 96(5-8), 2791-2801. doi:10.1007/s00170-018-1728-0
- Yi, Q., Wang, H., Guo, R., Li, S., & Jiang, Y. (2017). Laser ultrasonic quantitative recognition based on wavelet packet fusion algorithm and SVM. *Optik*, 149, 206-219. doi:10.1016/j.ijleo.2017.08.105
- Yu, J. B., Lu, X. L., & Zong, W. Z. (2016). Wafer defect detection and recognition based on local and nonlocal linear discriminant analysis and dynamic ensemble of gaussian mixture models. *Zidonghua Xuebao/Acta Automatica Sinica*, 42(1), 47-59. doi:10.16383/j.aas.2016.c150311
- Zhang, W., Shen, S., Basak, P., Wen, H., Wu, S., Faheem, A., & Mohammad, L. N. (2015) Development of predictive models for initiation and propagation of field transverse cracking. In: *Vol. 2524. Transportation Research Record* (pp. 92-99): National Research Council.
- Zhang, Z., Hong, Y., Hou, B., Zhang, Z., Negahban, M., & Zhang, J. (2019). Accelerated discoveries of mechanical properties of graphene using machine learning and highthroughput computation. *Carbon*, 148, 115-123. doi:10.1016/j.carbon.2019.03.046