
EasyChair Preprint
№ 2717

GraphQL for Archival Metadata: an Overview of
the EHRI GraphQL API

Mike Bryant

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 19, 2020

1

GraphQL for Archival Metadata: An Overview

of the EHRI GraphQL API
Mike Bryant

Department of Digital Humanities,

King’s College London

United Kingdom

Email: michael.bryant@kcl.ac.uk

Abstract—The European Holocaust Research Infras-

tructure (EHRI) portal provides transnational access to

archival metadata relating to the Holocaust. A GraphQL

API has recently been added to the portal in order to

expand access to EHRI data in structured form. The

API defines a schema which mediates access to EHRI’s

graph-based data store, catering to both targeted and

bulk metadata retrieval across a range of interrelated

data types. This short paper provides an overview of the

GraphQL API and illustrates a number of use-cases for

the capturing of structured archival metadata.

Index Terms—Archives, APIs, Structured data.

I. Introduction

The European Holocaust Research Infrastructure

(EHRI) Portal1 offers access to information about

Holocaust-related archival material held in almost 500

institutions worldwide. Like many other cultural her-

itage aggregation projects, EHRI seeks to make its data

accessible in a form that can be effectively utilised

by researchers with a diverse range of needs, includ-

ing, for computationally-oriented research, sources of

structured data relating to collection descriptions and

other contextual information. This paper introduces the

portal’s GraphQL API, describing the original rationale

and providing a general overview of its implementation

as a database extension and the limitations this in-

volves. We conclude with some use-cases and example

queries which illustrate the scope of the API and some

of its capabilities.

II. Related work

Much related work (including [1], [2]) has discussed

structured data interfaces to cultural heritage and

archival material, building on many years of research

on bibliographical and archival metadata standards. To

a significant extent, these pioneering efforts focused on

interoperability, discovery, and distribution of metadata

between cooperating institutions, rather than directly

between the institutions and their user constituencies.

1https://portal.ehri-project.eu

More recent work has been motivated by what is

often perceived as the transformative potential for

data-driven innovation afforded by the availability of

open, machine-readable information. Open data and

open government initiatives in countries such as the

U.S., the U.K., India, Ireland and Australia have, at least

by association, put some pressure on other taxpayer-

funded institutions to likewise make more of their

information available in ways aligned with open data

best practices. In the past several years a number of

archival institutions, including the National Archives

and Records Administration (NARA), the UK’s National

Archives, and the State Records of New South Wales

have created APIs to some or all of their metadata

catalogues, as have archival data aggregators such

as Archives Portal Europe (APE) and, most notably,

Europeana, who have invested significant effort in

developing semantic standards and Linked Open Data

(LOD) [3], [4].

Yet, in the context of EHRI and other cultural-

heritage projects, there is often a presumptive leap that

the end-users of the APIs are similar to those more

broadly conceived as the constituents of the project

at large. Edmonds and Garnett investigate the take-

up and use of APIs for cultural heritage data and,

through interviews with a number of practitioners,

conclude that there is a mismatch between what the

developers of APIs imagine their users need, and what

those users actually want [5]. While this point may

seem orthogonal to a narrower discussion concerning

the technical merits of various approaches to delivering

APIs, there is some overlap in the area where specific

API implementations can help bridge the gap between

technical and non-technical users and produce a better

experience for both.

Since the EHRI portal first went live in May 2015

we have implemented a number of structured data

interfaces in addition to the portal website itself. These

include:

• a search interface for a subset of EHRI’s archival

2

data, based on the JSON-API specification2

• an Open Archives Initiative Protocol for Meta-

data Harvesting (OAI-PMH) server interface for

archival descriptions, supporting both Dublin Core

and EAD 2002 XML [6]

• integration of historically-relevant geographical

data into the Wikimedia Foundation’s Wikidata

platform3

While it still demands a degree of technical knowl-

edge of the user, the EHRI GraphQL implementation

was intended to, in the words of one of Edmonds and

Garnett’s interviewees, "slide the APIs a bit closer to

the humanists", primarily by taking advantage of its

intrinsic schema-based documentation and an ecosys-

tem of high-quality third-party tools. In addition, we

wanted to expand the level of detail offered by the API

to the point where it could be the primary source of

data for projects focused on computationally-oriented

research.4

While a full description of the GraphQL language is

beyond the scope of this paper (see [7], for a detailed

analysis) a brief overview is provided in the following

section for context.

III. Overview of the GraphQL language

The GraphQL query language was developed inter-

nally at Facebook from 2012 and announced publicly

in 2015, with the release of a draft language specifica-

tion.5 The language was conceived with several broad

goals:

• to reduce overhead of data transfer relative to

REST-like web service models, in terms of both the

amount of data transferred unnecessarily, and the

number of separate queries required to do it

• reduce the potential for errors caused by invalid

queries on the part of the client

• support an evolving data model without the need

for API versioning

These goals were largely driven by Facebook’s mo-

bile applications, which benefit from efficiency in both

power and data usage, and have many versions in use

concurrently.

GraphQL differs significantly from both low-level

database query language specifications like SPARQL,

and high-level resource-oriented web-service protocols

such as OAI-PMH, operating on a level of abstraction

between the two. A key distinguishing feature is a

schema which allows the definition of complex data

2http://jsonapi.org
3https://www.wikidata.org
4For example, comparing structured metadata regarding the time

periods covered by an archival collection with those gleaned from

an analysis of its unstructured textual description.
5https://facebook.github.io/graphql/

types that represent domain objects within an imple-

mentation system. These complex data types may have

attributes consisting of not just scalar and array values,

but other complex types, forming a directed object

graph.

An example schema, simplified for clarity, is

shown in listing 1 describing DocumentaryUnit and

Repository types. and a root Query type which de-

fines top-level query items, which serve as entry points

into the object graph:

type Repository {

id: ID!

name: String!

documentaryUnits: [

DocumentaryUnit]

itemCount: Int!

address: Address

}

type Address {

street: String

city: String

}

type DocumentaryUnit {

id: ID!

repository: Repository!

parent: DocumentaryUnit

ancestors: [DocumentaryUnit]

children: [DocumentaryUnit]

descriptions: [Description]

}

type Description {

id: ID!

languageCode: String!

scopeAndContent: String

}

type Query {

repository(id: ID!): Repository

repositories: [Repository]

documentaryUnit(id: ID!):

DocumentaryUnit

documentaryUnits: [

DocumentaryUnits]

}

Listing 1. A simple schema describing two archival domain objects,

DocumentaryUnit and Repository, their related Address and

Description types, and a root-level Query type defining entry

points into the object graph.

When a user queries a GraphQL system they do so

by listing the scalar attributes they require from the

object graph, using brace nesting to span object types

through named relationships defined by the schema.

3

Unlike SQL or SPARQL, where queries are a form of

relational calculus, returning tuples as a subselection

of the query space, GraphQL response data is returned

in a hierarchical form that corresponds directly to the

structure of the originating query.

A simple example query is shown in listing 2:

query example1 {

repository(id: "us-005578") {

name

address {

city

}

itemCount

}

}

Listing 2. An example GraphQL request fetching a domain object

(the Repository type) by unique ID reference, and city property

of its related Address type.

{

"data" {

"repository" {

"name": "USHMM",

"address": {

"city": "Washington D.C."

}

"itemCount": 9574

}

}

}

Listing 3. A typical response to the request shown in listing 2.

In this example, the id argument is provided to

retrieve a Repository object with ID "us-005578", re-

questing the name attribute, the city attribute of its

related address, and the number of archival descrip-

tions it contains.

The above examples omit many features of GraphQL

(such as Interface, Union, and Enum types, field

aliases, fragments, and graph mutations) but the inter-

ested reader can learn more via the referenced papers

and the draft specification.

Since GraphQL is just a specification, implementing

a compatible system is the responsibility of the data

provider, typically by building upon middleware that

facilitates schema definition and validation, whilst del-

egating actual data retrieval operations to the imple-

menter in a manner agnostic to the specific storage

mechanisms used.

IV. The EHRI Portal GraphQL Implementation

The portal’s GraphQL implementation is an interface

to EHRI’s metadata persistence layer, described in

[8, Section 4]. The persistence layer, which handles

validation, access control, and audit logging for the

various types of information managed by the the portal,

is likewise based on a Neo4j graph database, one

of the most popular implementations of the property

graph model [9]. Building the GraphQL API on top of

EHRI’s persistence layer means that GraphQL query

execution can inherit the same set of access control

and permission rules as the portal itself, preventing

access to data that is, for example, user-generated and

private, or restricted due to other concerns.

Because query execution runs within the Neo4j

database server environment directly, however, it

can exploit the close conceptual similarities between

GraphQL schemas and the property graph model.6 As

query execution takes place, scalar object attributes

fetched in a GraphQL query can be mapped directly to

node properties on the underlying graph, whilst object-

to-object relationships typically correspond to graph

relationships and are navigated using Neo4j’s native

index-free traversals.

While this database-native approach has limitations

(discussed below) it is simple and efficient compared to

an architecture involving separate networked services,

and facilitates features such as streaming responses,

discussed below in section VII-D.

V. Advantages of the GraphQL approach

We perceive a number of advantages to the GraphQL

API, both from the perspective of the user and the data

provider:

A. Documentation and integration with third-party

tools

Providing users of an API with high-quality error

messages and feedback about potentially malformed

requests adds considerably to the challenge - and

overall effort - of developing domain-specific structured

data interfaces. At the opposite end of the spectrum,

while the generic SPARQL query language can gen-

erally (depending on the implementation) provide a

degree of syntax-level feedback, higher-level validation

that is able to reason about queries on a logical or

semantic level remains uncommon, in part due to the

open world assumption [10]. With its closed-world,

domain-specific schemas, however, GraphQL API im-

plementations can leverage open-source libraries for

parsing and schema validation that provide effective

error handling and feedback for user queries on both

the syntactic and semantic level, with minimal effort

on behalf of the implementer.

6The property graph, in which both nodes and relationships within

a graph database can hold an arbitrary number of (usually scalar)

key/value attributes, has a close conceptual overlap to GraphQL, and

makes similar closed-world assumptions.

4

Moreover, because a GraphQL schema is itself able

to be interrogated via standard GraphQL queries, third-

party tools can interact with APIs for the purpose of

diagnostics, introspection, or automatically generating

documentation describing its intended use. These in-

clude the GraphiQL interface7, which allows users to

explore the schema interactively in their browser with

direct feedback, auto-completion, syntax highlighting,

and inline documentation.

B. The schema as a mediated view on an internal data

model

Data providers are typically required to maintain

both internal and external data models, with the latter

representing a simplified, mediated view of the former.

There are a number of reasons for this: internal data

is often stored in legacy systems that are themselves

the result of evolution in working practices and re-

quirements over long time scales. Internal data mod-

els typically include considerably more administrative

metadata contributing to resource maintenance and

the institutional audit trail, and often do not adhere rig-

orously to, or pre-date, applicable metadata standards.

Additionally, internal data may not be fit for public

consumption in other ways, and may be partial, frag-

mentary, incompletely described, or privacy-sensitive.

It is rare, then, that data providers can "open up"

their raw data to users without a considerable de-

gree of mediation, simplification, and contextualisa-

tion. GraphQL, being agnostic to specific storage and

retrieval technologies, is well suited to a bridging

role, providing a coherent interface to legacy systems

and allowing data providers to expand or evolve their

outward-facing schema in a backwards- and forwards-

compatible manner without explicit API versioning. In

EHRI’s case, the internal and external data models

have a high degree of correspondence, yet the public

schema is still a considerably more simple and limited

interface, with a number of affordences for conve-

nience and ease of navigation.

VI. Limitations of the EHRI implementation

While we believe the GraphQL API is a valuable addi-

tion to the suite of structured data interfaces available

on the EHRI portal it does, as currently implemented,

have a number of limitations.

A. API scope and expandability

Implementing GraphQL as an extension of EHRI’s

Neo4j-based metadata storage system prevents us from

easily integrating, for example, full-text search ca-

pabilities handled by a dedicated search engine (in

7Deployed for the EHRI Portal at: https://portal.ehri-

project.eu/api/graphql/ui

EHRI’s case, Apache Solr.) More broadly, implementing

GraphQL in this manner prevents us from expanding it

into a single endpoint that acts as a facade to multiple

heterogeneous backend systems, a scenario for which

the language is well suited due to its retrieval-agnostic

nature. We believe at this point however that the ben-

efits offered by direct database integration outweigh

this downside, in combination with the other APIs

offered the EHRI portal.

B. Sparse data and lack of filtering

An additional limitation regards the handling of

sparse data. Since GraphQL object traversals behave

like LEFT JOINs in SQL (or SPARQL’s OPTIONAL

patterns), with absent data present in the response

as a NULL value, the task of filtering data at the

top of the object hierarchy when some condition on

the child (or deeper) is unmet falls to the client.

For example, it is not possible to retrieve a partic-

ular property for a given data type - for example,

the scopeAndContent field for archival descriptions -

whilst omitting from the query response those descrip-

tions where scopeAndContent field is missing. For

EHRI’s archival data, where fields defined in the con-

ceptual metadata standards are very commonly absent

in item descriptions this can result in a poor "signal-

to-noise ratio" in the response data that obliges users

to perform secondary filtering themselves.

VII. Use-cases

The section discusses two use-cases related to the

archival domain.

A. Retrieval of contextual data

The GraphQL API was implemented in order to make

more easily accessible data that is difficult to expose or

fetch via other means, such as a REST-style resource-

oriented API. For archival data, the display of items in

context - that is, in a manner that emphasises their

place in the archival hierarchy consisting of holding

institution, fonds, and (for an integration project such

as EHRI) a varying number of intermediate levels of de-

scription - complicates the implementation of resource-

oriented data retrieval methods due to the potential

size of this object graph. For an archival descrip-

tion nested 10 levels deep, fetching the accompanying

context data (9 parent items) requires either making

many individual resource requests or including the full

context data in the original payload, where much of it

may be superfluous most of the time. The problem of

under-fetching or over-fetching of data with resource-

oriented APIs, one of the issues GraphQL was designed

to solve, is therefore highly relevant for archival data

where contextual information is so important.

5

With EHRI’s GraphQL API, delivering the ability to

navigate and retrieve contextual data with greater

precision, flexibility, and succinctness was an impor-

tant goal. Listing 4 provides an example, whereby the

retrieval of an item by ID includes the language-specific

name of its repository and parent item(s), along with

the number of items they each contain:

fragment data on Described {

id

description(languageCode: "eng")

{

name

}

}

query contextExample($id: ID!) {

DocumentaryUnit(id: $id) {

repository {

...data

itemCount

}

ancestors {

...data

itemCount

}

...data

}

}

Listing 4. An EHRI GraphQL query for a documentary unit item and

its archival context. The query accepts a single parameter: the ID of

the requested item. The ancestors field will retrieve a JSON array

value containing the item’s parent data, while the repository field

fetches it’s institutional context. This example also shows the use of a

GraphQL feature called fragments, where we exploit polymorphism

in the schema between items that have multi-lingual descriptions,

fetching just the id and English name in each case.

When composing the GraphQL query, the client can

request as much or as little of the item’s context -

retrieved by traversing its object graph - as necessary

for a given situation. To account for the varying de-

grees of nesting present in a hierarchy of archival de-

scriptions the schema makes available the ancestors

field, which provides a reified list representation of the

internally recursive parent-to-parent traversal.

B. Extracting relationships and interconnected de-

scriptions

Since part of EHRI’s mission is connecting collec-

tions held across different institutions (in particular,

copy collections and those with shared provenance),

exposing such relationships, along with their contex-

tual metadata, is a key part of the GraphQL API. Rela-

tionships, or "links" in the terminology of the GraphQL

API, are first-class data items that can be retrieved

individually or as a collection via a top-level GraphQL

field. The API also exposes links that connect individual

items from the items themselves, in addition to materi-

alising these connections via a relations field which

manifests as an object through which both the context

(type of relationship and the period for which it was

active) and the connected item can be explored:

query relationsExample($id: ID!) {

DocumentaryUnit(id: $id) {

related {

item {

id

type

}

context {

description

dates {

startDate

endDate

}

}

}

}

}

Listing 5. A query which lists related items for a given archival

unit, along with the context (description, dates, if applicable) of the

relationship.

C. Extracting administrative metadata

The provenance of archival descriptions - when they

were written and by whom - can provide valuable

context to the researcher in guiding their discovery

and use of sources. When integrating collection de-

scriptions from many sources, EHRI tries to preserve

as much of the original administrative metadata as

possible within the constraints of ISAD(G), but also

adds another layer of digital provenance reflecting

the management operations undertaken by EHRI itself.

This "born-digital" metadata can be minimal, in cases

where EHRI has harvested collection descriptions as

structured data from partner institutions, or exten-

sive, such as when EHRI has created completely new

descriptions (or other types of digital record) from

scratch.

Ongoing acts of metadata curation are captured

within the EHRI portal as a stream of "system events"

(named to distinguish them from the historical kind),

available as a data field on all principal item types.

query eventsExample($id: ID!) {

DocumentaryUnit(id: $id) {

6

systemEvents {

eventType

timestamp

logMessage

}

}

}

Listing 6. A query which extracts metadata about the digital

provenance of items within the EHRI portal, such as when the were

created or updated.

{

"data" {

"DocumentaryUnit" {

"systemEvents": [

{

"eventType": "updated",

"timestamp": "

2017-11-10T14

:14:36.442Z",

"logMessage": "Expanded

biographical

history"

},

...

]

}

}

}

Listing 7. A typical (abridged) response to the request shown in

listing 6.

D. Bulk data retrieval

Both EHRI’s REST-style search API and the portal

website itself restrict the user to paginated browsing or

search operations which return a fixed amount of data

per request, a restriction imposed both for technical

and user-interface concerns. While often necessary,

mediating a user’s access to the data in this manner,

via the imperfect mechanisms of search and browse,

nonetheless presents a barrier to conducting research

on the dataset as a whole, akin to viewing a landscape

through a keyhole. An additional motivation behind the

development of the GraphQL API, therefore, was to

provide the means to extract bulk data with minimal

friction imposed by the API itself.

The GraphQL API accomplishes this by executing

the user’s query and streaming the in-progress result

tree back to them on-the-fly, as it is constructed by

traversing the Neo4j database. This allows clients to

retrieve a holistic view of EHRI data - for example,

the titles or textual content of over 200,000 archival

descriptions - in a single query.

On-the-fly result generation is practical in large part

because we are able to restrict the schema’s data-

retrieval operations to those with predictable space

complexity, such as index iteration and graph traver-

sals, whilst avoiding potentially expensive sorting or

aggregation routines. While these limitations reduce

the expressiveness of the available queries, especially

compared to SPARQL or SQL, and push the responsibil-

ity for complex aggregation or filtering onto the user,

we believe it is a worthwhile trade-off to avoid manda-

tory pagination or resumption tokens when requesting

bulk data.

VIII. Summary

This paper has described the rationale behind the

EHRI project’s GraphQL API, given a brief overview of

GraphQL itself, and presented EHRI’s implementation

of the API as a mediated view of its Neo4j-based

data store. We have described the main benefits and

limitations we see in the context of an API tailored

towards users wishing to extract structured data for

research purposes, and given examples of how the API

facilitates access to metadata that provides enriched

context to archival descriptions via the relationships

between them and their digital provenance.

References

[1] Carl Lagoze and Herbert Van de Sompel. The Open Archives

Initiative: Building a Low-barrier Interoperability Framework.

In Proceedings of the 1st ACM/IEEE-CS Joint Conference on

Digital Libraries, JCDL ’01, pages 54–62, New York, NY, USA,

2001. ACM.

[2] Cliff Lynch, Savas Parastatidis, Neil Jacobs, Herbert Van de

Sompel, and Carl Lagoze. The OAI-ORE Effort: Progress,

Challenges, Synergies. In Proceedings of the 7th ACM/IEEE-CS

Joint Conference on Digital Libraries, JCDL ’07, pages 80–80,

New York, NY, USA, 2007. ACM.

[3] Antoine Isaac and Bernhard Haslhofer. Europeana Linked

Open Data – data.europeana.eu. Semantic Web, 4(3):291–297,

January 2013.

[4] Cesare Concordia, Stefan Gradmann, and Sjoerd Siebinga. Not

just another portal, not just another digital library: A portrait of

Europeana as an application program interface. IFLA Journal,

36(1):61–69, March 2010.

[5] Jennifer Edmond and Vicky Garnett. APIs and Researchers:

The Emperor’s New Clothes? International Journal of Digital

Curation, 10(1):287–297, May 2015.

[6] Herbert van de Sompel, Michael L. Nelson, Carl Lagoze, and

Simeon Warner. Resource harvesting within the OAI-PMH

framework, December 2004.

[7] Olaf Hartig and Jorge Pérez. An Initial Analysis of Facebook’s

GraphQL Language. Preprint available on author’s website,

2017.

[8] Tobias Blanke, Michael Bryant, Michal Frankl, Conny Kristel,

Reto Speck, Veerle Vanden Daelen, and René Van Horik. The

european holocaust research infrastructure portal. J. Comput.

Cult. Herit., 10(1):1:1–1:18, January 2017.

[9] Marko A. Rodriguez and Peter Neubauer. The graph traversal

pattern. CoRR, abs/1004.1001, 2010.

[10] Jesús M. Almendros-Jiménez, Antonio Becerra-Terón, and Al-

fredo Cuzzocrea. Syntactic and semantic validation of sparql

queries. In Proceedings of the Symposium on Applied Comput-

ing, SAC ’17, pages 349–352, New York, NY, USA, 2017. ACM.

