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Abstract
Propensity-based weighting methods have been
widely studied and demonstrated competitive per-
formance in debiased recommendations. Never-
theless, there are still many questions to be ad-
dressed. How to estimate the propensity more
conducive to debiasing performance? Which met-
ric is more reasonable to measure the quality of
the learned propensities? Is it better to make the
cross-entropy loss as small as possible when learn-
ing propensities? In this paper, we first discuss
the potential problems of the previously widely
adopted metrics for learned propensities, and pro-
pose balanced-mean-squared-error (BMSE) met-
ric for debiased recommendations. Based on
BMSE, we propose IPS-V2 and DR-V2 as the es-
timators of unbiased loss, and theoretically show
that IPS-V2 and DR-V2 have greater propensity
balancing and smaller variance without sacrificing
additional bias. We further propose a co-training
method for learning balanced representation and
unbiased prediction. Extensive experiments are
conducted on three real-world datasets including
a large industrial dataset, and the results show that
our approach boosts the balancing property and
results in enhanced debiasing performance.

1. Introduction
For recommender systems (RSs), it is crucial to understand
and answer the counterfactual question “what would the
feedback be if an intervention had been made to a user”,
which covers many common tasks in RS (Wu et al., 2022;
Chen et al., 2022). For example, in the task of rating pre-
diction (Schnabel et al., 2016), we want to know the rating
if a user had rated the item; in the task of post-view click-
through rate prediction (Saito, 2019; Saito et al., 2020), we

1Peking University 2University of Chinese Academy of Sci-
ences 3University of California, San Diego 4Beijing Technology
and Business University 5Tsinghua University. Correspondence to:
Peng Wu <pengwu@btbu.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

want to know the click-through rate if an item had been
exposed to a user; in the task of post-click conversion rate
prediction (Zhang et al., 2020; Dai et al., 2022), we want to
know the conversion rate if an item had been clicked by a
user. However, since users always choose preferred items
to rate or click on and the exposure mechanism of the RS is
not at random, causing the observed data is no longer a valid
representative sample of the target population. In general,
there is a large discrepancy between observed and missing
events, and ignoring such discrepancy will incur bias and
lead to sub-optimal performance (Schnabel et al., 2016).

In order to eliminate the differences between the observed
samples and the target population, weighting-based methods
are proposed to achieve the unbiasedness (Swaminathan &
Joachims, 2015a; Schnabel et al., 2016). The basic idea is to
reweight the observed data to the target population, accord-
ing to the probability of observing an specific event (called
propensity), which motivates many studies on the variants
of propensity-based weighting methods (Wang et al., 2019a;
Guo et al., 2021; Wang et al., 2021; Ding et al., 2022; Li
et al., 2023b;e) and demonstrates competitive performance
in a wide range of recommendation scenarios (Joachims
et al., 2017; Saito et al., 2020; Wang et al., 2022).

Despite their popularity and theoretical appeal, the main
practical difficulty of the propensity-based weighting meth-
ods is that the true propensity is rarely known and needs
to be estimated from the observed data. Given the key
role propensity played in debiasing, several approaches
are proposed to estimate the propensities, such as Naive
Bayes (Schnabel et al., 2016), Logistic Regression (Schn-
abel et al., 2016), Poisson Factorization (Wang et al., 2020a),
Multi-task Learning (Zhang et al., 2020), Variance Regu-
larization Constraint (Wang et al., 2021), Stabilized Con-
straint (Li et al., 2023b;e), and Minimax (Ding et al., 2022).

Nevertheless, a unified and clear criterion for estimating
propensities has not been established yet. Many issues need
to be resolved: How to estimate the propensity more con-
ducive to debiasing performance? Which metric is more
reasonable to measure the quality of the learned propen-
sities? In practice, the propensities are usually trained by
minimizing a cross-entropy loss. But, is it better to make
the loss as small as possible when learning propensities?

In this paper, we find that the existing propensity estimation
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methods in debiased recommendations ignore the essence of
propensity, i.e., the balancing property (Rosenbaum & Ru-
bin, 1983; Imbens & Rubin, 2015; Hernán & Robins, 2020).
That is, for all measurable functions of features (e.g., user
and item embeddings, feature representations, and rating
predictions), the expectation in the observed events weight-
ing by the inverse of propensities is always equal to that in
the target population (Imai & Ratkovic, 2014; Sant’Anna
et al., 2022). Based on balancing property, prediction mod-
els trained in the weighted population can generalize to the
missing events and achieve unbiasedness, which lays the
foundation for propensity-based weighting methods.

Toward this end, we propose balanced-mean-squared-error
(BMSE) as a measure of the quality of the learned propen-
sities for debiased recommendations. We also empirically
show that the smaller the BMSE, the better the debiasing
performance of the propensity-based weighting methods.

Based on the BMSE, we propose principled enhanced ver-
sions of the widely used Inverse Propensity Scoring (IPS)
and Doubly Robust (DR) estimators, named IPS-V2 and DR-
V2, respectively. We theoretically demonstrate that IPS-V2
and DR-V2 have greater propensity balancing and smaller
variance compared to existing IPS and DR, without sacri-
ficing additional bias. For previous estimators with similar
forms, we show that the direct use of variance regularizers
comes at the cost of introducing additional bias and does
not guarantee the balancing property of the propensities.

We further propose a learning method compatible with the
balancing property for debiased recommendations. Specif-
ically, the propensity model and the prediction model are
jointly trained to permit both the balancing property of the
feature representation (minimizing BMSE) and the unbiased
prediction (minimizing IPS-V2 or DR-V2 loss). The pro-
posed method has easy operability as well as can alleviate
the data sparsity problem through parameter sharing.

The contributions of this paper are summarized as follows.
• We propose a metric (BMSE) to measure the balancing
property of learned propensities in debiased recommen-
dations, then theoretically and empirically reveal that the
smaller the BMSE, the better debiasing performance of the
propensity-based weighting methods.
• Based on BMSE, we propose IPS-V2 and DR-V2 as the
estimators of unbiased loss, and theoretically show that
IPS-V2 and DR-V2 have greater propensity balancing and
smaller variance without sacrificing additional bias.
• We further propose a co-training method for learning
balanced representation and unbiased prediction.
• We conduct extensive experiments on three datasets includ-
ing a large-scale industrial dataset, and the results show that
our approach boosts the balancing property of the learned
propensities and results in enhanced debiasing performance.

2. Preliminaries
Let U = {u} be the set of users, I = {i} be the set of items.
To define a causal problem, the widely adopted potential
outcome framework (Rubin, 1974; Neyman, 1990) consists
of the following key elements: (1) Target population: the
set of all user-item pairs D = {(u, i) | u ∈ U , i ∈ I}; (2)
Feature: xu,i, the feature of user u and item i; (3) Treatment:
ou,i ∈ {0, 1}, it has different implications for different
prediction tasks in RS, e.g., whether the true rating ru,i is
observed (ou,i = 1) or missing (ou,i = 0), whether item i
is exposed to user u, and whether user u clicks item i; (4)
Outcome: ru,i, the feedback of user-item pair (u, i), e.g.,
rating, click indicator, conversion indicator; (5) Potential
outcome: ru,i(o) for o ∈ {0, 1}, it is the outcome that
would be observed if ou,i had been set to o. We provide
more formulation details and examples in Appendix A.

Let P and E be the distribution and expectation on the target
population, and O = {(u, i) | (u, i) ∈ D, ou,i = 1} be the
set of treated units. In RS, the widely adopted counterfactual
question is ”what would the feedback be if an intervention
had been made to a user”, which is equivalent to learning
the causal estimand E(ru,i(1) | xu,i)

1, i.e., predicting the
potential outcomes ru,i(1) using feature xu,i for all (u, i) ∈
D (Imbens & Rubin, 2015; Hernán & Robins, 2020).

Note that ru,i(1) is observed only when ou,i = 1, missing
otherwise, the task of predicting ru,i(1) can be viewed as a
missing data problem. However, there is always a discrep-
ancy between observed events O and all events D, due to
the existence of confounders that affect both treatment and
outcome. Ignoring this discrepancy will suffer from bias
and result in sub-optimal performance (Wang et al., 2019a).

Let r̂u,i = f(xu,i; θ) be the prediction model that aims to
predict all ru,i(1) accurately. Ideally, if all potential out-
come ru,i(1) are known, r̂u,i can be trained by minimizing
the average loss of all user-item pairs

Lideal(θ) =
1

|D|
∑

(u,i)∈D

eu,i,

where eu,i = L(r̂u,i, ru,i(1)) is the prediction error and
L(·, ·) is an appropriately chosen loss function, e.g., squared
loss eu,i = (r̂u,i−ru,i(1))

2. Although optimizing Lideal(θ)
directly is infeasible due to the missingness of ru,i(1),
Lideal(θ) provides a benchmark of unbiased learning and
prediction theoretically. As such, various debiasing methods
try to construct unbiased estimators of Lideal(θ) and train
the prediction model by minimizing the estimated ideal loss.

The basic idea of the propensity-based weighting methods
is to reweight the observed samples to the target popula-

1It is equivalent to P(ru,i|xu,i, do(ou,i = 1)) using do-
calculus in SCM framework.
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tion (Schnabel et al., 2016), which exhibit competitive de-
biasing performance (Wang et al., 2019a; Dai et al., 2022;
Ding et al., 2022). Specifically, the Inverse Propensity Scor-
ing (IPS) estimator (Schnabel et al., 2016) assigns higher
training weights to events with smaller probability of being
observed in the training set, and is formulated as

LIPS(θ) =
1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

,

where p̂u,i is the propensity model used to estimate pu,i ≜
P(ou,i = 1|xu,i). By further introducing a error imputation
model on IPS, the Doubly Robust (DR) estimator (Wang
et al., 2019a; Saito, 2020; Li et al., 2023b;e) is defined as

LDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
,

where êu,i is the error imputation model that estimates eu,i.
The DR estimator has double robustness, i.e., it is an unbi-
ased estimator of Lideal(θ) when either imputed errors or
learned propensities are accurate.

3. The Central Role of Propensity in Debiasing
3.1. Motivation

Propensity is ubiquitous and plays a critical role in debiased
recommendations. For example, the unbiasedness of the
IPS and SNIPS estimators (Schnabel et al., 2016; Swami-
nathan & Joachims, 2015a; Saito et al., 2020) depends on
the accuracy of the learned propensities. Wang et al. (2020a)
treats propensities as new features and includes them in the
matrix factorization. Zhang et al. (2020) proposes a multi-
task learning approach to train the propensity model and
prediction model simultaneously. Li et al. (2023b) proposes
a collaborative targeted learning approach incorporating the
learned propensities to the training process of the imputed
errors. Li et al. (2023e) proposes a stabilized constraint to
train the propensities. Ding et al. (2022) propose to fluc-
tuate the inverse propensities to mitigate the influence of
unmeasured confounders. Wang et al. (2021), Chen et al.
(2021) and Li et al. (2023c) suggest using a small uniform
dataset for seeking better estimates of propensities.

Some might argue that the DR estimator is unbiased when
the imputed errors are accurate, regardless of the accuracy
of the learned propensities. However, due to the missing
events, the training of the imputed errors relies heavily on
the learned propensities (Wang et al., 2019a; Guo et al.,
2021; Chen et al., 2021; Dai et al., 2022; Ding et al., 2022),
but not vice versa. Specifically, the error imputation model
êu,i is typically trained by minimizing

Le =
∑

(u,i)∈D

ou,i(êu,i − eu,i)
2

p̂u,i
,

which depends on a pre-specified propensity model p̂u,i.
Therefore, if the learned propensities are less accurate, the
imputed errors are likely to be inaccurate, resulting in biased
DR estimates and even bias amplification.

Given the widespread and important role of propensities in
debiased recommendations, we aim to establish a unified
propensity training standard. Importantly, there are several
questions that need to be answered. How to learn propensity
that is more helpful for debiasing performance? Is it better
to predict ou,i as accurately as possible? Which metric
reasonably measures the quality of the learned propensities?

3.2. Are NLL and PPL Proper Metrics for Propensity
Model Training?

In practice, we usually train the propensity model by opti-
mizing the cross-entropy loss (also known as the negative
log-likelihood, NLL)

Lp =
1

|D|
∑

(u,i)∈D

[−ou,i log(p̂u,i)− (1− ou,i) log(1− p̂u,i)] ,

or the perplexity (PPL)

L′
p = 2−

1
|D|

∑
(u,i)∈D ou,i·log2(p̂u,i)+(1−ou,i)·log2(1−p̂u,i),

which corresponds to finding a propensity model that pre-
dicts ou,i as accurately as possible. However, are the learned
propensities with smaller NLL and PLL sufficiently lead to
a better debiasing performance?

It is obviously not. Consider an extreme case where p̂u,i = 0
for ou,i = 0 and p̂u,i = 1 for ou,i = 1. Although such
propensities reach the smallest NLL and PLL, it would
reduce LIPS(θ) to a Naive estimator

LNaive(θ) =
1

|D|
∑

(u,i)∈D

ou,ieu,i,

that is, the simple averaging of losses over the observed
events, which leads to biased estimates on the target pop-
ulation. Besides, it also reduces LDR(θ) to an Error
Imputation-Based (EIB) estimator (Steck, 2010) that

LEIB(θ) =
1

|D|
∑

(u,i)∈D

[ou,ieu,i + (1− ou,i)êu,i],

where êu,i is the error imputation model used to estimate
eu,i, and EIB methods empirically showed suboptimal per-
formance due to the sparsity of the collected data and the
difficulty of obtaining accurate imputed errors (Schnabel
et al., 2016; Wang et al., 2019a; Guo et al., 2021).

3.3. Proposed Balancing-Mean-Square-Error Metric

From a causal inference perspective, the role of propensity
weighting is to recover the distribution of xu,i in the target

3



Propensity Matters: Measuring and Enhancing Balancing for Recommendation

population D from the observed events O (Imai & Ratkovic,
2014; Imbens & Rubin, 2015; Wong & Chan, 2018; Rosen-
baum, 2020; Sant’Anna et al., 2022). Formally, for any
measurable and integrable function ϕ : X → Rm, recap
that pu,i = P(ou,i = 1|xu,i) = E[ou,i|xu,i], we have

E
[
ou,iϕ(xu,i)

pu,i

]
= E

[
E
[
ou,iϕ(xu,i)

pu,i
|xu,i

]]
= E

[
ϕ(xu,i)

pu,i
E(ou,i|xu,i)

]
= E[ϕ(xu,i)],

where the first equation follows from the law of iterated
expectations, the second equation follows from the fact
that both ϕ(xu,i) and pu,i are functions of xu,i, thus are
considered as constants after given xu,i. Similarly, we have

E
[
(1− ou,i)ϕ(xu,i)

1− pu,i

]
= E[ϕ(xu,i)].

The arbitrariness of ϕ indicates that propensity weight-
ing creates a pseudo-population consisting of the observed
events weighted by 1/pu,i, whose distribution of xu,i is iden-
tical to the target population D (Hernán & Robins, 2020). In
fact, the balancing property of propensity mimics random-
ization, as if the collected data comes from a randomized
controlled trial, then the entire distribution of features be-
tween observed events and the target population will be
the same. As a result, training the prediction model in the
pseudo-population acts as training in the target population,
and thus can be naturally generalized to all events.

Unfortunately, the existing propensity estimation methods
do not take into account such essential balancing prop-
erty. Therefore, the generalizability of the prediction model
cannot be guaranteed once using the estimated propensity
p̂u,i instead of the true propensity pu,i. To fill this gap,
we first introduce a metric, named balancing-mean-square-
error (BMSE), for measuring the balancing property of the
learned propensities

BMSE(ϕ, p̂) =
∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
ϕ(xu,i)

∣∣∣∣∣∣2
F
,

where ∥ · ∥F is the Frobenius norm, and ϕ is a pre-specified
vector-valued function, such as learned embeddings xu,i,
learned representations ϕ(xu,i), and predicted ratings r̂u,i.

Proposition 3.1 (Balancing Property). If p̂u,i estimates pu,i
accurately, i.e, p̂u,i = pu,i, then for any integrable vector-
valued functions ϕ(x), BMSE(ϕ, p̂) → 0 almost surely.

From Proposition 3.1, BMSE(ϕ, p̂) will converge to zero
if the learned propensities are accurate. We also empiri-
cally show that choosing ϕ as a constant, or the concatena-
tion / element-wise product of user and item embeddings,
or the predicted ratings are all beneficial for improving the
debiasing performance (see Section 5 for details).

4. Balancing-Enhanced Learning Framework
4.1. Proposed Balancing-Enhanced Estimators

The BMSE metric is designed to evaluate the balancing prop-
erty of the learned propensities rather than directly training
an unbiased prediction model. To fill this gap, we further
propose balancing-enhanced IPS and DR estimators, named
IPS-V2 and DR-V2, using BMSE as a regularization on the
vanilla IPS and DR estimators, which have greater balancing
and smaller variance without sacrificing additional bias.

The proposed balancing-enhanced IPS estimator is

LIPS−V 2(θ) = LIPS(θ) + λ · BMSE(ϕ, p̂),

where λ > 0 is a scalar weight which trade-offs the balanc-
ing property and the prediction performance. Similarly, the
balancing-enhanced DR estimator is

LDR−V 2(θ) = LDR(θ) + λ · BMSE(ϕ, p̂).

Theorem 4.1 (Unbiasedness of IPS-V2 and DR-V2).
When learned propensities are accurate,

(a) LIPS−V 2(θ) is an unbiased estimator of Lideal(θ).

(b) LDR−V 2(θ) is an unbiased estimator of Lideal(θ),
whether the imputed errors are accurate or not.

As discussed in Section 3.1, the unbiasedness of vanilla IPS
and DR relies on the accuracy of the learned propensities.
From Theorem 4.1, the proposed IPS-V2 and DR-V2 inherit
the unbiasedness compared to vanilla IPS and DR under the
same conditions, and the introduced constraint can enhance
the balancing of the feature representations without sacrific-
ing additional bias. Moreover, we show in Theorem 4.2 that
the balancing constraints on IPS-V2 and DR-V2 can further
reduce the variance compared with vanilla IPS and DR.

Theorem 4.2 (Variance Reduction of IPS-V2 and DR-V2).
(a) Given imputed errors and learned propensities, the vari-
ance of V(LDR−V 2(θ) | o) reaches its minimum at

λopt =
2

|D|2 · V(BMSE(ϕ, p̂))
·

∑
(u,i)∈D

ou,i
p̂2u,i

Cov
(
eu,i,

1

|D|
∑

(s,t)∈D

[
1− os,t
1− p̂s,t

− os,t
p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)
)
,

where o = {ou,i|(u, i) ∈ D} is all the treatment indicators.

(b) LDR−V 2(θ) has a smaller variance than LDR(θ),

V(LDR−V 2(θ) | o)
∣∣∣
λ=λopt

=
(
1− ρ2L,B

)
V(LDR(θ) | o)

≤ V(LDR(θ) | o),

where ρL,B = Corr (LDR(θ),BMSE(ϕ, p̂)), and similar
results hold for LIPS−V 2(θ).
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4.2. Are Previous Regularizers Unbiased?

Several works have proposed estimators similar in form to
the IPS-V2 and DR-V2, but with different regularization
constraints (Swaminathan & Joachims, 2015b; Wang et al.,
2021; Guo et al., 2021; Dai et al., 2022). For example, by
using the bi-level optimization, Wang et al. (2021) adopts
the sample variance (SV) regularization constraints2

LIPS−SV (θ) = LIPS(θ)+λ · LSV ,

LDR−SV (θ) = LDR(θ)+λ · LSV ,

where LSV = 1
|D|−1

∑
(u,i)∈D

(
p̂u,i − 1

|D|
∑

(s,t)∈D p̂s,t

)2

.
There are other alternative regularizers, such as mean
inverse square (MIS) (Wang et al., 2021)

LMIS =
1

|D|
∑

(u,i)∈D

1

p̂2u,i
,

and the estimated variance of IPS and DR estimators (see
Appendix B for more details) (Guo et al., 2021)

V̂(LIPS(θ)) =
1

|D|2
∑

u,i∈D

ou,i (1− p̂u,i) e
2
u,i

p̂2u,i
,

V̂(LDR(θ)) =
1

|D|2
∑

u,i∈D

ou,i(1− p̂u,i)

p̂2u,i
(eu,i − êu,i)

2
.

However, in Proposition 4.3, we show all these regularizers
are at the cost of introducing additional bias to reduce the
variance of either the learned propensities or the estimator
itself, and the regularized estimators are no longer unbiased.

Proposition 4.3 (Bias of Previous Regularizers). Regardless
of whether the imputed errors or the learned propensities
are accurate, the sample variance regularization is biased

E [LDR−SV (θ)] = E[LDR(θ)]+λ · E[LSV ] ̸= Lideal(θ),

and same for LIPS−SV (θ), as well as other regularizers.

4.3. Co-training Method

In practice, the interaction data available for training is usu-
ally sparse in RS, e.g., in rating prediction, items that a user
interacted with only constitute a small fraction among the
total item set (Schnabel et al., 2016; Wang et al., 2019a), and
in post-click conversion rate prediction, the amount of train-
ing data in click-through rate (CTR) task is generally larger
than that in conversion rate (CVR) task by 1 ∼ 2 order of
magnitudes (Ma et al., 2018). In addition, the sparsity of the
interacted data can cause the propensity-based reweighting
methods to be less robust (Li et al., 2023e).

2We use red color here and in Proposition 4.3 to emphasis the
biasedness of previous regularizers.

To address the above issues, previous studies suggested the
use of multi-task learning by sharing the learned feature
representations in the propensity (or CTR) model to the
prediction (or CVR) model (Ma et al., 2018; Zhang et al.,
2020; Wang et al., 2022). This would allow the latter to
satisfy unbiased learning while further benefiting from the
additional information obtained from parameter sharing,
which would alleviate the data sparsity problem.

Specifically, let the prediction model be r̂u,i = h (ϕ(xu,i)),
where ϕ(xu,i) is a representation layer to first obtain bal-
anced representations for each user and item, followed by
connecting a prediction head h(·). From Theorem 4.2(b),
the proposed DR-V2 has a smaller variance compared with
DR as long as ρL,B = Corr (LDR(θ),BMSE(ϕ, p̂)) ̸= 0,
where θ denotes the parameters in ϕ(·) and h(·). We pro-
pose to co-train the propensity model and the prediction
model by minimizing IPS-V2 with Lp in Section 3.2

LCo−IPS(r̂, p̂) = LIPS−V 2(r̂, p̂) + Lp(p̂),

or minimizing DR-V2 with Le,Lp in Sections 3.1 and 3.2

LCo−DR(r̂, p̂, ê) = LDR−V 2(r̂, p̂, ê) + Le(p̂, ê) + Lp(p̂),

which has easy operability and permits both the balancing
property of the representation (minimizing BMSE) and the
unbiased prediction of the head (minimizing IPS-V2 or
DR-V2 loss). We empirically show the advantages of the
co-training in Section 5.

5. Experiments
5.1. Experimental Setup

Dataset and Preprocessing. Following the previous stud-
ies (Saito, 2020; Wang et al., 2019a; 2021; Chen et al.,
2021), we conduct extensive experiments on two real-world
datasets, COAT3, YAHOO! R34, and a public large-scale in-
dustrial dataset, PRODUCT5 (Gao et al., 2022). Specifically,
COAT has 6,960 biased ratings and 4,640 unbiased ratings
from 290 users to 300 items. YAHOO! R3 has 311,704 bi-
ased ratings and 54,000 unbiased ratings from 15,400 users
to 1,000 items. Both datasets are five-scale, and we binarize
the ratings greater than three as 1, otherwise as 0. PROD-
UCT is collected from a short video sharing platform, and
it is an almost fully exposed industrial dataset. There are
4,676,570 outcomes from 1,411 users on 3,327 items with
a density of 99.6%. The video watching ratios that greater
than two are denoted as 1, otherwise as 0.

Baselines. We take the matrix factorization (MF) (Koren
et al., 2009) as the base model, and compare the proposed

3https://www.cs.cornell.edu/˜schnabts/mnar/
4http://webscope.sandbox.Yahoo! R3.com/
5https://github.com/chongminggao/KuaiRec
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Table 1. Recommendation performances in terms of AUC, Re-
call@5 (R@5), NDCG@5 (N@5) on COAT and YAHOO! R3. The
best results are bolded, and second-best results are underlined.

COAT YAHOO! R3

Method AUC R@5 N@5 AUC R@5 N@5

Base model 0.749 0.546 0.499 0.723 0.719 0.553
+ IPS 0.760 0.567 0.511 0.722 0.724 0.551
+ DR 0.764 0.572 0.521 0.723 0.727 0.555
+ RD-IPS 0.763 0.570 0.516 0.731 0.731 0.571
+ RD-DR 0.766 0.574 0.534 0.732 0.735 0.574

+ ESMM 0.746 0.537 0.506 0.705 0.702 0.549
+ Multi-IPS 0.749 0.523 0.502 0.711 0.694 0.530
+ Multi-DR 0.755 0.551 0.534 0.712 0.684 0.516
+ ESCM2-IPS 0.765 0.569 0.545 0.750 0.782 0.641
+ ESCM2-DR 0.766 0.570 0.544 0.742 0.789 0.648

+ IPS-V2 0.774 0.592 0.579 0.755 0.801 0.655
+ DR-V2 0.774 0.590 0.582 0.758 0.802 0.663

Table 2. Recommendation performances in terms of AUC, Re-
call@50 (R@50), NDCG@50 (N@50) on PRODUCT. The best
results of IPS and DR methods are bolded, respectively.

PRODUCT

Method AUC RI R@50 RI N@50 RI

Base model 0.830 - 0.842 - 0.578 -
+ ESMM 0.823 -0.84% 0.852 1.19% 0.563 -2.60%

+ IPS 0.826 - 0.849 - 0.574 -
+ RD-IPS 0.830 0.48% 0.873 2.83% 0.588 2.44%
+ Multi-IPS 0.810 -1.94% 0.875 3.06% 0.554 -3.48%
+ ESCM2-IPS 0.833 0.85% 0.875 3.06% 0.598 4.18%
+ IPS-V2 0.855 3.51% 0.895 5.42% 0.607 5.75%

+ DR 0.832 - 0.866 - 0.582 -
+ RD-DR 0.834 0.24% 0.878 1.39% 0.587 0.86%
+ Multi-DR 0.829 -0.36% 0.859 -0.81% 0.562 -3.44%
+ ESCM2-DR 0.834 0.24% 0.877 1.27% 0.596 2.41%
+ DR-V2 0.853 2.52% 0.900 3.93% 0.608 4.47%

Note: RI refers to the relative improvement over the corresponding baseline.

methods with the following approaches: MF (Koren et al.,
2009), IPS (Schnabel et al., 2016), DR (Wang et al., 2019a;
Saito, 2020), RD-IPS (Ding et al., 2022), RD-DR (Ding
et al., 2022). We also compare with the following multi-task
learning approaches: ESMM (Ma et al., 2018; Wen et al.,
2020), Multi-IPS (Zhang et al., 2020), Multi-DR (Zhang
et al., 2020), ESCM2-IPS (Wang et al., 2022), and ESCM2-
DR (Wang et al., 2022).

Experimental Protocols and Details. We adopt three
widely used evaluation metrics AUC, Recall@K (R@K),
and NDCG@K (N@K) to measure the debiasing perfor-
mance. We set K = 5 on COAT and YAHOO! R3, and
K = 50 on PRODUCT. All the methods are implemented
on PyTorch with Adam as the optimizer. We tune learn-
ing rate in {0.0005, 0.001, 0.005, 0.01}, weight decay in
{0, 1e− 6, 1e− 5, ..., 1e− 1}, and the regularization hyper-
parameter λ in {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}.

5.2. Performance Comparison

We train the prediction models with biased ratings and eval-
uate them with unbiased ratings on two widely used real-
world datasets, COAT and YAHOO! R3, and the results are
shown in Table 1. We have the following findings. First,
most of the debiasing methods have better prediction per-
formance compared to MF. ESCM2-IPS and ESCM2-DR
are the most competitive baseline methods. The Multi-IPS
and Multi-DR methods are even worse than MF on YAHOO!
R3, which is explained by the lack of separate propensity
and imputation model losses, leading to inaccurate learned
propensities and imputed errors. Second, the proposed IPS-
V2 and DR-V2 demonstrate the optimal performance in all
three evaluation metrics. This is interpreted as the learned
representations can be balanced by the learned propensities,
which significantly enhances the debiasing ability.

Table 2 shows the performance of various debiasing meth-
ods on a large industrial dataset, PRODUCT. We compare
the proposed IPS-V2 and DR-V2 methods with the previ-
ous IPS-based and DR-based methods, respectively. First,
the ESMM and IPS-based methods do not have much im-
provement compared with MF, whereas the DR-based meth-
ods demonstrate stronger competitiveness, which may stem
from the inaccurate learned propensities. Second, RD-IPS
and RD-DR use robust methods to combat unobserved con-
founding, and show certain performance improvements com-
pared with the vanilla IPS and DR methods. Finally, the
proposed IPS-V2 and DR-V2 methods achieve the most
significant improvement compare with all IPS-based and
DR-based baseline methods in all metrics, while the ab-
lated versions, ESCM2-IPS and ESCM2-DR methods, do
not consider balancing representations, and lead to worse
performance compare with the proposed methods. It further
demonstrates the necessity of propensity balancing.

5.3. Ablation Study

Effects of Regularizers. We have discussed the biased-
ness of the previous regularizers in Section 4.2, and now
we further investigate how the various regularizers affect
BMSE and consequently the prediction performance, us-
ing AUC, NDCG@K, and Recall@K as evaluation metrics.
Figure 1 shows the performance of using ESCM2-IPS as
backbone with the MIS, SV (see Section 4.2 for details),
and BMSE as the regularizers on COAT, YAHOO! R3,
and PRODUCT, respectively. Similarly, Figure 2 shows
the corresponding results using ESCM2-DR as backbone.
ESCM2-IPS and ESCM2-DR serve as the most competitive
baseline methods, introducing MIS, SV, and BMSE as regu-
larizers can still further improve the performance in terms of
AUC, NDCG@K, and Recall@K, as shown in Figures 1(b-
d) and 2(b-d), respectively. However, there is no significant
change in BMSE for the previous MIS and SV regularizers,
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Figure 1. Effects of drop in BMSE (%) on RI (%) of AUC, NDCG@K, and Recall@K, with varying regularizers on ESCM2-IPS.
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Figure 2. Effects of drop in BMSE (%) on RI (%) of AUC, NDCG@K, and Recall@K, with varying regularizers on ESCM2-DR.

Table 3. Varying balanced representation results on YAHOO! R3.

YAHOO! R3

Method AUC RI R@5 RI N@5 RI

ESCM2-IPS 0.750 - 0.782 - 0.641 -
IPS-V2-1 0.758 1.07% 0.801 2.43% 0.652 1.72%
IPS-V2-K 0.754 0.53% 0.793 1.41% 0.647 0.94%
IPS-V2-2K 0.755 0.67% 0.797 1.92% 0.650 1.40%
IPS-V2-R 0.755 0.67% 0.801 2.43% 0.655 2.18%

ESCM2-DR 0.742 - 0.789 - 0.648 -
DR-V2-1 0.758 2.16% 0.799 1.27% 0.662 2.16%
DR-V2-K 0.760 2.43% 0.803 1.77% 0.664 2.47%
DR-V2-2K 0.758 2.16% 0.802 1.65% 0.663 2.31%
DR-V2-R 0.758 2.16% 0.802 1.65% 0.663 2.31%

Note: RI refers to the relative improvement over the corresponding baseline.

as shown in Figure 1(a) and Figure 2(a). This is due to
the fact that MIS and SV simply restrict the variance of
the learned propensities without considering the balancing
properties they should achieve. In contrast, the proposed
IPS-V2 and DR-V2 methods use BMSE as regularizer have
the most significant BMSE decreases and steadily have the
most significant AUC, NDCG@K and Recall@K boosts.
This empirically demonstrates that the reduction of BMSE
contributes to the debiasing performance.

Effects of Balanced Representations. The proposed IPS-
V2 and DR-V2 can improve the debiasing performance
by reducing the BMSE, and we further explore the im-
pact of varying choices of representation functions ϕ(x)
as follows: (i) IPS/DR-V2-1: ϕ(xu,i) = 1; (ii) IPS/DR-
V2-K: ϕ(xu,i) = pu ⊙ qi ∈ RK ; (iii) IPS/DR-V2-
2K: ϕ(xu,i) = [pu : qi] ∈ R2K ; (iv) IPS/DR-V2-R:
ϕ(xu,i) = r̂u,i = f (u, i | pu,qi) ∈ R, where pu and
qi denote the latent vector for user u and item i, respec-

Table 4. Varying balanced representation results on PRODUCT.

PRODUCT

Method AUC RI R@50 RI N@50 RI

ESCM2-IPS 0.833 - 0.875 - 0.598 -
IPS-V2-1 0.850 2.04% 0.887 1.37% 0.599 0.17%
IPS-V2-K 0.847 1.68% 0.889 1.60% 0.603 0.84%
IPS-V2-2K 0.854 2.52% 0.894 2.17% 0.605 1.17%
IPS-V2-R 0.855 2.64% 0.895 2.29% 0.607 1.51%

ESCM2-DR 0.834 - 0.877 - 0.596 -
DR-V2-1 0.852 2.16% 0.890 1.48% 0.602 1.01%
DR-V2-K 0.850 1.92% 0.894 1.94% 0.604 1.34%
DR-V2-2K 0.854 2.40% 0.900 2.62% 0.606 1.68%
DR-V2-R 0.853 2.28% 0.900 2.62% 0.608 2.01%

Note: RI refers to the relative improvement over the corresponding baseline.

tively. For (i), the prediction model is set to r̂u,i = f(xu,i)
for comparison purpose, i.e., there is no representation
layer, and for (ii)-(iv), we consider the prediction model
r̂u,i = h (ϕ(xu,i)) in Section 4.3. We take ESCM2-IPS and
ESCM2-DR as the backbone of the prediction models on
YAHOO! R3 and PRODUCT, and the results are shown in
Table 3 and Table 4, respectively.

From Table 3 and Table 4, the proposed IPS-V2 and DR-V2
outperform in both ESCM2-IPS and ESCM2-DR settings for
all ϕ(x), achieving 2.64% AUC growth on the PRODUCT
dataset. This is because the proposed BMSE regularization
adds an additional constraint on the learned propensities, i.e.,
balancing ϕ(x). Recall that we showed in Theorem 4.2 that
when vanilla IPS and DR losses and ϕ(x) corresponding
to BMSE(ϕ, p̂) are correlated, IPS-V2 and DR-V2 will
lead to smaller variances, thus improving the generalization
ability. Notably, this is empirically easy to be satisfied,
since the representation ϕ(x) in the prediction model r̂u,i =
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Table 5. Effects of balancing hyper-parameter λ on IPS-V2.

IPS-V2 YAHOO! R3 PRODUCT

λ R@5 RI N@5 RI R@50 RI N@50 RI

0 0.782 - 0.641 - 0.875 - 0.598 -
0.001 0.796 1.79% 0.651 1.56% 0.895 2.29% 0.605 1.17%
0.005 0.800 2.30% 0.654 2.03% 0.895 2.29% 0.606 1.34%
0.01 0.801 2.43% 0.655 2.18% 0.896 2.40% 0.606 1.34%
0.05 0.800 2.30% 0.652 1.72% 0.893 2.06% 0.603 0.84%
0.1 0.801 2.43% 0.650 1.40% 0.895 2.29% 0.607 1.51%
0.5 0.804 2.81% 0.653 1.87% 0.895 2.29% 0.605 1.17%
1 0.805 2.94% 0.654 2.03% 0.893 2.06% 0.608 1.67%

Note: RI refers to the relative improvement over the baseline with λ = 0.

h (ϕ(xu,i)) is also included in BMSE(ϕ, p̂), resulting in the
correlation between the two.

5.4. In-depth Analysis

It is now clear that BMSE regularization plays an important
role in the proposed IPS-V2 and DR-V2, so it is meaningful
to analyze the impact of the regularization hyperparameter λ
on the debiasing performance. Table 5 and Table 6 show the
effects of varying BMSE constraint strength λ on IPS-V2
and DR-V2 on YAHOO! R3 and PRODUCT, respectively.
It can be seen that the methods with BMSE as the regular-
ization stably outperform the vanilla IPS and DR methods,
and the optimal performance is reached at proper constraint
strengths (about 0.005-0.01) for IPS-V2 and DR-V2.

6. Related Work
Biases are prevalent in the collected interactions in RS and
have received much attention in recent years (Chen et al.,
2022; Wu et al., 2022). Many methods were developed to
eliminate biases and improve the prediction performance
for different tasks in RS, such as rating prediction (Marlin
& Zemel, 2009; Schnabel et al., 2016; Wang et al., 2019a;
2020b; Huang et al., 2022), post-view click-through rate
(CTR) prediction (Yuan et al., 2019), post-click conversion
rate (CVR) prediction (Ma et al., 2018; Zhang et al., 2020;
Guo et al., 2021; Dai et al., 2022; Wang et al., 2022), and
uplift modeling (Saito et al., 2019; Sato et al., 2019; 2020).
A common question faced in these tasks is ”what would the
feedback be if an intervention is made to a user”, which
can be formulated as a missing data problem (Wang et al.,
2020a; 2023; Li et al., 2023a;b;c;e), where the distribution
of observed events is different from that of missing events.

To address this problem, the error imputation-based (EIB)
methods (Steck, 2010; Hernández-Lobato et al., 2014) tried
to construct a sample of all events by imputing the miss-
ing events and then training the recommendation model
on them. However, due to the difficulty of accurate im-
putations, the EIB methods usually have sub-optimal per-
formance empirically (Guo et al., 2021). Schnabel et al.
(2016) proposed inverse probability weighting (IPS) meth-
ods for debiasing, which aims to recover the distribution of

Table 6. Effects of balancing hyper-parameter λ on DR-V2.

DR-V2 YAHOO! R3 PRODUCT

λ R@5 RI N@5 RI R@50 RI N@50 RI

0 0.789 - 0.648 - 0.877 - 0.596 -
0.001 0.801 1.52% 0.662 2.16% 0.895 2.05% 0.604 1.34%
0.005 0.802 1.65% 0.663 2.31% 0.900 2.62% 0.606 1.68%
0.01 0.797 1.01% 0.661 2.01% 0.899 2.51% 0.606 1.68%
0.05 0.797 1.01% 0.659 1.70% 0.898 2.39% 0.607 1.85%
0.1 0.795 0.76% 0.658 1.54% 0.900 2.62% 0.608 2.01%
0.5 0.794 0.63% 0.655 1.08% 0.900 2.62% 0.607 1.85%
1 0.792 0.38% 0.650 0.31% 0.899 2.51% 0.609 2.18%

Note: RI refers to the relative improvement over the baseline with λ = 0.

all events by reweighing the observed events with inverse
propensities. Wang et al. (2019a) further proposed a doubly
robust (DR) approach by combing EIB and IPS methods.
Due to the competitive performance and theoretical guaran-
tees, IPS and DR methods have gained widespread attention
and have inspired a series of new variants (Bonner & Vasile,
2018; Liu et al., 2020; Chen et al., 2021; Saito, 2020; Wang
et al., 2021; Guo et al., 2021; Dai et al., 2022; Ding et al.,
2022; Li et al., 2023a;b;c;e). The above methods are also
known as propensity-based weighting methods. However,
the true propensity is unknown and needs to be estimated.

Empirically, previous works have found that the estimation
of propensity is critical for debiasing performance (Schnabel
et al., 2016; Wang et al., 2021) and tried different strategies
for learning propensities, such as Naive Bayes (Schnabel
et al., 2016), Logistic Regression (Schnabel et al., 2016; Li
et al., 2023d), Poisson Factorization (Wang et al., 2020a),
Multi-task Learning (Zhang et al., 2020; Wang et al., 2022;
Li et al., 2023f), Variance Regularization (Wang et al., 2021;
Guo et al., 2021; Dai et al., 2022), and Minimax (Ding et al.,
2022). However, there is a lack of theoretically guaranteed
criterion for estimating propensity. In this paper, we propose
a new metric to measure the quality of learned propensities
and propose two estimators IPS-V2 and DR-V2.

7. Conclusion
In this paper, we propose a principled approach to measure
and enhance the balancing property of propensity-based
methods for debiased recommendations. First, we propose
a metric, called BMSE, to measure the balancing property
of learned propensities, and theoretically discuss its impor-
tance for unbiased learning. Then, we propose IPS-V2 and
DR-V2 as unbiased loss estimators with BMSE as the reg-
ularization term, and theoretically show that IPS-V2 and
DR-V2 have greater propensity balancing and smaller vari-
ance without sacrificing additional bias. Then, we further
propose to use IPS-V2 or DR-V2 to co-train the propensity
and the prediction model, which permits both the propensity
balancing property and the unbiased prediction. Extensive
experiments are conducted on two real-world and a large-
scale industrial dataset, and the results show that our method
has practical benefits while being easy to operate.

8



Propensity Matters: Measuring and Enhancing Balancing for Recommendation

Acknowledgements
This work was supported in part by National Natural Science
Foundation of China (No. 62141607, U1936219), National
Key R&D Program of China (No. 2018AAA0102004).
Peng Wu was supported by the Disciplinary Funding of
Beijing Technology and Business University.

References
Bonner, S. and Vasile, F. Causal embeddings for recommen-

dation. In RecSys, 2018.

Chen, J., Dong, H., Qiu, Y., He, X., Xin, X., Chen, L., Lin,
G., and Yang, K. Autodebias: Learning to debias for
recommendation. In SIGIR, 2021.

Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., and He,
X. Bias and debias in recommender system: A survey
and future directions. ACM Transactions on Information
Systems, 2022.

Dai, Q., Li, H., Wu, P., Dong, Z., Zhou, X.-H., Zhang,
R., He, X., Zhang, R., and Sun, J. A generalized dou-
bly robust learning framework for debiasing post-click
conversion rate prediction. In KDD, 2022.

Ding, S., Wu, P., Feng, F., He, X., Wang, Y., Liao, Y.,
and Zhang, Y. Addressing unmeasured confounder for
recommendation with sensitivity analysis. In KDD, 2022.

Gao, C., Li, S., Lei, W., Chen, J., Li, B., Jiang, P., He,
X., Mao, J., and Chua, T.-S. Kuairec: A fully-observed
dataset and insights for evaluating recommender systems.
In CIKM, 2022.

Guo, S., Zou, L., Liu, Y., Ye, W., Cheng, S., Wang, S.,
Chen, H., Yin, D., and Chang, Y. Enhanced doubly
robust learning for debiasing post-click conversion rate
estimation. In SIGIR, 2021.

Hernán, M. A. and Robins, J. M. Causal Inference: What If.
Boca Raton: Chapman and Hall/CRC, 2020.

Hernández-Lobato, J. M., Houlsby, N., and Ghahramani,
Z. Probabilistic matrix factorization with non-random
missing data. In ICML, 2014.

Huang, J., Oosterhuis, H., and de Rijke, M. It is differ-
ent when items are older: Debiasing recommendations
when selection bias and user preferences are dynamic. In
WSDM, 2022.

Imai, K. and Ratkovic, M. Covariate balancing propensity
score. Journal of the Royal Statistical Society (Series B),
76(1):243–263, 2014.

Imbens, G. W. and Rubin, D. B. Causal Inference For
Statistics Social and Biomedical Science. Cambridge
University Press, 2015.

Joachims, T., Swaminathan, A., and Schnabel, T. Unbiased
learning-to-rank with biased feedback. In WSDM, 2017.

Koren, Y., Bell, R., and Volinsky, C. Matrix factorization
techniques for recommender systems. Computer, 42(8):
30–37, 2009.

Li, H., Dai, Q., Li, Y., Lyu, Y., Dong, Z., Zhou, X.-H., and
Wu, P. Multiple robust learning for recommendation. In
AAAI, 2023a.

Li, H., Lyu, Y., Zheng, C., and Wu, P. TDR-CL: Targeted
doubly robust collaborative learning for debiased recom-
mendations. In ICLR, 2023b.

Li, H., Xiao, Y., Zheng, C., and Wu, P. Balancing un-
observed confounding with a few unbiased ratings in
debiased recommendations. In WWW, 2023c.

Li, H., Zheng, C., Cao, Y., Geng, Z., Liu, Y., and Wu,
P. Trustworthy policy learning under the counterfactual
no-harm criterion. In ICML, 2023d.

Li, H., Zheng, C., and Wu, P. StableDR: Stabilized doubly
robust learning for recommendation on data missing not
at random. In ICLR, 2023e.

Li, H., Zheng, C., Wu, P., Kuang, K., Liu, Y., and Cui, P.
Who should be given incentives? counterfactual optimal
treatment regimes learning for recommendation. In KDD,
2023f.

Liu, D., Cheng, P., Dong, Z., He, X., Pan, W., and Ming,
Z. A general knowledge distillation framework for coun-
terfactual recommendation via uniform data. In SIGIR,
2020.

Ma, X., Zhao, L., Huang, G., Wang, Z., Hu, Z., Zhu, X.,
and Gai, K. Entire space multi-task model: An effective
approach for estimating post-click conversion rate. In
SIGIR, 2018.

Marlin, B. M. and Zemel, R. S. Collaborative prediction
and ranking with non-random missing data. In RecSys,
2009.

Neyman, J. S. On the application of probability theory to
agricultural experiments. essay on principles. section 9.
Statistical Science, 5:465–472, 1990.

Rosenbaum, P. R. Design of Observational Studies. Springer
Nature Switzerland AG, second edition, 2020.

Rosenbaum, P. R. and Rubin, D. B. The central role of
the propensity score in observational studies for causal
effects. Biometrika, 70:41–55, 1983.

9



Propensity Matters: Measuring and Enhancing Balancing for Recommendation

Rubin, D. B. Estimating causal effects of treatments in
randomized and nonrandomized studies. Journal of edu-
cational psychology, 66:688–701, 1974.

Saito, Y. Unbiased pairwise learning from implicit feedback.
In NeurIPS Workshop, 2019.

Saito, Y. Doubly robust estimator for ranking metrics with
post-click conversions. In RecSys, pp. 92–100, 2020.

Saito, Y. Asymmetric tri-training for debiasing missing-not-
at-random explicit feedback. In SIGIR, 2020.

Saito, Y. Doubly robust estimator for ranking metrics with
post-click conversions. In RecSys, 2020.

Saito, Y., Sakata, H., and Nakata, K. Doubly robust predic-
tion and evaluation methods improve uplift modeling for
observational data. In SIAM, 2019.

Saito, Y., Yaginuma, S., Nishino, Y., Sakata, H., and Nakata,
K. Unbiased recommender learning from missing-not-at-
random implicit feedback. In WSDM, 2020.

Sant’Anna, P. H. C., Song, X., and Xu, Q. Covariate distri-
bution balance via propensity scores. Journal of Applied
Econometrics, 37(6):1093–1120, 2022.

Sato, M., Singh, J., Takemori, S., Sonoda, T., Zhang, Q.,
and Ohkuma, T. Uplift-based evaluation and optimization
of recommenders. In RecSys, 2019.

Sato, M., Takemori, S., Singh, J., and Ohkuma, T. Unbiased
learning for the causal effect of recommendation. In
RecSys, 2020.

Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., and
Joachims, T. Recommendations as treatments: Debiasing
learning and evaluation. In ICML, 2016.

Steck, H. Training and testing of recommender systems on
data missing not at random. In KDD, 2010.

Swaminathan, A. and Joachims, T. The self-normalized
estimator for counterfactual learning. In NeurIPS, 2015a.

Swaminathan, A. and Joachims, T. Counterfactual risk
minimization: Learning from logged bandit feedback. In
ICML, 2015b.

Wang, H., Chang, T.-W., Liu, T., Huang, J., Chen, Z., Yu, C.,
Li, R., and Chu, W. ESCM2: Entire space counterfactual
multi-task model for post-click conversion rate estimation.
In SIGIR, 2022.

Wang, W., Zhang, Y., Li, H., Wu, P., Feng, F., and He, X.
Causal recommendation: Progresses and future directions.
In Tutorial on SIGIR, 2023.

Wang, X., Zhang, R., Sun, Y., and Qi, J. Doubly robust
joint learning for recommendation on data missing not at
random. In ICML, 2019a.

Wang, X., Zhang, R., Sun, Y., and Qi, J. Combating selec-
tion biases in recommender systems with a few unbiased
ratings. In WSDM, 2021.

Wang, Y., Liang, D., Charlin, L., and Blei, D. M. The de-
confounded recommender: A causal inference approach
to recommendation. arXiv:1808.06581, 2019b.

Wang, Y., Liang, D., Charlin, L., and Blei, D. M. Causal
inference for recommender systems. In RecSys, 2020a.

Wang, Z., Chen, X., Wen, R., Huang, S.-L., Kuruoglu,
E. E., and Zheng, Y. Information theoretic counterfactual
learning from missing-not-at-random feedback. NeurIPS,
2020b.

Wen, H., Zhang, J., Wang, Y., Lv, F., Bao, W., Lin, Q., and
Yang, K. Entire space multi-task modeling via post-click
behavior decomposition for conversion rate prediction.
In SIGIR, 2020.

Wong, R. K. W. and Chan, K. C. G. Kernel-based co-
variate functional balancing for observational studies.
Biometrika, 105(1):199–213, 2018.

Wu, P., Li, H., Deng, Y., Hu, W., Dai, Q., Dong, Z., Sun,
J., Zhang, R., and Zhou, X.-H. On the opportunity of
causal learning in recommendation systems: Foundation,
estimation, prediction and challenges. In IJCAI, 2022.

Yuan, B., Hsia, J.-Y., Yang, M.-Y., Zhu, H., Chang, C.-Y.,
Dong, Z., and Lin, C.-J. Improving ad click prediction
by considering non-displayed events. In CIKM, 2019.

Zhang, W., Bao, W., Liu, X., Yang, K., Lin, Q., Wen, H., and
Ramezani, R. Large-scale causal approaches to debias-
ing post-click conversion rate estimation with multi-task
learning. In WWW, 2020.

10



Propensity Matters: Measuring and Enhancing Balancing for Recommendation

A. Details and Examples of Potential Outcomes Formalization
Let U = {u} be the set of users, I = {i} be the set of items. To define a causal problem, the widely adopted potential
outcome framework (Rubin, 1974; Neyman, 1990) consists of the following key elements: (1) Target population: the set
of all user-item pairs D = {(u, i) | u ∈ U , i ∈ I}; (2) Feature: xu,i, the feature of user u and item i; (3) Treatment:
ou,i ∈ {0, 1}, it has different implications for different prediction tasks in RS, e.g., whether the true rating ru,i is observed
(ou,i = 1) or missing (ou,i = 0), whether item i is exposed to user u, and whether user u clicks item i; (4) Outcome: ru,i,
the feedback of user-item pair (u, i), e.g., rating, click indicator, conversion indicator; (5) Potential outcome: ru,i(o) for
o ∈ {0, 1}, it is the outcome that would be observed if ou,i had been set to o.

Example 1 (Rating prediction). The feedback ru,i is the true rating of user u for item i. However, the rating suffers the
problem of missing not at random. Let ou,i be the observing indicator of ru,i. If we consider the observing indicator as
the treatment, then ru,i(1) denotes the true rating of user u for item i if ou,i = 1. Our goal is to predict ru,i(1) for all
(u, i) ∈ D (Schnabel et al., 2016; Wang et al., 2019b; 2020a; Li et al., 2023a;b;c;e).

Example 2 (Post-view click-through rate (CTR) prediction). The treatment ou,i = 1 if item i has been exposed to user
u, ou,i = 0 otherwise, the feedback ru,i = 1 or 0 indicates whether user u clicked item i or not. Then E[ru,i(1)|xu,i] =
P(ru,i(1) = 1|xu,i) denotes the CTR.

Example 3 (Post-click conversion rate (CVR) prediction). The treatment ou,i = 1 if user u has clicked item i, ou,i = 0
otherwise. The feedback ru,i is the indicator of the observed conversion label of user u on item i. Then E[ru,i(1)|xu,i] =
P(ru,i(1) = 1|xu,i) denotes the CVR (Zhang et al., 2020; Guo et al., 2021; Dai et al., 2022).

B. Proofs of Proposition 3.1, Theorem 4.1, Theorem 4.2, and Proposition 4.3
Proposition 3.1 (Balancing Property). If p̂u,i estimates pu,i accurately, i.e, p̂u,i = pu,i, then for any integrable vector-valued
functions ϕ(x), BMSE(ϕ, p̂) → 0 almost surely.

Proof of Proposition 3.1. Let ϕk(x) be the k-th components of ϕ(x), k = 1, . . . ,K. It suffices to show that

1

|D|
∑

(u,i)∈D

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
ϕk(xu,i) = 0, almost surely.

This follows immediately by the balancing property of true propensity, i.e.,

E
[
ou,iϕk(xu,i)

pu,i

]
= E

[
(1− ou,i)ϕk(xu,i)

1− pu,i

]
= E[ϕk(xu,i)],

and

BMSE(ϕ, p) =
∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

[
ou,i
pu,i

− 1− ou,i
1− pu,i

]
ϕ(xu,i)

∣∣∣∣∣∣2
F
→ 0, almost surely.

Theorem 4.1 (Unbiasedness of IPS-V2 and DR-V2). When learned propensities are accurate for all user-item pairs,

(a) LIPS−V 2(θ) is an unbiased estimator of Lideal(θ).

(b) LDR−V 2(θ) is an unbiased estimator of Lideal(θ), whether the imputed errors are accurate or not.

Proof of Theorem 4.1. When learned propensities are accurate, the balancing constraint∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
ϕ(xu,i)

∣∣∣∣∣∣2
F

will be zero almost surely according to Proposition 3.1. In this case, the IPS-V2/DR-V2 is equivalent to the vanilla IPS/DR
estimator and thus unbiased.
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Theorem 4.2 (Variance Reduction of IPS-V2 and DR-V2).

(a) Given imputed errors and learned propensities, the variance of V(LDR−V 2(θ) | o) reaches its minimum at

λopt =
2

|D|2 · V(BMSE(ϕ, p̂))
·

∑
(u,i)∈D

ou,i
p̂2u,i

Cov
(
eu,i,

1

|D|
∑

(s,t)∈D

[
1− os,t
1− p̂s,t

− os,t
p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)
)
,

where o = {ou,i|(u, i) ∈ D} is all the treatments.

(b) LDR−V 2(θ) has a smaller variance than LDR(θ),

V(LDR−V 2(θ) | o)
∣∣∣
λ=λopt

=
(
1− ρ2L,B

)
V(LDR(θ) | o) ≤ V(LDR(θ) | o),

where ρL,B = Corr (LDR(θ),BMSE(ϕ, p̂)), and similar results hold for LIPS−V 2(θ).

Proof of Theorem 4.2. The balancing-enhanced IPS estimator is formulated as

LIPS−V 2(θ) =
1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

+ λ ·
∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
ϕ(xu,i)

∣∣∣∣∣∣2
F
,

=
1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

+ λ · 1

|D|2
∑

(u,i)∈D

∑
(s,t)∈D

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
·
[
os,t
p̂s,t

− 1− os,t
1− p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)

where λ is a tuning parameter. The variance of IPS-V2 estimator is given by

V(LIPS−V 2(θ) | o) = V(LIPS(θ)) + λ2 · V(BMSE(ϕ, p̂))

+ 2λ · Cov

 1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

,
1

|D|2
∑

(u,i)∈D

∑
(s,t)∈D

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
·
[
os,t
p̂s,t

− 1− os,t
1− p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)


= V(LIPS(θ)) + λ2 · V(BMSE(ϕ, p̂))

+
4λ

|D|2
·

∑
(u,i)∈D

Cov

ou,ieu,i
p̂u,i

,
1

|D|

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
·

∑
(s,t)∈D

[
os,t
p̂s,t

− 1− os,t
1− p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)


= V(LIPS(θ)) + λ2 · V(BMSE(ϕ, p̂))

+
4λ

|D|2
·

∑
(u,i)∈D

ou,i
p̂u,i

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
Cov

eu,i,
1

|D|
∑

(s,t)∈D

[
os,t
p̂s,t

− 1− os,t
1− p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)


Next, note that ou,i and os,t are binary variables, then o2u,i = ou,i and ou,i(1− ou,i) = 0, we have

V(LIPS−V 2(θ) | o) = V(LIPS(θ)) + λ2 · V(BMSE(ϕ, p̂))

− 4λ

|D|2
·

∑
(u,i)∈D

ou,i
p̂2u,i

Cov

eu,i,
1

|D|
∑

(s,t)∈D

[
1− os,t
1− p̂s,t

− os,t
p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)

 .

Then V(LIPS−V 2(θ) | o) is a quadratic function in λ, and reaches its optimum when λ = λopt that

λopt =
2

|D|2
·

∑
(u,i)∈D

ou,i
p̂2u,i

Cov

eu,i,
1

|D|
∑

(s,t)∈D

[
1− os,t
1− p̂s,t

− os,t
p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)

/
V(BMSE(ϕ, p̂)),

and at λopt, the minimum variance of V(LIPS−V 2(θ) | o) equals to

V(LIPS−V 2(θ) | o) =
(
1− ρ2L,B

)
V(LIPS(θ)) ≤ V(LIPS(θ)),
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where ρL,B = Corr (LIPS(θ),BMSE(ϕ, p̂)).

Similarly, the variance of DR-V2 estimator is given by

V(LDR−V 2(θ) | o) = V(LDR(θ)) + λ2 · V(BMSE(ϕ, p̂))

+ 2λ · Cov

LDR(θ),
1

|D|2
∑

(u,i)∈D

∑
(s,t)∈D

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
·
[
os,t
p̂s,t

− 1− os,t
1− p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)


= V(LDR(θ)) + λ2 · V(BMSE(ϕ, p̂))

+ 2λ · Cov

 1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

,
1

|D|2
∑

(u,i)∈D

∑
(s,t)∈D

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
·
[
os,t
p̂s,t

− 1− os,t
1− p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)


= V(LDR(θ)) + λ2 · V(BMSE(ϕ, p̂))

+
4λ

|D|2
·

∑
(u,i)∈D

Cov

ou,ieu,i
p̂u,i

,
1

|D|

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
·

∑
(s,t)∈D

[
os,t
p̂s,t

− 1− os,t
1− p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)


= V(LDR(θ)) + λ2 · V(BMSE(ϕ, p̂))

+
4λ

|D|2
·

∑
(u,i)∈D

ou,i
p̂u,i

[
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
Cov

eu,i,
1

|D|
∑

(s,t)∈D

[
os,t
p̂s,t

− 1− os,t
1− p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)


The second equality holds due to êu,i and p̂u,i are given without randomness. Then V(LDR−V 2(θ) | o) is a quadratic
function in λ, and reaches its optimum when λ = λopt that

λopt =
2

|D|2
·

∑
(u,i)∈D

ou,i
p̂2u,i

Cov

eu,i,
1

|D|
∑

(s,t)∈D

[
1− os,t
1− p̂s,t

− os,t
p̂s,t

]
ϕ(xu,i)

⊤ϕ(xs,t)

/
V(BMSE(ϕ, p̂)),

and at λopt, the minimum variance of V(LDR−V 2(θ) | o) equals to

V(LDR−V 2(θ) | o) =
(
1− ρ2L,B

)
V(LDR(θ)) ≤ V(LDR(θ)),

where ρL,B = Corr (LDR(θ),BMSE(ϕ, p̂)).

Proposition 4.3 (Bias of Previous Regularizers). Regardless of whether the imputed errors or the learned propensities are
accurate, the sample variance regularization is biased

E [LDR−SV (θ)] = E[LDR(θ)]+λ · E[LSV ] ̸= Lideal(θ),

and same for LIPS−SV , as well as other regularizers.

Proof of Proposition 4.3. We first show that the estimated variance of IPS and DR estimators are given as

V̂(LIPS(θ)) =
1

|D|2
∑

u,i∈D

ou,i (1− p̂u,i) e
2
u,i

p̂2u,i
, V̂(LDR(θ)) =

1

|D|2
∑

u,i∈D

ou,i(1− p̂u,i)

p̂2u,i
(eu,i − êu,i)

2
.

In fact, for IPS estimator, we have

VO (LIPS(θ)) =
1

|D|2
∑

u,i∈D

pu,i (1− pu,i) e
2
u,i

p̂2u,i
≈ 1

|D|2
∑

u,i∈D

ou,i (1− p̂u,i) e
2
u,i

p̂2u,i
,

and similarly for the DR estimator

VO (LDR(θ)) =
1

|D|2
∑

u,i∈D

pu,i (1− pu,i) (eu,i − êu,i)
2

p̂2u,i
≈ 1

|D|2
∑

u,i∈D
ou,i

1− p̂u,i
p̂2u,i

(eu,i − êu,i)
2
.

Then Proposition 4.3 follows immediately from the fact that LSV , LMIS , V̂O (LIPS(θ)), and V̂O (LDR(θ)) always does
not converge to zero, regardless of whether the learned propensities or the imputed errors are accurate.

13


