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       ABSTRACT 

       Through this paper, the most used in management and finance optimization problems 

mathematical tools are presented, in a combined coherent way. The respective 

mathematical fundaments are synthetically outlined, and the resolution methods are 

briefly described, hopping that this text functions as a manual in these matters. 
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       INTRODUCTION 

       It is far from any doubt how interesting the optimization problems are for the 

management activity, particularly in its finance subdomain. Famous examples are the 

classical problems of profits maximization, costs minimization, production maximization 

and, a little more recently, risks minimization and reliability maximization. They are a 

privileged matter in the Operations Research courses and considered very deeply at the 

Mathematical Analysis courses.   

        This work goal is to give an organized vision of the various kinds of problems that 

rise in this field, from the mathematical point of view and, simultaneously, to describe in 

a summarized way the respective resolution methods. 

        To deal with this subject in a complete way was not the intention. On the contrary, 

the target is to make an inventory of the most recurrent problems, in order that this text 

serves as a manual in this area.  

        A small bibliography is presented in the end of trying to supply to the reader quick 

deeper information on this matter.  

 

       OPTIMIZATION PROBLEMS 

 

       Usually, in a optimization problem it is intended to determine the extreme points-

maximums and minimums-of a function  

𝑦 = 𝑓(𝑥1, 𝑥2,, … , 𝑥𝑛) 

 

called objective function. 

         The independent variables   𝑥1, 𝑥2, … , 𝑥𝑛  may be connected for one or more 

restrictions with the form 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑏, 𝜖ℝ. 
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         This form for the restrictions is quite general and allows the consideration of 

inequality restrictions. In fact, they can be transformed in equality restrictions adding new 

variables designated lack variables. 

          In the sequence of this work, some optimization problems will be presented 

together with the description of the techniques that make their resolution possible, that is: 

the determination of the points - the values of 𝑥1, 𝑥2, … , 𝑥𝑛 - that, simultaneously, satisfy the 

restrictions and make y to assume a maximum or minimum value. 

            -FREE OPTIMUM PROBLEMS  

           Restrictions are not considered now. To solve these problems, there are mainly three kinds 

of methods that follow in the sequence. 

 

Analytical Methods  

 

Their bases are the two following results: 

 

Theorem 1 

 

In order that a differentiable function 𝑓: 𝐷 ⊂ ℝ𝑛 → ℝ has a local extreme in an 

interior point (𝑎1, 𝑎2,, … , 𝑎𝑛) a necessary condition is that 

 

(𝑓𝑥1
´ )

(𝑎1,𝑎2,…,𝑎𝑛)
= 0 

 

(𝑓𝑥2
´ )

(𝑎1,𝑎2,…,𝑎𝑛)
= 0 

 

                                                                   . 
                                                                   . 
                                                                   . 
 

       (𝑓𝑥𝑛
´ )

(𝑎1,𝑎2,…,𝑎𝑛)
= 0. 

 

The points that satisfy this condition are called the f stationary points. Note that 

this condition may be written in the form:  

 

     

𝑔𝑟𝑎𝑑𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑎1, 𝑎2,, … , 𝑎𝑛) = 0 
 

Theorem 2 

 

Being (𝑎1, 𝑎2,, … , 𝑎𝑛) a stationary point of  𝑓: 𝐷 ⊂ ℝ𝑛 → ℝ, belonging to the 

interior of D, and  𝑘 > 1 the order of the first f directed derivative identically non-null 

at (𝑎1, 𝑎2,, … , 𝑎𝑛): 

 

- 𝑓(𝑎1, 𝑎2,, … , 𝑎𝑛) is a minimum (maximum) if k is even and 𝑓
𝑢
→
(𝑘)

(𝑎1, 𝑎2,, … , 𝑎𝑛)is 

a positive (negative) defined form. 

 

-  𝑓(𝑎1, 𝑎2,, … , 𝑎𝑛) is neither a maximum nor a minimum if: 



 

a) k is odd, 

b) k is even and  𝑓
𝑢
→
(𝑘)

(𝑎1, 𝑎2,, … , 𝑎𝑛) is an undefined form, 

c) k is even and 𝑓
𝑢
→
(𝑘)

(𝑎1, 𝑎2,, … , 𝑎𝑛) is a semi-defined form, since either there 

is a singular direction for which the first non-null directed derivative is odd or, being 

even, has a sign opposite to the one of   𝑓
𝑢
→
(𝑘)

(𝑎1, 𝑎2,, … , 𝑎𝑛) outside the singular 

directions. 

- Nothing may be concluded, through the directed derivatives, when k is even,    

𝑓
𝑢
→
(𝑘)

(𝑎1, 𝑎2,, … , 𝑎𝑛) is semi-defined and in every singular direction, the first non-null 

directed derivatives are of even order and assume values with the same sign as 

 𝑓
𝑢
→
(𝑘)

(𝑎1, 𝑎2,, … , 𝑎𝑛) outside the singular directions. 

 

Notes: 

 

- Theorem 1 allows identifying the point’s candidates to maximum points or 

minimum points: the stationary points, 

 

- In Theorem 2 inconclusive situations, a function behavior study about the 

stationary point allows, often, to conclude something about the nature of the point. That 

is the so-called local study. 

 

- To apply Theorem 2 it is necessary to suppose that f has continuous derivatives, 

in the stationary point neighborhood, till a convenient order. 

 

If 𝑛 = 1 the situation is a little simpler: 

 

- a is a stationary point if  𝑓´(𝑎) = 0 . 

 

- Being f a function k times differentiable in a neighborhood of a – with 𝑘 ≥ 2- 

and 𝑓(𝑘)the first of the non-null derivatives in a, if  𝑓(𝑘) is continuous in a: 

              

a) f has neither maximum nor minimum in a if k is odd, 

 

b) If k is even 𝑓(𝑎) is a local maximum or minimum as 𝑓(𝑘)(𝑎) < 0 

    or 𝑓(𝑘)(𝑎) > 0. 

 

Theorem 3 

 

In the case of real functions of real variable note that, frequently, the study of the 

first derivative signal allows conclusions about the stationary point’s nature: 

 

- In points at which the function is not differentiable, evidently, it may assume 

extreme values, concretely: 

 

a) If  𝑓𝑙
´(𝑎) ≥ 0 and 𝑓𝑟

´(𝑎) ≤ 0, 𝑓(𝑎) is a maximum, 

 

b) If  𝑓𝑙
´(𝑎) ≤ 0 and 𝑓𝑟

´(𝑎) ≥ 0, 𝑓(𝑎) is a minimum. 



 

 

Note: 

 

- It is important to refer here the variational calculus methods. Evidently, they are 

also analytical methods, but now the target is the optimization of a functional and not of 

a function. For instance, consider the problem of minimizing the functional  

 

 

𝐹[𝑦] = ∫ 𝑓(𝑥, 𝑦(𝑥), 𝑦´(𝑥))𝑑𝑥.
𝑏

𝑎

 

 

That is, the objective is to determine the function y(x) that minimizes 𝐹[𝑦]. The 

equation 

𝑓(𝑥, 𝑦, 𝑦´) −
𝑑

𝑑𝑥
𝑓
𝑦´
´ (𝑥, 𝑦, 𝑦´) = 0, 

 

called Euler-Lagrange equation supplies the solution for the problem. 

 

Quasi-analytical Methods 

 

Only a short reference to the most used: 

 

- Gradient Method 

 

This method is based on that the f gradient vector “points” to the direction along 

which the function grows quicker. 

So, begin calculating a value the  𝑓(𝑥1, 𝑥2,, … , 𝑥𝑛) gradient in an initial 

point (𝑎1, 𝑎2,, … , 𝑎𝑛). Then it is executed an h amplitude movement in the direction of 

the gradient, and it is computed the value of the objective function, in the obtained point. 

If this value is greater than the obtained for f in the initial point, go on moving in the same 

direction. If not, compute a new gradient vector and follow a new direction. 

Go on this process till the whole gradient vector components are null, having so 

got the maximum. 

If the target is to minimize the objective function, follow the gradient opposite 

direction and proceed exactly in the same way. 

 

- Steepest Ascent Method 

 

Such as in the former method, the objective function gradient is computed in an 

initial point. But the direction of the movement is determined by the greatest gradient 

component. Only the variable corresponding to this component is changed; the whole 

others remain unchanged. The changing variable is increased or decreased according to 

the partial derivative signal. After a new point is obtained, the process is repeated till 

attaining the optimum with the desired approximation. 

 

Heuristic Methods 

 

These methods are applied when the problem does not lead to an evident 

mathematical quantification. Here are two examples: 



 

 

- Bolzano Search Method 

 

It is useful when a function f(x), that is not explicitly known, but may be 

formulated experimentally, is supposed to be convex and admit continuous derivatives in 

the [𝑎, 𝑏] interval. 

To apply the method, it is necessary to know𝑓´(𝑥1) = 𝑓´ (
𝑏−𝑎

2
). Then calling 𝑥0 

the minimum point wanted: 

 

a) If 𝑓´(𝑥1) > 0, search 𝑎 ≤ 𝑥0 ≤ 𝑥1, 

 

 

b) If 𝑓´(𝑥1) < 0, search 𝑥1 ≤ 𝑥0 ≤ 𝑏, 

 

 

c) If 𝑓´(𝑥1) = 0, search 𝑥1 = 𝑥0. 
 

In each iteration the search interval amplitude is half reduced. After N steps, the 

search interval amplitude is reduced of a   (
1

2
)
𝑁−1

 factor. 

 

- Fibonacci Search Method 

 

It is useful when a function f(x), which form is not explicitly known, is supposed 

to be continuous and concave in the [𝑎, 𝑏] interval. And the maximum point  𝑓(𝑥0) is 

such that 𝑥0 ∈ [𝑎, 𝑏]. Begin computing 𝑓(𝑥1) = 𝑓(𝑎 + 𝐹1(𝑏 − 𝑎)) and 𝑓(𝑥2) = 𝑓(𝑎 +

𝐹2(𝑏 − 𝑎)) where 𝐹1 = .38 and 𝐹2 = .62  are the Fibonacci numbers. So, 

 

a) If 𝑓(𝑥1) < 𝑓(𝑥2), 𝑥0 ∈ [𝑥1, 𝑏], 
 

b) If 𝑓(𝑥1) > 𝑓(𝑥2), 𝑥0 ∈ [𝑎, 𝑥2], 
 

c) If 𝑓(𝑥1) = 𝑓(𝑥2), 𝑒ither 𝑥0 ∈ [𝑎, 𝑥2] or 𝑥0 ∈ [𝑥1, 𝑏]. 
  

 

            After N iterations the amplitude of the original interval is reduced of a  (. 62)𝑁−1 

factor. 

 

Any of the methods, in its specific field of application, allows obtaining 𝑥0 as 

closely as desired. 

 

-CONSTRAINED OPTIMUM PROBLEMS 

 
The target in this kind of problems is the optimization of a n variables function,  

𝑓(𝑥1, 𝑥2,, … , 𝑥𝑛), constrained to m equality restrictions, m < n,  

𝑔𝑖(𝑥1, 𝑥2,, … , 𝑥𝑛) = 𝑏𝑖, 𝑏𝑖 ∈ ℝ, 𝑖 = 1, 2, … ,𝑚.  

To solve these problems is indicated the 

 



Lagrange Method (undetermined multipliers) 
 

Begin to build the Lagrangean function 

 

ℒ(𝑥1, 𝑥2, … , 𝑥𝑛, 𝜆1, 𝜆2, … , 𝜆𝑚) = 𝑓(𝑥1, 𝑥2,, … , 𝑥𝑛) + ∑𝜆𝑖[𝑏𝑖 − 𝑔𝑖(𝑥1, 𝑥2,, … , 𝑥𝑛)]

𝑚

𝑖=1

 

 

where the 𝜆𝑖′𝑠 are the Lagrange multipliers. It is usual to call 𝑥1, 𝑥2,, … , 𝑥𝑛 decision 

variables and 𝜆1, 𝜆2, … , 𝜆𝑚 auxiliary variables. The next step is to determine the ℒ 

stationary points, candidates to maximums or minimums that result from the resolution 

of the system constituted by the equations. 

 

 

∂ℒ

∂xj
=

∂f

∂xj
− ∑λi

∂gi

∂xj
= 0,     j = 1, 2, … , n

m

i=1

and
𝑔𝑖(𝑥1, 𝑥2,, … , 𝑥𝑛) = 𝑏𝑖,        𝑖 = 1, 2, … ,𝑚.

 

 

 

 

Finally, for each stationary point it is necessary to decide if it is a maximum or a 

minimum. For that build the bordered Hessian: 

 

 

�̅�(𝑥1, 𝑥2, … , 𝑥𝑛, 𝜆1, 𝜆2, … , 𝜆𝑚) =

|

|

| [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

]

[
 
 
 
𝜕𝑔1

𝜕𝑥1
⋯

𝜕𝑔1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑔𝑚

𝜕𝑥1
⋯

𝜕𝑔𝑚

𝜕𝑥𝑛 ]
 
 
 

[
 
 
 
𝜕𝑔1

𝜕𝑥1
⋯

𝜕𝑔𝑚

𝜕𝑥1

⋮ ⋱ ⋮
𝜕𝑔1

𝜕𝑥𝑛
⋯

𝜕𝑔𝑚

𝜕𝑥𝑛 ]
 
 
 

[
 
 
 
 

𝜕2ℒ

𝜕𝑥1
2 ⋯

𝜕2ℒ

𝜕𝑥1𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕2ℒ

𝜕𝑥𝑛𝜕𝑥1
⋯

𝜕2ℒ

𝜕𝑥𝑛
2 ]

 
 
 
 

|

|

|

  

 

and consider the n – m principal minors obtained suppressing the last lines and columns 

of �̅�. Order these minors, 𝐻1, 𝐻2, … , 𝐻𝑛−𝑚 , being 𝐻1 the one of lesser order and 𝐻𝑛−𝑚 =
�̅� the greatest order one. So,  

 

a) The stationary point will be a minimum if 

  

 i) m is even and 𝐻𝑖 > 0, 𝑖 = 1, 2, … , 𝑛 − 𝑚, 

 

 ii) m is odd and 𝐻𝑖 < 0, 𝑖 = 1, 2, … , 𝑛 − 𝑚. 

 

b) The stationary point will be a maximum if 

 

i) m is even and (−1)𝑖𝐻𝑖 > 0, 𝑖 = 1, 2, … , 𝑛 − 𝑚, 

 



ii) m is odd and (−1)𝑖𝐻𝑖 < 0, 𝑖 = 1, 2, … , 𝑛 − 𝑚. 

 

  

 Notes: 

           - Note that there is a guarantee that any obtained solution will be optimal if it can 

be found an ℒ(. ) optimum. 

            - If  𝑛 = 𝑚 + 1 these problems may be solved transforming them in free optimum 

problems with n = 1, because, after the restrictions, it is possible to write m variables as 

functions of only one that will be the problem independent variable. It is the so-called 

explicit method. There is an inconvenient: the Lagrange multipliers are not considered 

and its interpretation, for management purposes, is important. 

            - The difference n – m gives the problem degrees of freedom that, as it is logical, 

is coincident with the number of principal minors to be considered. 

An evident application of this tool is the problem of maximization of a production 

function constrained by a budget. 

 

 MATHEMATICAL PROGRAMING PROBLEMS 

 

 For this kind of problems inequality restrictions may be considered and it is 

imposed that 𝑥𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛. Contrarily to what happened in the constrained 

optimum problems there is no bound for the restrictions number, since they define a set 

of solutions – also called opportunities set – nonempty.  

             A class of convex programming problems, at which it is intended to minimize 

convex functionals subject to convex inequalities, is outlined now.  Begin presenting a 

basic result that characterizes the minimum point of a convex functional subject to convex 

inequalities. Note that it is not necessary to impose any continuity conditions. Only 

geometric conditions are important. 

              Theorem 4 (Kuhn-Tucker) 

              Be f(x), 𝑓𝑖(𝑥), 𝑖 = 1,… , 𝑛, convex functionals defined in a convex subset C of a 

Hilbert space. Consider the problem  min
𝑥∈𝐶

𝑓(𝑥) , 𝑠𝑢𝑏. : 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1,…. Be 𝑥0 a point 

where the minimum, supposed finite, is reached. Also suppose that for each vector u 

in 𝐸𝑛, Euclidean space with dimension n, non-null and such that 𝑢𝑘 ≥ 0, there is a point 

x in C such that ∑ 𝑢𝑘𝑓𝑘(𝑥) < 0,1 designating 𝑢𝑘 the components of u. So, 

i) There is a vector v, with non-negative components {𝑣𝑘}, such that  

min
𝑥∈𝐶

{𝑓(𝑥) + ∑𝑣𝑘𝑓𝑘(𝑥)

𝑛

1

} = 𝑓(𝑥0) + ∑𝑣𝑘𝑓𝑘(𝑥0) = 𝑓(𝑥0) 

𝑛

1

, 

 

ii) For every vector u in 𝐸𝑛 with non-negative components, that is: belonging to  

the positive cone of 𝐸𝑛 , 

𝑓(𝑥) + ∑𝑣𝑘𝑓𝑘(𝑥)

𝑛

1

≥ 𝑓(𝑥0) + ∑ 𝑣𝑘𝑓𝑘(𝑥0) ≥ 𝑓(𝑥0) + ∑𝑢𝑘𝑓𝑘(𝑥0)   

𝑛

1

.

𝑛

1

 

 

               Corollary 4 (Lagrange duality) 



               In the conditions of Theorem 4𝑓(𝑥0) = sup
𝑢≥0

inf
𝑥∈𝐶

𝑓(𝑥) + ∑ 𝑢𝑘𝑓𝑘(𝑥).  𝑛
1  

               Notes: 

                 -This corollary is useful supplying a process to determine the problem optimal 

solution, 

                -If the whole 𝑣𝑘 in expression at i) are positive, 𝑥0 is a point that belongs to the 

border of the convex set defined by the inequalities, 

                 -If the whole 𝑣𝑘are zero, the inequalities do not influence the problem, that is: 

the minimum is equal to the one of the restrictions free problems. 

                 Considering non-finite inequalities:  

                Theorem 5 (Kuhn-Tucker in infinite dimension) 

                Be C a convex subset of a Hilbert space H and f (x) a real convex functional 

defined in C. Be I a Hilbert space with a closed convex cone 𝓅, with non-empty interior, 

and F(x) a convex transformation from H to I (convex in relation to the order introduced 

by cone 𝓅: if 𝑥, 𝑦 ∈ 𝓅, 𝑥 ≥ 𝑦 𝑖𝑓 𝑥 − 𝑦 ∈ 𝓅). Be 𝑥0 a f (x) minimizing in C subjected to 

the inequality 𝐹(𝑥) ≤ 0.Consider 𝓅∗ = {𝑥: [𝑥, 𝑝] ≥ 0,
∀

𝑥 ∈ 𝓅} (dual cone). Admit that 

given any 𝑢 ∈ 𝓅∗ it is possible to determine x in C such that [𝑢, 𝐹(𝑥)] < 0. So, there is 

an element v in the dual cone 𝓅∗, such that for x in C 𝑓(𝑥) + [𝑣, 𝐹(𝑥)] ≥ 𝑓(𝑥0) +

[𝑣, 𝐹(𝑥0)] ≥ 𝑓(𝑥0) + [𝑢, 𝐹(𝑥0)], being u any element of 𝓅∗. 

                Corollary 5 (Lagrange duality in infinite dimension) 

                𝑓(𝑥0) = sup
𝑣∈𝓅∗

inf
𝑥∈𝐶

( 𝑓(𝑥) + [𝑣, 𝐹(𝑥)]) in the conditions of Theorem 5. 

 

Theorem 4 and Theorem 5 describe the Kuhn-Tucker Method that can be 

operationalized as follows:  

 

Kuhn-Tucker Method 

 

It is an extension of Lagrange method seen above. Be an objective function 

𝑓(𝑥1, 𝑥2,, … , 𝑥𝑛) constrained by m restrictions: k of the form 𝑔𝑖(𝑥1, 𝑥2,, … , 𝑥𝑛) ≤ 𝑏𝑖, 𝑖 =

1, 2, … , 𝑘, and m – k of the form 𝑔𝑖(𝑥1, 𝑥2,, … , 𝑥𝑛) ≥ 𝑏𝑖, 𝑖 = 𝑘 + 1, … ,𝑚. Now the 

Lagrangean has the form 

 

ℒ(𝑥1, … , 𝑥𝑛, 𝜆1, … , 𝜆𝑘, 𝜇𝑘+1, … , 𝜇𝑚) = 

 

= 𝑓(𝑥1, … , 𝑥𝑛) − ∑ 𝜆𝑖[𝑏𝑖 − 𝑔𝑖(𝑥1, … , 𝑥𝑛)] − ∑ 𝜇𝑖[𝑏𝑖 − 𝑔𝑖(𝑥1, … , 𝑥𝑛)]𝑚
𝑖=𝑘+1

𝑘
𝑖=1 . 

 

The conditions to be satisfied for a candidate to an optimum are  

 



∂ℒ

∂xj
=

∂f

∂xj
+ ∑

λi

∂gi

∂xj
+ ∑ μi

∂gi

∂xj
= 0

𝑚

𝑖=𝑘+1

,     j = 1, 2, … , n
𝑘

i=1

 

𝜆𝑖[𝑏𝑖 − 𝑔𝑖(𝑥1, … , 𝑥𝑛)] = 0, 𝑖 = 1, 2, . . , 𝑘

𝜇𝑖[𝑏𝑖 − 𝑔𝑖(𝑥1, … , 𝑥𝑛)] = 0, 𝑖 = 𝑘 + 1, … ,𝑚 
    

 

 
𝑔𝑖(𝑥1, … , 𝑥𝑛) ≤ 𝑏𝑖 , 𝑖 = 1, 2, … , 𝑘

and
𝑔𝑖(𝑥1, … , 𝑥𝑛) ≥ 𝑏𝑖,          𝑖 = 𝑘 + 1,… ,𝑚

 

 

 

 

 Generally, the Kuhn-Tucker conditions supply a set of necessary conditions for a 

point to be an optimum point. 

 A point that satisfies the Kuhn-Tucker conditions may be a global optimum, a 

local optimum or neither one nor other, depending on the objective function and 

restrictions convexity or concavity. But, if 𝑓(𝑥1, 𝑥2,, … , 𝑥𝑛) is concave (convex) and the 

restrictions define a convex (concave) set, the Kuhn-Tucker theory establishes that any 

point satisfying the necessary conditions seen before is a local optimum. 

 

 Notes: 

 

- A mathematical programming problem is linear if 𝑓(𝑥1, 𝑥2,, … , 𝑥𝑛) and 

 𝑔𝑖(𝑥1, 𝑥2,, … , 𝑥𝑛), 𝑖 = 1, 2, … ,𝑚 are linear functions of the respective arguments. A 

method to solve this kind of problems is the Simplex Method, at which it is used a 

methodology identical to the one of the Steepest Ascent Method. 

 

- An integer programming problem is a linear programming problem at which 

 the values of the variables are integer numbers. Among the useful algorithms to solve 

this kind of problem are branch and bound and cut algorithms. From these last ones the 

most used is Gomory algorithm. 

 

- As integer programming problems particular cases there are transportation 

 problems and allocation problems. In the resolution of the first ones, it is used the 

transportation algorithm. The allocation problems may also be formalized as 

transportation problems. But it is not usual to make such a procedure and instead it is used 

in its resolution the method known as the Hungarian Method.  

 

- A quadratic programming problem is a mathematical programming problem 

 at which the whole restrictions are linear, and the objective function has the form 

 

𝑓(𝑥1, 𝑥2,, … , 𝑥𝑛) = ∑∑𝑐𝑖𝑗𝑥𝑖𝑥𝑗 + ∑𝑑𝑖𝑥𝑖

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑖=1

 

 



being 𝑐𝑖𝑗 and 𝑑𝑖 known constants. For its resolution may be applied the Kuhn-Tucker 

method, as in the whole problems that are being inventoried, but the most used is the 

Frank and Wolfe Method, typical of these problems.  

Quadratic programming is applied in portfolios management. 

            When presenting the Bolzano and Fibonacci search methods, solutions for the 

optimization problem of 𝑓(𝑥) being 𝑎 ≤ 𝑥 ≤ 𝑏 were looked for. It may be said that a 

programming problem, nonlinear, mono-variable was being solved. 

   Zener-Duffin Method 

 

    Usually, it is briefly described as a geometric programming method. It is applied 

in the optimization of functions with the form 

 

𝑓(𝑥1, 𝑥2,, … , 𝑥𝑛) = ∑𝑇𝑖

𝑚

𝑖=1

 

 

 

where  

 

𝑇𝑖 = 𝑎𝑖 ∏𝑥
𝑗

𝑏𝑖𝑗

𝑛

𝑗=1

 

 

being 𝑎𝑖 and 𝑏𝑖𝑗 real numbers. 

 

Zener established that if 𝑚 = 𝑛 + 1, to optimize f is necessary to find adequate 

constants, 𝑐𝑗, such that 

 

∏𝑇
𝑖

𝑐𝑗 = 𝐾, 𝐾 constant

𝑛

𝑗=1

 

 

and 

 

∑𝑐𝑗 = 1.

𝑛

𝑗=1

 

 

 

So, the optimal value is given by 

 

 

𝑓𝑜𝑝𝑡 =
𝐾

∏ 𝑐𝑗
𝑐𝑗𝑛

𝑗=1

 . 

 

 

 



Duffin extended the work of Zener in the way not to be necessarily m = n +1. In 

that case it is obtained a lower bound and an upper bound for 𝑓𝑜𝑝𝑡. 

 

Dynamic Programming 

 

Its objective is the optimization of functions in the form 

 

 

𝑓(𝑥1, 𝑥2,, … , 𝑥𝑛) = ∑𝑓𝑖(𝑥𝑖)          with ∑𝑥𝑖 = 𝐾, 𝐾 ∈ ℝ

𝑛

𝑖=1

𝑛

𝑖=1

 

 

 

The dynamic programming is based on Bellman principle:  

 

- So that a politic is optimal it is necessary that anyone the initial state is and 

 anyone the initial decision taken is, each following decision must be optimal when related 

to the resulting state of the decision taken immediately before.  

 

Using the dynamic programming it is possible to transform the initial problem in  

a sequence of n problems, in the form of a recursive relation:  

 

 
𝑚𝑛(𝐾) = opt

0≤𝑥≤𝐾
{𝑓𝑛(𝑥)}

𝑚𝑗(𝐾) = opt
0≤𝑥≤𝐾

{𝑓𝑗(𝑥) + 𝑚𝑗+1(𝐾 + 𝑥)} , 𝑗 = 𝑛 − 1, 𝑛 − 2,… , 1
 

 

 

The optimum so obtained may be maximum or minimum according to the nature 

of the functions 𝑓𝑖. 
 

               MINIMAX THEOREM 

               Consider then the zero-sum two players games formulation: 

               -Be 𝜙(𝑥, 𝑦) a real function of two real variables 𝑥, 𝑦 ∈ 𝐻 (real Hilbert space), 

               -Be A and B two convex sets in H, 

               -One of the players chooses strategies (points) in A, in order to maximize 

𝜙(𝑥, 𝑦) (or to minimize (−1)𝜙(𝑥, 𝑦)): it is the maximizing player,  

               -The other player chooses strategies (points) in B, in order to minimize 𝜙(𝑥, 𝑦) 

(or to maximize (−1)𝜙(𝑥, 𝑦)): it is the minimizing player.  

                -𝜙(𝑥, 𝑦) is the payoff function. The value 𝜙(𝑥0, 𝑦0) represents, simultaneously, 

the maximizing player earning and the minimizing player loss in a move at which they 

chose, respectively, the strategies 𝑥0 and 𝑦0. 

                This game has a value G if 

 

                  sup
𝑥∈𝐴

inf
𝑦∈𝐵

𝜙(𝑥, 𝑦) = 𝐺 = inf
𝑦∈𝐵

sup
𝑥∈𝐴

𝜙(𝑥, 𝑦)  .   

 



                 If for some (𝑥0, 𝑦0), 𝜙(𝑥0, 𝑦0) = 𝐺, (𝑥0, 𝑦0) is a pair of optimal strategies. It 

is also a saddle point if  

 

𝜙(𝑥, 𝑦0) ≤  𝜙(𝑥0, 𝑦0) ≤ 𝜙(𝑥0, 𝑦), 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. 
 

 
Theorem 6 

 

                    Consider A and B closed convex sets in H, with A bounded. Be 𝜙(𝑥, 𝑦) a real 

functional defined for x in A and y in B such that: 

                     - 𝜙(𝑥, (1 − 𝜃)𝑦1 + 𝜃𝑦2) ≤ (1 − 𝜃) 𝜙(𝑥, 𝑦1) + 𝜃𝜙(𝑥, 𝑦2) for x in A and 𝑦
1
, 𝑦

2
 in 

B, 0≤ 𝜃 ≤ 1, 

                     - 𝜙((1 − 𝜃)𝑥1 + 𝜃𝑥2, 𝑦) ≥ (1 − 𝜃) 𝜙(𝑥1, 𝑦) + 𝜃𝜙(𝑥2, 𝑦) for y in B and 𝑥1, 𝑥 in A, 

0≤ 𝜃 ≤ 1, 

                     - 𝜙(𝑥, 𝑦) is continuous in x for each y, 

    then the game has a value. 

The Minimax theorem, from von Neumann, is obtained as a corollary of Theorem 6,  

strengthening its hypothesis: 

 

                   Theorem 7 (Minimax) 

 

                   Suppose that the Theorem 6 functional 𝜙(𝑥, 𝑦) is continuous in both variables, 

separately, and is also bounded. Then there is an optimal pair of strategies fulfilling the property 

of being a saddle point.  

 

Consider a zero-sum two player’s game. Calling A, the maximizing player 

 and B the minimizing player, the payoff table when A chooses the strategy i, i = 1, 2, …, 

m and B the strategy j, j = 1, 2, …, n is 

 

𝑃𝑙𝑎𝑦𝑒𝑟 𝐵

𝑃𝑙𝑎𝑦𝑒𝑟 𝐴 [𝑔𝑖𝑗] 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛
 

 

reading the player A the values as gains and the player B as loses. Of course, a negative 

gain is a loss and vice-versa. In the terms of von Neumann Minimax Theorem the problem 

may be solved as a linear programming problem: 

 

For player A 

 

The target is to maximize G (value of the game) subject to the constraints 

 
𝑔11𝑥1 + 𝑔21𝑥2 + …+ 𝑔𝑚1𝑥𝑚 ≥ 𝐺

⋮
𝑔1𝑛𝑥1 + 𝑔2𝑛𝑥2 + …+ 𝑔𝑚𝑛𝑥𝑚 ≥ 𝐺

 

 



𝑥1 + 𝑥2 + …+ 𝑥𝑚 = 1
𝑥1, 𝑥2, … , 𝑥𝑚 ≥ 0

 

 

 

being 𝑥𝑖 the frequency at which the player chooses its i strategy, i = 1, 2, …, m. 

 

For player B 

 

The target is to minimize H (value of the game) subject to the constraints 

 
𝑔11𝑦1 + 𝑔12𝑦2 + …+ 𝑔1𝑛𝑦𝑛 ≤ 𝐻

⋮
𝑔𝑚1𝑦1 + 𝑔𝑚2𝑦2 + …+ 𝑔𝑚𝑛𝑦𝑛 ≤ 𝐻

 

 
𝑦1 + 𝑦2 + …+ 𝑦𝑛 = 1

𝑦1, 𝑦2, … , 𝑦𝑛 ≥ 0
 

 

 

being 𝑦𝑗 the frequency at which the player chooses its j strategy, j = 1, 2, …, n. 

 

 

When there is a solution G = H. 

 

If  

 

max
𝑖

min
𝑗

[𝑔𝑖𝑗] = min
𝑗

max
𝑖

[𝑔𝑖𝑗],    𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2, … , 𝑛 

 

the common value is the value of the game and the mathematical programs presented 

above are avoidable. 

 

Note:  

-In this kind of problems there is simultaneously a maximization of  

minimums and a minimization of maximums. 

 

                NASH THEOREM 

 

    For the case of non-zero-sum games involving two or more players in direct 

competition – non-cooperative games – it is not possible to use the Minimax theorem as 

it was shown above. Instead, it is useful a Minimax theorem generalization from John 

Nash: 

 

     Theorem 8 (Nash) 

     Any non-cooperative game of n players, in which each player has a finite  

number of strategies, has at least one set of equilibrium strategies. 

 



               Note: 

               -This theorem shows that there can be multiple equilibrium strategies 

               -Despite being non-cooperative games, the theorem shows that players earn 

more if they agree to cooperate.  

 

                Nash Equilibrium 

 

                It is a game theory solution concept of non-cooperative games with two or  

 

more players, in which each player is assumed to know the other players equilibrium  

 

strategies, and no player has anything to gain by changing only their own strategy. 
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