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Abstract  Fukami, Muzumoto and Tanak (FMK) are studied based on Godel and

Standard sequence definitions. These conditional inference are based on certain con-
ditions. In this paper, fuzzy conditional inference is studied for fuzzy intuitions which
contain “and/or ", “if-- - then--- else--- " and truth variables. some more fuzzy in-
tuitions are proposed. The proposed methods satisfy many fuzzy intuitions. Zadeh
first defined fuzzy set as a single membership function. The two fold fuzzy sets with
two membership functions will give more evidence than a single membership. The
fuzzy intuitions are studied with two fold fuzzy sets. The fuzzy certainty factor (FCF)

is studied to made as a single membership function. Business intelligence is given as
an example for the fuzzy intuitions.

Keywords Fuzzy sets Fuzzy logic- Fuzzy reasoningTwo fold fuzzy set Fuzzy
conditional inference Fuzzy certainty factor Fuzzy truth variablesBusiness intel-
ligence

1. Introduction

There are many theories proposed to deal with incomplete information. The fuzzy
logic[20] deals with “Belief’rather than “likelihood”(probability). Zadeh [15]. Mam-
dani [2] and Takagi-Sugeno-Kang (TSK [4] proposed fuzzy conditional inference.
FMK [1] proposed fuzzy intuitions and shown that Zadeh fuzzy conditional inference
is not suitable for these intuitions. FMK [6] adapting the Godel definition to prove
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smoe fuzzy intuitions. The methods used by FMK are having the certain restric-

tions. There is a need of method to prove some more fuzzy intuitions. Zadeh defined
fuzzy set with a single membership function. The fuzzy set with a two membership

functions will give more evidence than a single membership function. Here consid-

ered the two fold fuzzy set with “True”arhe fuzzy intuition contained “and/or ”,

“if --- then--- else--- " and truth variables are studied.

consider the given fuzzy inference

Type-1
If xis PQ andxis Q orxis Rthenyis Sis
xis Py andxis O, or xis R

yis?

If apple is red and apple is ripe or apple is sweet then apple is good is true
apple is very red and apple is more or less ripe or apple is not sweet

appleis ?

Type-2
If xis P thenyis Q elseyis Ris
xis Py

yis?

If Ramais Tall thenSitais SmallelseSitais Middle s true
Ramais veryTall

Sitais ?

2. Fuzzy Logic Based on Truth Functions

Zadeh defined fuzzy set with a single membership function [20]. The fuzzy set with
two fuzzy member functions “True” and “False"will give more evidence than the sin-
gle fuzzy membership function to deal with incomplete information. In the following
“two fold fuzzy set” is defined with “True” and “False”fuzzy membership functions.
The fuzzy logic and fuzzy reasoning of single membership function is extended to
fuzzy logic with two membership functions “True” and “False”.

2.1. The Two Fold Fuzzy Sets

“Atwo fold fuzzy set” may be defined with two membership functions “True” and
“False” for the proposition of typex‘is A”. The fuzzy set with two membership
functions “True”and “False” will give more evidence than the single membership
function.

For instance “Rama has Headache .



3

In this fuzzy proposition, the fuzzy set “Headache” may be defined with “True” and
“False”.

Definition 2.1 The “a two fold fuzzy setA in a universe of discourséis defined by
its membership functiomz(X) — [0, 1], whereA = {u}"¥(x), u52'5%(x)} and x € X}

LAé(X) anduh¥S¥(x) are the fuzzy membership functions of the “a two fold fuzzy
set’A,

u;”‘e(x) — fﬂxrue/x(x) = M;rue(xl)/xl 4o +ﬂ£rue(xn)/xm

/J'Iialse(x) — fﬂ;aISE(X)/X — ﬂ;alse(x)ﬂf\alse(xl)/xl FE #ialse(xn)/xn’ where “+”
is union,
For example, “young”"may be given for the fuzzy propositieris'young ”

young ={jaJsie ). ESise(0)

[ ie (x) = {0.9/10 + 0.8/15+ 0.69/20 + 0.59/25+ 0.5/30,
+0.42/35+ 0.36/40+ 0.31/45 + 0.26/50},

yggl';eg(x) ={0.36/10+ 0.31/15+ 0.26/20+ 0.23/25+ 0.2/30+ 0.18/35
+0.16/40+ 0.14/45+ 0.12/50}.
For instance. “Rama is young” with fuzzinegs8, 02}, where0.8 is “True” and
0.2is “False”.
The Graphical representation of “True” and “False” of “young” is shown in Fig.1.

1
09
08 \
07 \ ,./I'/.
06 \
s =#—young
04 === not young
\\
03
02 '\
01 +
o

10 15 20 25 30 35 40 45 50

Fig.1 Two fold fuzzy set membership functions
2.2. The Fuzzy Logic with Truth Functions

The fuzzy logic is combination of fuzzy sets using logical operators. The fuzzy logic
with “two fold fuzzy sets” is combination of “two fold fuzzy sets” using logical op-
erators. The fuzzy logic bases on “two fold fuzzy sets” can be studied similar lines
of Zadeh's fuzzy logic.

Some of the logical operations are given below for fuzzy sets with two fold fuzzy
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membership functions.

A, BandC are fuzzy sets with two fold fuzzy membership functions.
Let tall, weight and more or less weight are two fold fuzzy sets.
tall = {0.9/%; + 0.8/% + 0.7/%3 + 0.4/X4 + 0.2/Xs,

0.5/%1 + 0.4/%, + 0.3/%3 + 0.2/%4 + 0.1/%5}
weight= {0.8/x; + 0.7/%, + 0.5/X3 + 0.3/X4 + 0.2/Xs,

0.2/%1 +0.2/% + 0.1/%3 + 0.1/%4 + 1/Xs}
more or IessweTght:{O.Q/xl +0.8/% + 0.7/%3 + 0.5/%4 + 0.4/ Xs,
0.4/%1 + 0.4/%y + .3/%3 + .3/X4 + 0.3/ Xs}.

Negation

xis notA

A(X) = {1 - ppMe(x), 1 - ph@5%(x)}/

x is nottall

tall = {0.9/X; + 0.8/% + 0.7/%3 + 0.4/%4 + 0.2/ Xs,
0.5/X1 +0.4/%, + 0.3/%3 + 0.2/X4 + 0.1/ X5}

1-tall = {0.1/X; + 0.2/X; + 0.3/X3 + 0.6/%4 + 0.8/xs,

0.5/%1 + 0.6/%, + 0.7/%3 + 0.8/%4 + 0.9/ x5}.

Disjunction

xisAoryis B

A v B = (max(ufue(x), ul"(y), max(uEs(x), uEHS(y))}/(x.y),

tall v weight={0.9/x; + 0.8/Xz + 0.7/%3 + 0.6/%4 + 0.5/xs,
0.4/%1 + 0.3/% + 0.2/%3 + .1/ X4 + .1/ Xs}.

Conjunction

xisAandy isB

A A B = {min(ur™e(X), w5 (), min(uEa(X), uE2s%(y))}/ (X, y),

tall A weight= {0.8/x; + 0.7/%, + 0.5/X3 + 0.2/X4 + 0.2/Xs,
0.1/%1 + 0.1/% + 0.1/%3 + 0.1/%4 + 0.1/X5}.

Implication
Zadeh [18] fuzzy conditional inference is given as
if xisAthenyisB=A— B=min{1,1- A+ B}, (2.1)

=(min(1, 1 - k() + uf(y)), min(L, 1 - L53550) + LE3y)/ (%),
tall > weight=<0.9/x; + 0.9/%, + 0.8/%3 + 0.9/X4 + 1/Xs,
0.7/%1 + 0.8/%> + 0.9/%3 + 0.9/%4 + 1/Xs}.
Mamdani [5] fuzzy conditional inference is given as
if xisAthenyisB=A — B= AxB (2.2)
if X1 is Ap andxy is A and- - - andx, is A, then y isB =min{A, A,, .. , A,, B}
tall x weight= {0.8/x; + 0.7/%, + 0.5/xX3 + 0.2/X4 + 0.2/Xs,
0.1/% +0.1/% + 0.1/x3 + 0.1/%4 + 0.1/%5}.
TSK [5] fuzzy conditional inference is given as
if xis Athen y=t(x) isB
if 1 is Ay andxy is A; and- - - andx, is A, theny isB = t(Ag, A, - - - , Ay) = min{ A,



Ao, .. A, B}
Using t-norm, the fuzzy inference is given as
if xis Atheny isB = t(A) =
e[ uay) = [ na¥ quad ) o @3
|f x1 is Ay andx; is A, and- - - andx, is A, theny isB = AjandAy, - -- , A, = min{A,
Ao AL A, L A

—mln{Al, A, .. An}
B AlandAg, y An

The fuzzy conditional inference is given as,
if X is Ay andx, is Ay and- - - andx, is A, then y isB
—{min('&l, Ao . AN}
if X|sAtheny|sB {A} (2.4)

tall — Welght— {0.9/%1 + 0.8/% + 0.7/%3 + 0.4/ %4 + 0.2/ Xs,

0.5/x1 + 0.4/%2 + 0.3/%3 + 0.2/%4 + 0.1/ X5}

Zadeh [18] fuzzy conditional inference is given as
if xis Athenyis Belseyis € = (Ax B+ A’ x C,) where “+ " is union

Reddy [13] fuzzy conditional inference is given for %fs Athenyis B elsey is
C"as,

if xis AthenyisB=A - B

if xis notAthenyisC=A — €

Composition
if xis Atheny isB
xis Ay

yis A; 0 (A — B)

Ao (A— B) =(minfu;"é(x), min(1, 1 — g} "%(X) + u5MSY))},
mingu2e (), min(L, 1 - p955) + pE25)) )/
if x=y
:{ { rue(x) mln(l 1- H;rue(x) +'uTrue(x))
il 09, min(L 1 1535500 + uE5400)

if x is tall thenx is weight
xis verytall

xis verytall o (tall — weigh?

Fuzzy quantifiers
The fuzzy propositions may contain quantifiers like “very”, “more or less” etc. These
fuzzy quantifiers may be eliminated as

Concentration
Xis veryA
Hvery A(X) #JéfyeA(X)z N\'fgrlie(x)z
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x is verytall
Hyery t@i(X) ={0.81/%1 + 0.64/%; + 0.49/%3 + 0.16/x4 + 0.04/Xs,
0.25/x3 + 0.16/%> + 0.09/x3 + 0.04/x4 + 0.01/xs}

Diffusion
if X is more or lesé
HMmore or less A(X):{#L';rg or less AX)Z,ﬂEgéeor less AX)OB}
if Xxis more or lessall
Himore or less tail ) = {0.95/x1 + 0.89/%; + 0.84/%3 + 0.63/x4 + 0.45/Xs,
0.70/%1 + 0.63/Xo + .054/ %3 + 0.44/X4 + 0.31/Xs}.

3. Fuzzy Inference for Fuzzy Intuitions

Consider the logical inferences

Modus Pones

p—dq
P

q

Modus Tollens
p—q

p’

Generalization
pvag=p

Pvag=q

p’ v p = Contradictory

Specialization
pAQ=Dp

pAg=(q

p’ A p = Contradictory

The inference is given using generalization and specialization

PpAQVI=pVr=p
pAQVI=qVr=q
pAQVI=pVrI=r

Consider fuzzy inference Type-1



If xis P andxis Q orxis Rthenyis &
xis Py andxis Q; orxis R

yis?
The fuzzy inference is given for Type-1 using generalization and specialization

If xis P thenyis S
Xis |51

yis?

If xis Q thenyis §
Xis Q~1

yis?

If xis Rthenyis §
Xis Ry

yis?
Confider fuzzy inference Type-2

If xis P thenyis Q elseyis R
xis Py

yis?
The fuzzy inference is given for Type-2 using generalization and specialization

indent (ifx is P thenx is Q)
xis P;

yis?

(if xis P’ thenxis R)
xis P;

yis?

From fuzzy conditional inference Type-1 and Type-2, the two criterions may be
given as

Criteria-1



If xis P thenyis S
xis P;

yis?

Criteria-2

(if xis P’ thenx is R)
xis P;

yis?

The fuzzy inference is drawing a conclusion from fuzzy propositions.
The fuzzy intuitions for Criteria-1 Based on FMK are given as.

-1
if xis P thenyis S
xis P

yis S

-2
if xis P thenyis S
xis S

yisP

-1
if xis P thenyis S
xis veryP

yis veryS

-2
if xis P thenyis S
xis very$

yis P

-1
if xis P thenyis S
X is more or les$

yis S



-2
if xis P thenyis S
x is more or les$

yis P

V-1
if xis P thenyis S
xis notP

yis notS

V-2
if xis P thenyis S
xis notS

yis notP

The fuzzy inference is given for Criteria-1 according to fuzzy intuitions.

Table 1 : Fuzzy inference for Criteria-1.

Intution Proposition Inference

I-1 xis P yisS

-2 yis S xis P
-1 xis very P yis veryS
-2 yis veryS xis P
-1  xismoreorles®  yisS
11-2 yis mor or lessS is P
V-1 xis notP yis notS
V-2 yis S X is notP

4. Verification of fuzzy intuition using Fuzzy Conditional Inference
Verification of fuzzy intuitions for Criteria-1

4.1.1 In the case of intuition I-1

Po(P-S)

=P o (Px S)

= [up(¥) o (S up() A [us(y))
Using (2.4)
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= [up(x) o (f ua(¥))

= [us®) A ([ usy))

= [us(®

zyisS

intuition I-1 satisfied.

4.1.2 In the case of intuition I-2

(P->98)08

=(Px8) oS

=([us() A [us(y) o [ us(y)
Using (2.4)

= [up(¥) 0 [ us(y)
Using (2.3)

= () A [ pp(x)

= [us(¥)

=xis P

intuition 1-2 satisfied.

4.1.3 In the case of intuition 1I-1

veryPo (P - 8)

=veryPo (P x 8)

= [ vens (9 0 (f () A [ us(y))
Using (2.4)

= [ tyerys() 0 (f 15(¥)
Using (4.1)

= [us(¥)? A ([ us(y)

[ ns(y)?

= f/iveryé(z()

=y is veryS
Where

Jus)? < [ usy).

Jus)? < [ us).

intuition 1l-1 satisfied.
4.1.4 In the case of intuition [I-2

(P - S)overy$

=(PxS)overyS

= (fﬂﬁ'(x) A fﬂé(y)) 0 fﬂveryQ(y)
Using (2.4)

= (fﬂf’(x)) 0 fﬂveryé(y)
Unking (2.3)

= (f,uﬁ(X)) A f:uvery15(x)2

[ (%2

= f/v‘ver)ﬁ()s)

=xis veryP
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Where
Jus(¥)? < [ up(x).
Jup(¥? < [ up(x).

intuition 11-2 satisfied.
4.1.5 In the case of intuition [l1-1

more or les o (P — 5)
=more or les® o (P x )
= fﬂmoreorlesﬁ’(x) 0 (f,u,s(X) A fﬂé(y))
Using (2.4)
= fﬂmoreorlesﬁ’(x) 0 (flué(y))
Using (2.3)
= fﬂmoreorlesé(x) A (fﬂé(y))
Jus)°
= f,umorelesé(y) .
=y is more or les$
Where
Jus°° 2 [ us)-
Jus°® = [us)-
intuition 111-1 satisfied.

4.1.6 In the case of intuition [11-2

(P — S) o more or les§

=(PxS)overyS

= (fuﬁ(X) A fﬂé(y)) 0 f/v‘moreorlesg(x)
Using (2.4)

= (f,uﬁ(X)) Y fﬂmoreorlesé(y)
Unking (2.3)

= (f,tlf;(X)) A fﬂmoreorlesé(x)

S (3%

= f,umoreorles(;ﬁx) .

=x is more or les$
Where

[ 1s(9°% 2 [ pp(x).

J1s(9°% > [ up(x).

intuition 111-2 satisfied.
4.1.7 In the case of intuition V-1

notPo (P— S)
=P’ o (PxS)
= [us () o (fup() A [ us(y)
= [ () o ([ (%)
Using (2.4)
= [us () A ([ (X))
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= contradictory
intuition V-1 not satisfied.
4.1.8 In the case of intuition V-2
(P>8) oS
=PxS8)o%
=(fus0) A [us@) 0 s ()
Using (2.4)
= (s 0 [ s ()
Using (2.3)
=(fus09) 0 [ ()
= Contradictory
intuition 1V-2 not satisfied.

Criteria-1 is suitable for I-1,1-2, 1I-1, II-2, 1lI-1 and 1lI-2.

The fuzzy intuitions are give based on FMK for Criteria-2 .

I-1
if xis P’ thenyis R
xis P

yisR

-2
if xis P’ thenyis R
xis R

yis P

Ir-1
if xis P’ theny is R
xis veryP

yis veryR

-2
if xis P’ theny is R
xis veryR

yisP

1nr-1
if xis P’ theny is R
X is more or les$
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yisR

1nr-2
if xis P’ thenyis R
X is more or lesK

yis S

IV’-1
if xis P’ thenyis R
xis notP

yis notR

Iv'-2
if xis P’ thenyis R
X is notR]S

yis notP

The inference is given for Criteria-1 according to intuitions.

Table 2 : Fuzzy inference for Criteria-2.

Intution Proposition Inference
-1 xis P yisR
-2 yisR xis P
-1 xis veryP yis veryR
-2 yis veryR xis P
-1 xismoreorles®  yisR
-2 yis mororlesR isP

V-1 xis notP y is notR
I\v’-2 yisR x is notP

Verification of fuzzy intuitions for Criteria-2

4.2.1 In the case of intuition I'-1
Po(P >R
=P o (P'x R

= fluﬁ(X) o (f,uﬁ/(X) A f:uli(y))
Using (2.4)
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= [ us() 0 ([ up.(¥)
indent = [ u5(X) A ([ p (X))

= Contradictory

intuition I’-1 not satisfied.

4.2.2 In the case of intuition I'-2

(P > RoR

=(PxR)oR

= (109 A [ 1a®)) 0 [ &)
Using (2.4)

=(fus () 0 [ ua(y)

= ([ s () A [ paly)
Using (2.3)

= min{ [ pg (%), [ ug(y))

= Contradictory

intuition I’-2 not satisfied.

4.2.3 In the case of intuition II’-1

veryPo (P - R)

=veryPo (P xR

= [us(0% 0 ([ 159 A [ )
Using (2.4)

= [1p092 0 (f ()
indent = [ (97 A ([ 15 (X))

= Contradictory

intuition 1I'-1 not satisfied.

4.2.4 In the case of intuition II’-2

= (P’ x R) o veryR

= (s A [ e 0 [ 1a()?
Using (2.4)

= ([ up (%) 0 [ ugy)?

=([us () A [ ugy)?
Using (2.3)

= min{ [ ux(9), [ ug¥)?

= Contradictory

intuition 1I’-2 not satisfied.

4.2.5 In the case of intuition 1lI’-1

more or lesP o (P’ - R)
=more or les® o (P’ x R)
= [up(° 0 (f s () A [ pa(Y))
Using (2.4)
= [1p(¥°® 0 ([ us (X))
indent = [ 1(X)°° A ([ s (X))

(P - R)o veryR
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= Contradictory
intuition 111’-1 not satisfied.

4.2.6 In the case of intuition 11I’-2

(P - R) o more or lesK
= (P x R) o more or lesK
=(Jus( A [ e 0 [ &)
Using (2.4)
=(Jup () 0 [ ua(y)°®
=([us () A [ uay)°®
Using (2.3)
= min{ [ pg (), [ 1a))
= Contradictory
intuition 1I’-2 not satisfied.
4.2.7 In the case of intuition IV’-1
notPo (P - R)
=P o(P xR
= [us () o ([up0d A [ ur)
Using (2.4)
= [up(x) o (f H5(¥)
using (2.3)
= [ () A ([ u5(9)
= [ue®)
=yisnotR
intuition 1V’-1 satisfied.
4.2.8 In the case of intuition IV’-2
(P - R) o notR
= (P x R) o notR
=(fup() A [ ua¥) 0 [ ux(y)
Using (2.4)
= (S up (%) 0 [ ()
= ([ s () A [ )
Using (2.3)
=min{ [ us (X, [ 15}
=yisnotP
intuition 1V’-2 satisfied.

Criteria-2 is suitable for IV-1 and IV-2.

5. Fuzzy Truth Variables

Zadeh [16] defined quantification of truth variables as composition of fuzzy set and
truth variables.
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Definition 5.1 The quantification of fuzzy truth variables for fuzzy set of fuzzy propo-
sition of the type “xis Aig” is defined asu,*(X) 0 T,whereua(x)™! is inverse of
comparability function of A , “0” is composition and is fuzzy truth variable like
true, false, very true etc.

Definition 5.2 The composition of fuzzy truth variables for “a two fold fuzzy set”of
fuzzy proposition of the type “x i is " may be defined as

AC)™ = pa(9)" = (™M), 1G¥(X)} 0 7

where quantification of truth variable applied on respective truth functioas.

AX)™ = {pa(¥)™, uh¥*¥(X)}, wherer;= not true, very true, more or less true e.tc.
For instancer;;= very true
AX)™ = {ua(¥)2 1G25(X)}

AX)™ = {ua(x) T8, 142 (X)), wherer,= not false, very false, more or less false e.tc.

For instance,,= more or less false
AX)™ = {ua() T 122 (X))

The truth functional modification of fuzzy propositior s A is very true” is given
(LS00, G0 0 very truel e, 00, i 00}

The truth functional modification of fuzzy propositioris A is very false”is given
(A" 00, 559X} 0 very false Fu,(X), ufas(x)),

The truth functional modification of fuzzy propositioxis tall is very true” is

given as

tall = {0.9/%; + 0.8/%, + 0.7/%3 + 0.4/X4 + 0.2/ Xs,
0.5/%1 + 0.4/% + 0.3/%3 + 0.2/%X4 + 0.1/%5},
very tall = {0.81/%; + 0.64/%, + 0.49/%3 + 0.16/X4 + 0.04/xs,
0.5/%1 + 0.4/%, + 0.3/%3 + 0.2/%X4 + 0.1/X5}.
The truth functional modification of fuzzy propositiox is tall is very false” is

given as

tall = {0.9/x1 + 0.8/xz + 0.7/%3 + 0.4/x4 + 0.2/%s,
0.5/%1 + 0.4/%, + 0.3/%3 + 0.2/%X4 + 0.1/%5},
very tall = {0.9/x; + 0.8/%; + 0.7/x3 + 0.4/%4 + 0.2/ Xs,
0.25/%1 + 0.16/%2 + 0.09/x3 + 0.04/x4 + 0.01/Xs}.
The nested fuzzy propositions of the form
xis Ais (11 is (t2... isTp)) = XisA0 1) 072 0--- O 7.

Consider quantification of truth variables for fuzzy inference Type-1

If xis P andxis Q orxis Rthenyis Sis
xis Py andxis O, or xis R

yis?

The fuzzy inference is given for Type-1 using generalization and specialization
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isPthenyisSist
xis Py

yis?

If xis Q thenyisSist
Xis (51

yis?

If xis RthenyisSist
xis Ry

yis?
Confider fuzzy inference Type-2

If xis P thenyis Q elseyis Ris
Xis |51

yis?
The fuzzy inference is given for Type-2 using generalization and specialization

indent (ifx is P thenxis Q) is
xis Py

yis?

(if xis P’ thenxisR) is T
xis Py

yis?

From fuzzy conditional inference Type-1 and Type-2, two criteria may be given as
Criteria-1

If xis P thenyis Sis

xis Py

yis?

Criteria-2
(if xis P’ thenxis R) is
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xis P,
yis?

The fuzzy inference is drawing a conclusion from fuzzy propositions.
The fuzzy intuitions are defined based on FMK for Criteria-1.

l, -1
if xis Pthenyis Sist
xis P

yis §°
l,—2
if xis Pthenyis Sist
xis S

yis P

", -1

if xis P thenyis Sist
xis very P

yis very&*

N, —2

if xis P thenyis Sist
xis very$

yis P

;-1

if xis PthenyisSis
x is more or les$

yis &°

I, -2

if xis PthenyisSis
xis more or les§

yis P*

V-1
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if xis PthenyisSist
xis notP

yis notS®

IV, -2

if xis P thenyis Sist
xis not$

yis notPr

The inference is given for Criteria-1 according to intuitions.

Table 1 : Fuzzy inference for Criteria-1.

Intution Proposition Inference
-1 xisPor yisS§®

I, -2 yisSor x is P
-1 xisveryPor y is veryS®
-2 yisverySor x is P*
lIl,-1 xismoreorlesPor yisS”
I, -2 yismororlesSor is P

IV, -1 xisnotPor y is not&*
IV, -2 yisSor X is notPr

Wherer = 11 0r s
Fuzzy Conditional Inference is straight forward based on verification of fuzzy intu-

itions for Criteria-1

Criteria-1 is suitable for, — 1,1, = 2, 11, = 11,1, - 2, [l , = L andlll, — 2.

The fuzzy intuitions are defined based on FMK for Criteria-2 .

111
if xis P’ thenyis Rist
xis P

yis R

)
if xis P’ thenyis Ris t
xis R
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yis P*

-1
if xis P’ thenyis Ris t
xis very P

yis veryR

1", -2
if xis P’ thenyis Ris t
xis veryR

yis P

-1
if xis P’ thenyis Ris r
X is more or les$

yis R
;. -2

if xis P’ thenyis Ris r
X is more or lesR

yis §°

\V
if xis P’ thenyis Ris t
xis notP

yis notR’

V! =2
if xis P’ thenyis Ris t
X is notR]S

yis notP”

The inference is given for Criteria-2 according to intuitions.
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Table 2 : Fuzzy inference for Criteria-2.

Intution Proposition Inference
I7-1 xisPoist yisR
I7-2 yisRoist x is P
I, -1 xisveryPoist yis very R
", -2 yisveryRoist xis P
12-1 xismoreorlesPoist  yisR
I2-2 yismororlesRoist is P
v’ -1 xisnotPoist y is notR
v/ -1 yisRoisT X is not P’

Wherer = 1 0r o
Fuzzy Conditional Inference is straight forward based on verification of fuzzy intu-
itions for Criteria-2

Criteria-2 is suitable fotV, — 1 andIV, - 2.

4. Fuzzy Certainty Factor

The fuzzy certainty factor(FCF) shall made as single fuzzy membership functions
with two fuzzy membership functions to eliminate the conflict of evidence between
“True "and “False”.

Definition 4.1 The FCF ofuj for propositions “x isA” is characterized by its mem-
bership function::°F(x) — [0, 1], whereu R (x) = (M (x) — uE2%()}/x,

u5ECF(X) < 0,u5CF(x) = 0 and uf:c F(x)>0
are the redundant, insufficient and sufficient respectively.

The FCF will compute the conflict of evidence of the incomplete information.
For Example
u}gﬂﬁg(x) ={0.9/10 + 0.8/15 + 0.69/20 + 0.59/25 + 0.5/30 + 0.42/35 + 0.36/40 +
0.31/45+ 0.26/50}
yﬁglﬁeg(x) ={0.9/10+0.8/15+0.69/20+0.59/25+0.5/30+0.42/35+0.36/40+0.31/45+0.26/50

The Graphical representation of FCF is shown in Fig. 3.
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Fig.3 Fuzzy certainty factor
6. Application to New Fuzzy Conditional Inference for Fuzzy Intuitions

The Business intelligence needs reasoning. The Business data is defied with fuzzi-
ness with linguistic variables.

If xis Production and is Supply orxis Demand thely is Profit
X is less Production anxlis less Supply ok is more Demand

yis?
If xis Production thely is Profit
X is less Production

yis?
If x is Supply thery is Profit
X is less Supply

yis?
If xis Demand ther is Profit
X is more Demand

yis?
-1

if xis Demandtheny is Profit
X is Profit

y is Demand

;-2
if X is Demandtheny is Profit
xis Demand

yis Profit
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M, -1

if xis Demandtheny is Profit
xis very Profit

yis very Demand

-2

if xis Demandtheny is Profit
X is very lessDemand

yis very less Profit

m, -1

if xis Demandtheny is Profit
X is more Demand

y is more Profit

M, -2
M, -2

if xis Demandtheny is Profit
X is more or lesemand

y is Profit

v/ —1

if xis Demand’theny is Profit
X is notDemand

y is notProfit

AV

if xis Demand'theny is Profit
X is notProfit

yis notDemand

Consider the fuzzy data sets for production
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Table 3 : Fuzzy data sets.

Item No. | Denand | FCF
ltem1 | {0.5,0.1 | 0.4
ltem2 | {0.6,0.1 | 0.5
ltem3 | {0.9,0.2 | 0.7
ltem4 | {0.9,0.1 | 0.8
ltem5 | {1.0,0. | 1.0

The fuzzy conditional inference using is given by
Profit=Demand

Table 3 : Fuzzy data sets.

Item No. Profit FCF

lteml | {0.5,0.1 | 0.4
ltem2 | {0.6,0.1 | 0.5
Item3 | {0.9,0.2 | 0.7
ltem4 | {0.9,0.1 | 0.8
ltem5 | {1.0,0. | 1.0

The fuzzy conditional inference for Criteria-1 and Criteria-2 is given as

Table— 4 : Fuzzy inference.

temNo. | -1 | -2 | -2 | -2 | -1 | [I-2 | V-1 | IV’-2

teml | 0.3]0.2| 0.09|0.09| 055| 0.55| 0.7 0.7

tem2 | 05]05]025|025| 071|071 05 0.5

ltem3 | 0.7]0.7| 049|049| 0.84| 0.84| 0.3 0.3

ltem4 | 0.8 0.8| 0.64| 0.64| 0.89| 0.89| 0.2 0.2

ftem5 | 10}10| 10| 10| 1.0 | 1.0 | 0.0 0.0

The fuzzy intuitions are suitable for I-1,1-2, II-1, 1I-2, 11I-1, IlI-2, IV’-1 and IV’-2.
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The Business intelligence needs reasoning. The Business data is defied with fuzzi-
ness with linguistic truth variables.

If xis Production and is Supply orx is Demand thewy is Profit is very true
X is less Production anxlis less Supply ok is more Demand

yis?
If x is Production thely is Profit is very true
x is less Production

yis?
If xis Supply thery is Profit is very true
xis less Supply

yis?
If xis Demand thew is Profit is very true
x is more Demand

yis?

I, — 1if xis Demandtheny is Profit is very true
x is Profit

y is Demand/€'y true
:{04 0'1}Very true

={0.250.1}
FCF ={0.15}

I — 2if xis Demandtheny is Profit is very false
xis Demand

yis Profitery false
=(0.4,0.1}VeTY false
={0.5,0.01}

FCF ={0.49}

I, — 1if xis Demandtheny is Profit is very true
x is very Profit

yis very Demand€"Y true
={0.25,0.01Very true
=(0.35,0.01)

FCF ={0.34)

Il — 2if xis Demandtheny is Profit is very false
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xis very lessDemand

yis very less Profif€"y false
=(0.25,0.01yMore or less true

={0.25,0.001)
FCF ={0.25

I, — 1if xis Demandtheny is Profit is very true
X is more Demand

y is moreProfit/e"y true

={0.63, 0_31}very true
={0.39,0.31}
FCF ={0.08}

1. - 2if xis Demandtheny is Profitis more or less false
x is moreDemand

yis moreProfitnore or less false

=(0.63,0.3)Very true
=(0.63,0.55)
FCF ={0.08)

V! — 1if xis Demand'theny is Profit is very true
x is notDemand

y is notProfit/e"y true
=not0.4,0.1)Very true
=not0.16,0.1}

FCF =not{0.06}
=0.94

V! - 2if xis Demand'theny is Profit is very false
x is notProfit

yis notDemande'y false

=not0.4, 0'1}very false
=not0.4,0.01}
FCF =not{0.39}
=0.61
The fuzzy conditional inference using is given by
Profit=Demand
The fuzzy conditional inference for Criteria-1 and Criteria-2 is given as



27

Table- 5 : Fuzzy inference.

ltemNo. | I, =1 | =2 [ He=21 [ ;=2 | Hl,=1 | N, =2 | IV/=1]IV.=2

lteml 0.15 | 049 | 0.34 0.25 0.08 0.08 0.94 0.61

ltem2 0.26 | 0.59 0.45 0.77 0.28 0.22 0.65 0.41

ltem3 061 | 0.76 | 0.81 0.94 0.59 0.74 0.21 0.14

ltem4 0.71 | 0.89 0.84 0.94 0.62 0.85 0.20 0.11

ltem5 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0

The fuzzy intuitions are suitable foy— 21,1, -2, 11, -1, 11, -2, 111 . =1, 11l . -2,
IV, —1andIV! -2.

7. Conclusion

FMK studied fuzzy intuitions based on Godel and Standard sequence methods. some
more intuitions are proposed. These methods satisfy some fuzzy intuitions. The
proposed methods satisfy some more fuzzy intuitions. The fuzzy set with the two
fold fuzzy membership function will give more evidence than a single fuzzy mem-
bership one. The fuzzy logic with two fold fuzzy membership function is discussed
based on “True’and “False”. The fuzzy intuitions are discussed using to fold fuzzy
sets. The fuzzy Inference and fuzzy reasoning are studied for “a two fold fuzzy sets”.
The FCF is studied as the difference between the two fuzzy membership functions
“True”and “False”. The fuzzy Certainty Factor is made as a single fuzzy member-
ship function to compute the conflict of evidence of the Incomplete Information.
The fuzzy intuition with truth variables are studied for “a two fold fuzzy set”. The
business intelligence is discussed as application for “a two fold fuzzy set” for fuzzy
intuitions.
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