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Abstract—Renewable energy is a sustainable substitute to 

fossil fuels, which are depleting and attributing to global 

warming as well as greenhouse gas emissions. Renewable 

energy innovations including solar, wind, and geothermal have 

grown significantly and play a critical role in meeting energy 

demands recently. Consequently, Artificial Intelligence (AI) 

could further enhance the benefits of renewable energy 

systems. The combination of renewable technologies and AI 

could facilitate the development of smart grids that can better 

manage energy distribution and storage. AI thus has the 

potential to optimize the efficiency and reliability of renewable 

energy systems, reduce costs, and improve their overall 

performance. This study provides an overview of the 

applications of algorithms and models of AI as well as its 

advantages and challenges in renewable energy systems. 
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I. INTRODUCTION 

The energy system is vital to the development of the 
human society, especially in daily life, industry and 
transportation [1]. With a growing global population and 
advancing economy and culture, it is inevitable that the need 
for energy will rise [2, 3]. Renewable energy is being 
assigned increased responsibility for sustaining energy 
demands in order to avert an energy crisis and protect the 
environment from pollution produced by the usage of fossil 
fuels. One approach to the aforementioned issues is to 
employ renewable resources and technologies such as solar, 
wind, and geothermal. Since  renewable energy systems are 
highly impacted by their surroundings, it is imperative to 
apply methodologies and simulations to predict these 
changes for enhanced system efficiency and energy 
dispensation. 

To be objective, it is necessary to point out the 
drawbacks of renewable energy sources like solar and wind 
power. The main challenge of renewable energy is 
intermittent supply [4, 5]. In addition to uncertain output 
fluctuation of renewable energy sources, load demand is 
also uncertain [5-7]. Therefore, it is important to keep the 
power system stable in terms of supply–demand balance 
management [6, 8]. As an example, the output of solar 
panels can abruptly decrease because of clouds, resulting in 
a gap between power production and power demand, which 
can lead to power outages. Alternatively, excessive 
production of renewable energy production results in energy 
waste [5, 9]. Therefore, it is significantly vital  to improve 
accuracy forecasting of renewable energy sources to 
stabilize and secure grid operation [10]. In recent years, 
there has been an increase in the number of novel techniques 

and algorithms such as Artificial intelligence (AI) 
technologies that increase the reliability of forecasts for 
renewable energy sources [11-14].  

AI methods use huge data to develop intelligent 
machines capable of performing activities that would 
normally require the intelligence of a human. Since AI 
techniques including deep learning (DL) and machine 
learning (ML) are able to address nonlinear and complex 
data structures, they are gaining popularity in various fields 
of science and technology in order to solve real-life issues 
[15]. ML algorithms comprise artificial neural networks 
(ANNs), kernel and nearest-neighbor (k-NN), extreme 
learning machine (ELM), support vector machine (SVM), to 
name a few. These techniques have an advantage over 
statistical approaches in that they do not require any internal 
parameters of the solar systems.  

AI techniques can be used to design a model of a 
problem, which can be analyzed to predict the performance, 
fault diagnostics and control effectively in renewable energy 
systems. For instance, Bhuiyan et al. [16] employed 
machine learning models for estimating the speed of wind  
to analyze wind systems power yield. There are also crucial 
applications in the renewable field, like planning and 
forecasting of load demand [17], forecasting of solar energy 
[18], inverter control of PV systems [19] and maximum 
power point tracking [20], and battery energy storage [21]. 
These methods offer opportunities to minimize the risk of 
failure with whole systems and ensure its reliability. 
Although AI systems have the potential to be more precise, 
reliable, and comprehensive than traditional methods, there 
are still challenging issues such as decreasing the accuracy 
of renewable energy predictions on cloudy days (i.e., large 
databases) [22].  

This study aims to review state-of-the-art use of AI for 
major applications in renewable energy like forecasting. 
Therefore, a detailed review of the latest studies conducted 
in major applications for two diffeent sources of renewable 
energy including wind, and solar power projects is carried 
out. In addition, the view of current topical issues, future 
trends and challenges are discussed. 

II. AI TECHNOLOGY FOR OUTPUT POWER FORECASTING 

A. Forecasting the Output Power of Solar Systems 

Solar energy is generated by converting solar radiation 
into electrical energy using solar photovoltaic (PV) or solar 
thermal systems. The International Energy Agency Over 
show that the worldwide PV capacity exceeded 179 TWh in 
2021, a 22% increase over 2020. As a result of the direct 
and extremely essential effect that solar irradiance has on 
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the production power of solar systems, the accurate forecast 
of solar radiation plays a vital role in estimating solar power 
production. The ability to accurately anticipate the amount 
of electricity that will be produced by photovoltaic cells is 
essential for a variety of applications including micro-grids, 
energy optimization and management. The majority of AI 
models and algorithms are created based on data obtained 
from solar radiation, which enables them to perform better 
than other traditional models and approaches [23]. Below 
are the summaries and findings of a new and interesting 
studies on this topic. 

Table 1: Summary of reviewed articles predicting the output 
power of solar/wind systems 

Year Reference Models used Application 

2012 Shi et al. [24] SVM 

Solar 
systems 

2022 Pandu et al. [25] BDAAI-ENN 

2012 Mandal et al. [26] WT-BPNN; WT-RBFNN 

2021 Ağbulut et al. [27] SVM; ANN; k-NN; DL 

2013 
Bouzerdoum et al. 
[28] 

SARIMA; SVM 

2022 Lim et al. [29] CNN-LSTM 

2020 
Belmahdi et al. 
[30] 

ARMA; ARIMA 

2020 
Karaman et al. 
[31] 

ELM; ANN 

2019 Yang et al. [32]  

ME-EMD-MSSA-ELM 

ME-EEMD-MSSA-ELM 

ME-CEEMD-MSSA-ELM 

ME-VMD-MSSA-ELM 

Wind 
systems 

2017 Lin et al. [33]  VMD-DE-ELM 

2014 Su et al. [34]  ARIMA-PSO 

2005 Torres et al. [35]  ARMA; Persistent 

2002 Sfetsos et al. [36] Persistent; ANN; ARIMA 

2022 Gao et al. [37] DeIS;  k-MoGE; WkElm  

2018 Tian et al. [38] CEEMDAN-ANNs  

2020 Hu et al. [39] 
EWT-CSA-LSSVM;  

CSA-LSSVM 

2020 Li et al. [40] 

IDA-SVM;  DA-SVM;  

GA-SVM; Grid-SVM;  

GPR; BPNN 

2022 Amoura et al. [41] ANN; ANFIS 

2016 Meng et al. [42] WPD-CSO-NN 

Note: ENN, Elman Neural Network; RBFNN, radial basis function 
neural network; BPNN, back propagation neural network; MSSA, 
multi-objective salp swarm algorithm; VMD, variational mode 
decomposition; CEEMDAN, complete ensemble EMD with adaptive 
noise; DeIS, a decomposition and integration strategy, k-MoGE, k 
point modified multi-objective golden eagle optimizer; WkElm, 
weight hybrid kernel extreme learning machine; EWT, Empirical 
Wavelet Transform; CSA, Coupled Simulated Annealing; LSSVM, 
Least Square Support Vector Machine; GA, genetic algorithm; 
BPNN, back propagation neural network; GPR, Gaussian process 
regression; WPD, Wavelet packet decomposition;  CSO, crisscross 
optimization algorithm; NN, Neural Networks. 

Shi et al. [24] developed algorithms for estimating the 
electricity production of PV systems using weather 
classification and support vector machines (SVM). Four 
models that matched four standard days were established: 
cloudy, foggy, rainy, and sunny. While sunny days produced 
the greatest outcomes (in this case, an MAE of 4.83%), the 
MRE was 8.64% on average. The findings demonstrate that 
the recommended forecasting approach for grid-connected 
PV systems is both effective and promising. This led to  

integration of big data with AI (BDAAI) as proposed  by 
Pandu et al. [25] to forecast solar radiation.  Furthermore, 
Mandal et al. [26] suggested a combination of wavelet 
transform (WT) and AI techniques for estimating PV power. 
Son et al. [43] demonstrated that a six-layer feedforward 
DNN performs better than other traditional models. 
However, the accuracy of predictions decreased on summer 
and cloudy weather.  

In another study, the researchers evaluated and compared 
four models of ML algorithms, like support vector machine 
(SVM), artificial neural network (ANN), kernel and nearest-
neighbor (k-NN), and DL to forecast everyday solar 
radiation expending data from the two preceding years. The 
findings demonstrated that four models with high accuracy 
and reliability may be employed for prediction; where the 
ANN method outperforms among all algorithms, followed 
by DL, SVM, and k-NN [27]. Moreover,  Voyant et al. [44] 
show that the ANN algorithm outperforms the other three 
algorithms (Support Vector Regression, General Regression 
Neural Network, and Random Forest) in terms of accuracy 
of prediction, computational time, and error. 

This led to the development of a hybrid model by 
Bouzerdoum et al. [28] who combined  the cyclical auto-
regressive integrated moving average method (SARIMA) 
and SVM for short-term power forecasting. The findings 
indicated that the developed hybrid model outperformed the 
SVM and SARIMA model. On the other hand, Lim et al. 
[29] developed a hybrid model comprising a convolutional 
neural network (CNN) and long short-term memory 
(LSTM) to precisely forecast the amount of power that will 
be generated. 

B. Forecasting the Output Power of Wind Systems 

Recently, wind energy is growing in popularity 
worldwide as it is a green source of power, inexpensive, and 
limitless. The wind turbine is a promising example of 
renewable energy because it contributes directly to the 
decrease of emissions. Nevertheless, predicting wind energy 
remains difficult due to its temporal variability and 
uncontrollable fluctuations, leading to challenges in 
generating constant wind power. Hence, developing a 
reliable model for forecasting wind energy is essential [32]. 
Several predicting methods for wind power have been 
developed, including the physical, conventional statistical, 
and intelligent forecasting approaches [33]. Since there is a 
correlation amid wind speed, route and the power 
productivity of wind systems, the majority of AI simulations 
and algorithms are revolutionized using wind speed 
statistics. 

Physical approaches are more apt for longstanding wind 
energy conjectures [34, 45] although conventional statistics 
perform better for short-term forecasting such as the 
autoregressive moving average (ARMA) [35] and the 
autoregressive integrated moving average (ARIMA) model 
[36]. While statistical models provide highly precise 
extrapolations for linear components of data, nonlinear data 
render inaccurate predictions [37]. Statistical methods are 
thus more computationally effective compared to corporeal 
and intelligent learning approaches. 

With the fast development of AI, intelligent forecasting 
models and algorithms have been effectively developed and 
used in wind energy forecasting [46], such as ANN [38, 47] 
and SVM [39, 40]. Scholars proposed and compared two 
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models, ANN and adaptive neuro-fuzzy inference system 
(ANFIS), to predict the speed of wind. The findings 
illustrated that the ANFIS algorithm performs better than 
ANN [41]. Authors demonstrated that ANN model 
accurately predicted wind power and outperformed 
analytical models. 

In recent years, many hybrid systems for predicting wind 
speed have been proposed because they achieve better single 
method forecasting performance [42]. For example, hybrid 
systems named empirical mode decomposition (EMD)-ENN 
is developed by Wang et al. [48] to forecast wind power 
production. In another study, authors have suggested hybrid 
SVM models to improve forecast precision  [47]. Moreover, 
the Improved Dragonfly Algorithm and an SVM were used 
in a hybrid forecasting prototype to predict temporary wind 
power yield [40]. 

III. CONCLUSIONS  

In this review, a brief appraisal of the application of AI 
in renewable energy is given. In forecasting the output 
power, numerous studies proposed models of AI algorithms 
that have high prediction accuracy, less computational time, 
and less error. Therefore, AI can also be used to keep the 

power system stable in terms of supply–demand balance 
management when renewable energy source is intermittent. 
However, AI systems need to solve issues such as the 
accuracy of an AI model for cloudy days, and the 
availability of quality data to train and evaluate the models. 
Regarding the ageing of PV panels, a suitable AI system for 
power production also needs to be developed [49]. 

In the future, more research can be conducted on a 
variety of other renewable system issues, such as energy 
storage systems and enhancement of model precision for 
cloudy days. Also, to improve AI-based forecasts, huge 
datasets with proficient data are superior. Comparable 
results of testing using specific wind and solar energy 
models in various geographical regions with distinct overall 
patterns would further improve its accuracy. 
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