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Improved Knowledge Distillation for Crowd
Counting on IoT Devices

Abstract—Manual crowd counting for real world problems is
either impossible and/or results in wildly inaccurate estimations.
Deep learning is one area that has been applied to address this
issue. However crowd counting is a computationally intensive
task. Many crowd counting models employ large-scale deep
convolutional neural networks (CNN) to achieve higher accuracy,
however these are typically at the cost of performance and
inference speed. This makes such approaches difficult to apply
in real world settings, e.g., on Internet-of-Things (IoT) devices.
To tackle this problem, one method is to compress models using
pruning and quantization or use of lightweight model backbones.
However, such methods often result in a significant loss in
accuracy. To address this, some studies have explored knowledge
distillation methods to extract useful information from large
state-of-the-art (teacher) models to guide/train smaller (student)
models. However, knowledge distillation methods suffer from
the problem of information loss caused by hint-transformers.
Furthermore, teacher models may have a negative impact on
student models. In this work, we propose a method based on
knowledge distillation that uses self-transformed hints and loss
functions that ignore outliers to tackle real world and challenging
crowd counting tasks. Through our approach we achieve a
MAE of 77.24 and a MSE of 276.17 using the JHU-CROWD++
[1] test set. This is comparable to state-of-the-art deep crowd
counting models, but at a fraction of the original model size and
complexity, thus making the solution suitable for IoT devices.

Index Terms—Crowd counting, Deep learning, Knowledge
distillation.

I. INTRODUCTION

Crowd counting involves an estimation of the total number
of people in a crowd. This can be based on static images,
pre-recorded video streams or ideally live video streams. This
is useful in many scenarios, e.g., when evaluating and subse-
quently preventing over-crowding situations or just estimating
the size of crowds more generally. In both cases, the inference
speed and accuracy of crowd counting models can be critical.
Many modern deep learning models used for crowd counting
utilize CNN networks as the backbone, then produce density
maps that contain a high volume of information. Such maps
often have a degree of associated noise as shown in Figure 1.

To increase the inference speed of crowd counting mod-
els, many works have employed lightweight CNNs as the
backbone, however such models either have low accuracy
or they are too large for deployment to constrained IoT
devices [2]–[6]. Another approach is compressing pre-trained
larger-scale, crowd counting models using approaches such as
pruning and quantization. However these can cause a loss in
accuracy due to the limited number of parameters. Therefore
some crowd counting works have explored knowledge distil-
lation (KD) to reduce the size of models whilst attempting

to maintain accuracy. This is often achieved by distilling
knowledge/information from larger (teacher) models to smaller
(student) models [7], [8].

Fig. 1. Examples of crowd counting where ID is the image id in the JHU-
CROWD++ data resource; GT is the ground-truth count; Pred is the predicted
count; S is the student predicted density map and T the teacher predicted
density map.

To distill as much as knowledge as possible from a teacher
model, many crowd counting KD methods distill knowledge
from multi-layered feature-maps (also known as hints) in the
backbone of the teacher model, e.g., [7], [8]. Since the hints
used in the teacher model are different from the student
model, KD methods need to employ transformers to adjust
the features map dimensions to address the requirements of
the loss functions. However, this can give rise to a loss of
information in the KD process [9]. To tackle this problem, KD
methods such as [7], [10]–[13] employ convolutions (with 1x1
filters) to increase the number of channels used for student
hints to match the teacher’s hints. However, transformers
employed in a given KD process are not part of a student
model, hence the knowledge learned from the teacher model
in the transformer is not always useful for inferences made
by a student model. One approach to resolve this is to
let the transformers form part of the student model. This
can eliminate the parameter loss problem, however this can



increase the size of the model. Another problem with hint
distillation is that many KD methods choose their hints without
apparent reason or justification [9]. Knowledge in the selected
hints could therefore have a negative and unexplained impact
on a given student model.

In this work, we propose a KD method that uses self-
transformed hints to avoid the need for additional transformers.
The motivation is that if the teacher model has multi-layered
feature maps (hints) that have the same dimension in each
layer and sufficient useful knowledge for distillation, it is
possible to design student models that have hints with the
same dimensions as teacher model hints, thereby obviating
the need for transformers. We call feature-maps that meet the
above requirements as self-transformed hints.

KD also suffers from outlier problems when applied to
regression tasks [8], [14]–[16]. An outlier is a data sample
that can for example cause the teacher model to produce a
larger loss than the associated student model. The negative
impact of outliers in classification tasks is limited, since
cross-entropy loss is bounded. Outliers, can however have a
significant negative impact on regression tasks since regression
loss is unlimited, especially when the output is for example
a density map. To tackle this problem [14] ignore outliers in
the bounding-box regression branch used for object detection
tasks and increase the weight of the soft-loss based on the
accuracy of the teacher model in the post-regression task [15].
[16] reduce the weight of the outlier soft-loss in tasks such
as sinusoidal fitting, gaze direction prediction and head-pose
prediction. For crowd counting, ShuffleCount [8] reduces the
weight of the feature loss over time as the number of epochs
increases. However, this method does not target outliers, but
all data samples. In this work, we propose an improved outlier-
tolerant loss for KD that removes the potential (negative)
impact of outliers. The main contributions of this work are:

• we propose a method for distilling knowledge using self-
transformed hints, which can prevent information loss
both during the distillation process and when using the
student model for inference;

• we propose an approach that can reduce the impact of
outliers on loss, and

• we show how the proposed student model, after distilla-
tion, has a high degree of accuracy with far fewer param-
eters so that it is suitable for IoT devices used for real-
time crowd counting inference with results comparable
to much larger scale state-of-the-art models.

II. RELATED WORKS

A. Deep Learning-based Crowd Counting

Nowadays, most approaches to crowd counting utilize deep
convolutional neural networks (CNNs) to generate density
maps, which are then supervised by ground-truth pixel-wise
density maps [18] and one or more loss functions. A pixel-
wise density map can be defined as:

D(xj) =

N∑
i=1

N (xj ; yi, σ
2) (1)

where xj is a pixel, yi is the mean location of a given head
i in an image, and N (xj ; yi, σ

2) represents a 2D Gaussian
kernel with mean yi and variance σ. Then

∑
x∈X D(x) is the

estimated count of heads in image X which corresponds to
the estimated size of the crowd.

Deep learning methods such as [1]–[3], [7], [17], [19]–[26]
have achieved significant success in crowd counting tasks.
Zhang et al. [19] proposed a convolutional neural network to
resolve unseen aspects of crowd counting. A disadvantage of
this model however was that it required perspective maps in
order to calculate the size of pixels within an image. Work such
as [2] use three parallel CNN branches, each with a different
size of filter to produce features for images with varying
resolutions. CSRNET [21] used VGG16 [27] as the backbone
together with a dilated convolution to produce high-resolution
density maps. Gao et al. [22] used ResNet-101 [28] for
improved results. DSSINet [26] used three VGG16s (the first
ten layers) that share parameters to make the backbone larger.
The models discussed above use pixel-wise loss functions
that measure the distances of every corresponding pixel pair
between the ground-truth and the estimated density map. Such
an approach is computationally expensive. Ma et al. [17]
proposed a Bayesian Loss approach that used the weighted
average (the expectation) of counting all pixels instead of
pixel-wise counting to reduce the computational cost. During
model training, pixels were weighted using Bayes rules based
on their distance from the centre of a head.

While deep CNN networks can be used to improve the
accuracy of crowd counting models, they typically do so at
the cost of inference speeds. That is, such models normally
require GPUs with large processing capacities to achieve
timely inferences. To make crowd counting models suitable
for devices with limited computational resources, works such
as [5], [6], [29] adapt light-weight CNNs such as Mo-
bileNetV2 [30], ShuffleNetV2 [31] and EfficientNet-lite [32]
as the network backbones. In MobileCount [5], a simplified
MobileNetV2 model was utilized as the encoder/backbone,
and multi-layer feature maps used to exploit fusion methods
to increase the efficiency of the model. LigMSANet [29]
also used MobileNetV2 to extract multi-layer feature maps,
before decoding them to density maps using scale fusion
and adaptation. LigMSANet achieved comparable accuracy to
SANET and CSRNet but with less than 1 million parameters.
EffCC-lite2 [6] used EfficientNet-lite2 as the backbone and
adopted and enhanced the Bayesian loss of [17] to include
bounding-box annotations instead of pixel-wise density maps
for model training. It achieved an accuracy comparable to deep
crowd counting models such as [1], [17], [26], but with far
fewer parameters.

B. Knowledge Distillation

One way to increase the inference speed of deep crowd
counting models is by compressing the models, e.g., by
pruning or quantization, however this can cause a significant
loss of accuracy especially if the compression rate is too high.
To maintain accuracy, works such as [7], [8] adopt knowledge



Fig. 2. Proposed Knowledge Distillation Method. Here the input image goes through the teacher and student models. By using self-contained transformers
(T), both models produce dimension-adjusted feature maps (hints). The knowledge distillation process applies feature-loss (FL) and structure-loss (Structure-L)
on these hints and soft-loss (Soft-L) on density maps to distill knowledge from the teacher model to the student model. For inference of the student model,
the input image first goes through the backbone, then the transformers (T) adjust their dimensions, before they are fused into one feature map (summation).
This then goes through Regression Blocks (RB) [6] to produce the predicted density map. Bayes-L provides the Bayesian-loss [6], [17] that is then applied
for the predicted density map and the ground-truth density map.

distillation (KD) methods to distil knowledge from large crowd
counting (teacher) models to train smaller (student) models in
order to increase the accuracy of the student models.

Hinton et al. [33] propose KD for neural networks that
extract knowledge from the logits of teacher models. These
are transferred to a student (distilled) model by minimising
the loss or distance between their logits. The distilled student
model was able to achieve an accuracy very close to that of
the teacher model in the classification task using the MNIST
dataset. Romero et al. [11] introduced a KD method based
on hints to distil further knowledge. Since the dimensions
of hints can be different from layer to layer in the teacher
and the student model, they typically need to be adjusted
by transformers depending on the requirements of the loss
functions [12], [34]. However, such transformations can cause
information loss [9]. To reduce such loss, some works increase
the dimension of student hints to match the teacher model [7],
[12] .

For crowd counting tasks, SKT [7] use a structure distilla-
tion method to transfer the structure knowledge of hints from
the teacher model to student models. To reduce information
loss, the approach employs convolution layers with 1x1 filters
as transformers to enlarge the size of hints used in the
student model. The student model of SKT achieved a similar
accuracy to the teacher model albeit with far fewer parameters.
ShuffleCount [8] was the first crowd counting method to
consider the negative effects of teacher models. They apply
a soft decay factor to the features-loss to gradually reduce the
weight of the feature-loss as the number of training epochs
increased. ShuffleCount itself has 1.31 million parameters.

III. PROPOSED METHOD

A. Teacher Model Selection and Proposed Student Models

To minimize as much information loss as possible during the
KD process and improve the accuracy of subsequent inference,
the proposed method avoids the use of additional transformers
to adjust the dimension of feature maps (hints). Rather both
the teacher model and the student model must contain self-
transformed hints of the same dimension in their correspond-
ing blocks or layers, as shown in Fig. 2. Furthermore, the
hints should contain sufficient useful information (parameters)
to enable knowledge distillation. Since the dimensions of the
hints in the student model are the same as those in the teacher
model, a teacher model with a light-weight backbone is pre-
ferred since a heavy backbone, such as VGG16 or Resnet101,
may result in over-sized hints for small student models. An
over-sized hint not only makes the student model larger but
also makes the training process more time consuming.

Based on the selection criteria above, we adopt the light-
weight crowd counting model EffCC-lite2 [6] as the basis for
our teacher model. EffCC-lite2 employs 5 layers of dimension-
adjusted feature maps extracted from the backbone to produce
density maps based on fusion and regression blocks [6]. We
use these feature maps as self-transformed hints. A second
reason is that the information contained in the hints could
be sufficient to provide the knowledge needed by the KD
process, as it is used to generate density maps. The backbone
of the teacher model (EfficientNet Lite2 [32]) provides a light-
weight CNN, resulting in hints that are small enough for small
student models - of the order of 46.5K parameters. Finally,
every layer in the hint has the same dimensions (112x32x32),
which makes it possible to distill knowledge of the structure-



information (using Equation 5) from the teacher model to the
student model, thereby increasing the accuracy of the student
model [7].

Building on this, we design a student model with self-
transformed hints with the same dimensions as the teacher
model, but with a small backbone network (see Fig. 2).
By reducing the number of channels and the depth of the
backbone of the teacher model (EfficientNet Lite2), we reduce
the number of parameters of the student model to less than
one million. We then propose two student models: one with
0.875 million parameters and the other with 0.228 million
parameters. The backbones of the student models are described
in Table I. The details of EfficientNet can be found in [32].
In the student models, the self-contained transformers use
convolutional operations with 1x1 filters to change the channel
number of the input tensors to 112. This is then used to
interpolate the feature maps to increase their length and width
to 32. The fusion and regression blocks of the student model
are the same as those of the teacher model.

TABLE I
NUMBER OF PARAMETERS AND CONFIGURATION OF TEACHER AND

STUDENT MODELS. SEE [32] FOR DETAILS OF EFFICIENTNET.

Model #Parameters Channel multiplier Depth multiplier
Teacher 4.53M 1.1 1.2
Student-0.5 0.875M 0.55 0.60
Student-0.25 0.228M 0.25 0.30

B. Loss functions

We use a teacher model to distill knowledge from the
dimension-adjusted feature maps (hints) using the structure
information of hints, and the predicted density map as shown
in Fig. 2.

1) Angular Cosine Distance: For feature- and structure-
loss, we employ an angular cosine distance to measure the
distance between feature maps. The cosine similarity between
two feature maps X and Y can be defined as:

cos(X,Y ) =
X · Y

∥ X ∥ · ∥ Y ∥
(2)

where ∥ X ∥ is a Frobenius Norm of tensor X and · is the
element-wise multiplication. From this we define the angular
cosine distance as:

acos(X,Y ) = arccos (cos (X,Y ))
180

π
(3)

where arccos is the inverse cosine function. The output of
the angular cosine distance ranges from 0 to 180 degrees to
represent the minimum and maximum distance respectively.
The angular cosine distance requires both input tensors to have
the same dimensions.

2) Feature-loss: There are five feature-loss points for a
teacher or student model that can occur during the training
process as shown in Fig. 2 based on one loss point for
each layer of the self-transformed hints. Feature-loss is based

on the angular cosine distance calculated using Equation 3.
Specifically, we define feature-loss as:

Lfeat
i(T, S) = acos(H(T )i, H(S)i) (4)

where i represents layer i of the hint, and H(T ) and H(S) are
the hints associated with the teacher (T) and student models
(S) respectively.

3) Structure-loss: Structure-loss is the L2 norm between
the structure matrix of the teacher and the student hints.
For structure matrix A(H), we define ai,j ∈ A(H) as an
angular cosine distance between layer i and layer j of H . The
structure-loss between the teacher model (T) and the student
model (S) can then be calculated as:

Lstru(T, S) =∥ A(H(T )),A(H(S)) ∥ (5)

Noting that structure-loss requires that the hint layers have the
same dimensions.

4) Soft-loss: Soft-loss is the L2 norm between the predicted
density map of the teacher and student models. A soft-loss can
be defined as:

Lsoft(T, S) =∥ D̂(T ), D̂(S) ∥ (6)

where D̂ is the predicted density map.
5) KD-loss: Using the above equations, the loss function

for the KD process can be defined as:

LKD(T, S) =

5∑
i=1

Lfeat
i(T, S) + Lstru(T, S) + Lsoft(T, S)

(7)
6) Hard-loss: We employ the improved Bayesian loss [6] to

calculate the hard-loss between the prediction density map and
ground-truth count. The improved Bayesian loss is inspired by
the Bayesian loss [17]. This is defined as:

Lbayes =

N∑
i=1

|1− E(ci)| (8)

where E(ci) is the weighted average when counting all pixels
for a head annotation i, and 1 is the ground-truth count.
Because the proposed models are trained based on cropped
image patches, it is possible that part of a head is located at
the edge of a given image patch, which leads to inaccurate
ground-truths. Improved Bayesian loss [6] uses a portion of
the bounding-box inside the image patch Ti instead of 1 to
solve this problem. The improved Bayesian Loss can then be
represented as follows:

Lbayes improved =

N∑
i=1

|Ti − E(ci)| (9)

C. Outlier-Tolerant Loss

To reduce the potential negative impact of the teacher model
caused by outliers, we propose outlier-tolerant loss that can
mitigate the KD-loss caused by outliers in training data. We
define W as the weight list for the KD-loss of all data samples
in a training batch. We then define csi ,cti,c

gt
i as the predicted



count from the student model, the predicted count of the
teacher model, and the ground-truth count of input data sample
i, respectively. The weight wi in W can then be defined as:

wi =

{
1, if |csi − cgti | ≥ |cti − cgti |
0, otherwise

(10)

when wi = 0, we identify that data sample i is an outlier. The
Outlier-Tolerant Loss can then be defined as:

Lw
KD(T, S) = W ⊗ LKD(T, S) (11)

where ⊗ is data-sample-wise multiplication in a given training
batch. Hence the training process can eliminate the negative
impact of outliers in the teacher model.

D. Full Loss Function

Finally, the full loss function of the proposed distillation
process can be given as:

L = Lw
KD(T, S) + LBayes improved (12)

IV. EXPERIMENTS AND RESULTS

A. Dataset

We train the student models using the same data set (JHU-
CROWD++ [1]) as the teacher model [6]. This data set
contains 4,372 images with 1.51 million annotations. These
are categorized into four groups: low-density, medium-density,
high-density and weather. Taking advantage of this, we analyze
the impact of our proposed methods on various crowd scenes
and situations.

B. Evaluation Metrics

Two of the most common evaluation metrics for crowd
counting are the mean absolute error (MAE) and the square
root of the mean square error (RMSE). These are given as:

MAE =
1

N

N∑
i=1

|cgti − ĉi| (13)

RMSE =

√√√√ 1

N

N∑
i=1

|cgti − ĉi|2 (14)

where cgti and ĉi denote the ground-truth and the predicted
count of people in image i respectively.

C. Training, Validation and Testing

The models were trained using a single P100 Nvidia GPU
with 6 cores comprising Intel(R) Xeon(R) CPU E5-2650 cpu
and 8G memory. We employ the Adam optimiser and set the
learning rate and weight decay to 10−5 and 10−4 respectively.

We use the pre-trained EffCC-lite2 [6] as the teacher model,
and the JHU-CROWD++ data set [1] to train and distill
knowledge for the student models using the configuration
shown in Table I. During training and validation, we crop the
images and annotations in the training and validation data set

to 256x256. We set the batch sizes to 16 and 1 for the training
and validation stages respectively.

Test images are not cropped during the testing phase, and the
batch size is set to 1. When the length or width of the input
image is less than 512, it will be resized to 512 with fixed
aspect ratio. If the image is greater than 256*14, it will be
resized to 256*14 with the fixed aspect ratio. This was based
on initial experiments, where we discovered that increasing the
size of a small image (length or width smaller than 512 pixels)
will improve the accuracy of the teacher and the associated
student model, whilst a large image (length or width larger
than 512*14 pixels) will consume too much GPU memory.

D. Results

We compare the MAE and RMSE of the student models
to other state-of-the-art crowd counting models based on
the JHU-CROWD++ [1] data set. The results of the teacher
model are given in [6]. Other model results are explored
in [1]. Table II shows that the RMSEs of our best student
model (EffCC-lite0.5) are smaller than most state-of-the-art
models in the overall category and it achieves the smallest
MAE and RMSE in the high-density category. Our smallest
student model (EffCC-lite0.25) has a better RMSE than the
teacher model in the high-density category and in the weather
category. However, both student models have lower accuracy
than the teacher model based on other state-of-the-art models
such as BCC [17], CG-DRCNs [1], LSCCNN [35] and SA-Net
[3] in the low and medium-density category.

The improved accuracy of our student model in the high-
density category can be attributed to the proposed outlier-
tolerant loss approach. Table VI shows that if we remove the
negative impact of outliers, the MAE and RMSE of the student
model decreases significantly to less than the teacher model.

We also compared the computational cost including the
number of parameters, GMac, GFlops, and inference speed of
the proposed models with other state-of-the-art models given
in [7], [8]. In Table III, we see that our best student model
has 0.875M parameters, which is smaller than other distilled
models such as ShuffleCount [8] and 1/4-BL+SKT [7], and
it has a much lower GMac and GFlops dependency. For a
720p video, our best student model can infer at 16 FPS using
a Jetson NX with no compression. Even the smallest student
model reaches 28 FPS and its RMSE is smaller than most
other state-of-the-art models, with the exception of the CG-
DRCN-Res101 model although this has a much larger model
size.

E. Ablation Study

This ablation study confirms that the improvement of our
best student model is due to the proposed self-transformed
knowledge distillation method combined with the outlier-
tolerant approach.

1) Feature-loss and Structure-loss: We designed experi-
ments to establish whether KD gives rise to improvements in
student models. We first train a baseline student model without
KD, and then train other student models with KD using only



TABLE II
COMPARISON WITH OTHER MODELS [1]. LOW, MEDIUM AND HIGH DENOTES THE SIZE OF CROWDS AND WEATHER INDICATES WHETHER THE IMAGE

WAS TAKEN IN BAD WEATHER CONDITIONS, E.G., SNOW OR RAIN

Category Low(0-50) Medium(51-500) High(501+) Weather Overall
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Others MCNN [19] 97.10 192.30 121.40 191.30 618.60 1166.70 330.60 852.10 188.90 483.40
CMTL [20] 58.50 136.40 81.70 144.70 635.30 1225.30 261.60 816.00 157.80 490.40

CSR-Net [21] 27.10 64.90 43.90 71.20 356.20 784.40 141.40 640.10 85.90 309.20
SA-Net [3] 17.30 37.90 46.80 69.10 397.90 817.70 154.20 685.70 91.10 320.40
CACC [25] 37.60 78.80 56.40 86.20 384.20 789.00 155.40 617.00 100.10 314.00
SFCN [23] 16.50 55.70 38.10 59.80 341.80 758.80 122.80 606.30 77.50 297.60

DSSI-Net [26] 53.60 112.80 70.30 108.60 525.50 1047.40 229.10 760.30 133.50 416.50
MBTTBF [24] 19.20 58.80 41.60 66.00 352.20 760.40 138.70 631.60 81.80 299.10
LSCCNN [35] 10.60 31.80 34.90 55.60 601.90 1172.20 178.00 744.30 112.70 454.40

CG-DRCN-VGG [1] 19.50 58.70 38.40 62.70 367.30 837.50 138.60 654.00 82.30 328.00
CG-DRCN-Res [1] 14.00 42.80 35.00 53.70 314.70 712.30 120.00 580.80 71.00 278.60

BCC [17] 10.10 32.70 34.20 54.50 352.00 768.70 140.10 675.70 75.00 299.90
Teacher EffCC-Lite2 13.08 34.08 39.96 74.80 309.06 726.18 131.21 679.36 72.67 286.35
Students EffCC-Lite0.5 16.14 43.53 46.74 82.15 307.86 694.99 133.18 623.00 77.24 276.17

EffCC-Lite0.25 19.62 53.96 53.23 84.69 338.72 720.23 152.15 667.63 86.54 286.57

TABLE III
COMPARISON OF MODELS BASED ON NUMBER OF PARAMETERS, COMPUTATIONAL COMPLEXITY AND SPEED OF INFERENCE. GMAC IS BASED ON

1920X1080 IMAGES, GFLOPS BASED ON 2032X2912 IMAGES. HERE FPS IS THE INFERENCE SPEED OF THE PYTORCH MODEL BASED ON
1280X720-BASED VIDEO USING A JETSON NX.

Models #Parameters GMac@1920x1080 GFLOPs@2032x2912 FPS@720p
Others-full CSR-Net [21] 16.26M 857.8 2447.91 -

DSSI-Net [26] 8.85M - 8670.09 -
BCC [17] 21.5M - 2441.23 -
CG-DRCN-VGG [1] 21.5M - - -

Others-distilled ShuffleCount(KD) 1.31M 37.17 - -
1/4-BL + SKT 1.35M - 155.30 -

Teacher EffCC-Lite2 4.53M 27.3 76.7 6
Student(Ours) EffCC-Lite0.5 0.875M 8.23 23.04 16

EffCC-Lite0.25 0.228M 4.69 13.11 28

TABLE IV
ABLATION STUDY OF KNOWLEDGE DISTILLATION. HERE BASELINE IS THE STUDENT MODEL TRAINED WITHOUT KNOWLEDGE DISTILLATION. F IMPLIES

THE MODEL IS TRAINED USING FEATURE-LOSS AND S IMPLIES THE MODEL IS TRAINED USING STRUCTURE-LOSS.

Category Low(0-50) Medium(51-500) High(501+) Weather Overall
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Baseline 24.86 61.15 56.11 97.02 389.67 856.93 173.07 710.17 97.21 340.14
Baseline(S) 22.15 71.33 51.71 94.40 369.61 795.55 157.68 686.62 90.74 317.68
Baseline(F) 16.71 44.45 46.10 78.41 313.80 732.01 141.04 678.91 77.91 289.48

EffCC-Lite0.5(S+F) 16.14 43.53 46.74 82.15 307.86 694.99 133.18 623.00 77.24 276.17

feature-loss or only structure-loss. Table IV shows that the
baseline with structure-loss and the baseline with feature-loss
both have improvements in accuracy compared to the baseline
model without KD. The best model has lower MAE and RMSE
compared to all baselines, with the exception of the medium
density category of the baseline with feature-loss.

2) Self-transformed Hints: In order to test whether the
proposed self-transformed hints can increase the accuracy of
student models, we created a baseline student model (based
on student-0.5 in Table I) that did not include self-transformed
hints. In the baseline, we use external transformers to increase
the dimensions of the feature maps extracted from the student
model backbones in order to match the dimensions of the
corresponding feature maps of the associated teacher models.

In this experiment, the best model using self-transformed hints
was based on our EffCC-lite0.5 student model. Since the hints
in the baseline model have different numbers of channels in
every layer, structure-loss makes them unsuitable for training,
therefore we train the best model without structure-loss. Table
V shows that the MAE and RMSE of the best model de-
creases significantly in the high density, weather and overall
categories, with only a slight increase in low and medium
density categories compared to baseline. This indicates that
the proposed self-transformed hints contribute to the accuracy
increase of the student model.

3) Outlier-Tolerant Loss: We also trained a student model
without using outlier-tolerant loss as a baseline to confirm the
negative impact of outliers. Table VI shows that the baseline



TABLE V
ABLATION STUDY OF INFORMATION LEAKAGE, WHERE F IMPLIES ALL MODELS ARE TRAINED WITH FEATURE-LOSS.

Category Low(0-50) Medium(51-500) High(501+) Weather Overall
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Baseline(F) 14.59 33.50 46.13 73.71 358.93 775.43 149.83 699.12 84.06 304.78
EffCC-Lite0.5(F) 16.71 44.45 46.10 78.41 313.80 732.01 141.04 678.91 77.91 289.48

TABLE VI
ABLATION STUDY OF OUTLIER-TOLERANT LOSS. HERE BASELINE IS THE STUDENT MODEL TRAINED WITHOUT OUTLIER-TOLERANT LOSS (OTL)

Category Low(0-50) Medium(51-500) High(501+) Weather Overall
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Teacher 13.08 34.08 39.96 74.80 309.06 726.18 131.21 679.36 72.67 286.35
Baseline w/o OTL 15.77 47.92 44.08 81.02 322.42 756.35 140.87 678.87 77.77 299.20

EffCC-Lite0.5(F+S) 16.14 43.53 46.74 82.15 307.86 694.99 133.18 623.00 77.24 276.17

Fig. 3. An example of one of the worst cases. Here the input image id is 0814 in the test data set from JHU-CROWD++; GT is the ground-truth count;
Pred is the predicted count, Baseline without KD is the student model (EffCC-lite0.5) trained without KD. KD without OTL means the student model trained
without outlier-tolerant loss. The best model is the EffCC-lite0.5(S+F) model trained with outlier-tolerant loss.

model has higher MAE and RMSE in high-density, weather
and overall categories compared to our best model trained
using outlier-tolerant loss. However, the results do not differ
significantly between these two models in the low and medium
density categories.

To demonstrate the improvement caused by outlier-tolerant
loss, we show an image that causes the largest errors in the
test data set. As shown in Fig. 3, both the teacher model
and the baseline model (student model trained without KD)
produce poor results. When the baseline is trained without
outlier-tolerant loss, the student model achieves a similar result
to the teacher model. If we train the student model using
outlier-tolerant loss, the accuracy improves significantly, and
the student model is able to capture the crowd at the far end
of the view (right hand image) which the teacher model was
unable to capture.

V. CONCLUSIONS

In this work, we have shown how self-transformed hints and
outlier-tolerant loss can significantly improve the accuracy of
knowledge distillation for crowd counting tasks appropriate for
IoT devices. Our best student model has a similar MAE and
smaller RMSE compared to state-of-the-art models. However,

it has less than 1 million parameters and 8.23 GMac for a
1920x1080 image allowing it to infer 2.6 times faster (16 FPS)
than other light-weight teacher models (EffCC-lite2) using
720p video on a Jetson Nx. As our distilled model is only
3.5 Megabytes in size and hence it can be deployed directly
onto lightweight IoT crowd-counting devices.

While the proposed knowledge distillation method requires
the teacher model to have a sufficient number of feature
maps that have the same dimension, we believe that such
feature maps can help CNN models increase their accuracy
and efficiency. We also believe that other regression tasks
can benefit from the proposed knowledge distillation methods
presented in this work.

Future work will focus on the practical deployment of these
models onto diverse IoT devices in real world crowd-counting
scenarios.
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